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Introduction

This section is not yet finished.

Although almost complete, this book is still a work-in-progress — a few sections
are missing, but we are constantly updating and filling in the gaps! Because of
this, external links to specific chapters or sections might break as things move
around.

Plan and intended audience

In this series of lectures you will learn how inherently quantum phenomena, such as quantum
interference and quantum entanglement, can make information processing more efficient and
more secure, even in the presence of noise.

There are many introductions to quantum information science, so it seems like a good idea to
start with an explanation of why this particular one exists. When learning such a subject, located
somewhere in between mathematics, physics, and computer science, there are many possible
approaches, with one main factor being “how far along the scale of informal to formal do I want
to be?”. In these notes we take the following philosophy: it can be both interesting and fun to
cover lots of ground quickly and see as much as possible on a surface level, but it’s also good to
know that there is a lot of important stuff that you’ll miss by doing this. In practice, this means
that we don’t worry to much about high-level mathematics. That is not to say that we do not use
mathematics “properly” — in these notes you’ll find a perfectly formal treatment of e.g. quantum
channels via completely positive trace-preserving maps in the language of linear algebra — but
rather than putting too many footnotes with technical caveats and explanations throughout the
main text, we opt to collect them all together into one big “warning” here:

The mathematics underlying quantum theory is a vast and in-depth subject, most of
which we will never touch upon, some of which we will only allude to, and the rest of
which we will cover only in the level of detail necessary for our overarching goal (give or
take some interesting mathematical detours).

But this then poses the question of what the overarching goal of this book actually is.

This book aims to help the eager reader understand what quantum information science
is all about, and for them to realise which facets of it they would like to study in more
detail.

But this does not mean that our treatment is cursory! In fact, by the end of this book you
will have learnt a fair bit more than what might usually be covered in a standard quantum
information science course that you would find in a mathematics masters degree, for example.

The interdisciplinary nature of this topic, combined with the diverse backgrounds that differ-
ent readers have, means that some may find certain chapters easy, while others find the same
ones difficult — so if things seem hard to you then don’t worry, because the next chapter might
feel much easier! The only real prerequisites are a working knowledge of complex numbers and
vectors and matrices; some previous exposure to elementary probability theory and Dirac bra-ket
notation (for example) would be helpful, but we provide crash-course introductions to some top-
ics like these at the end of this chapter. A basic knowledge of quantum mechanics (especially in
the simple context of finite dimensional state spaces, e.g. state vectors, composite systems, uni-
tary matrices, Born rule for quantum measurements) and some ideas from classical theoretical
computer science (complexity theory, algorithms) would be helpful, but is not at all necessary.
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Of course, even if you aren’t familiar with the formal mathematics of complex numbers and
linear algebra, then that shouldn’t stop you from reading this book if you want to. You might
be surprised at how much you can black box the bits that you don’t understand. The caveat
stands, however, that, to really get to grips with this subject, at least some knowledge of maths
is necessary — and this is not a bad thing!

On that note, every chapter ends with a section called “Remarks and exercises”. You will
find the same advice in basically every single mathematical text: even just attempting to do the
exercises is almost more important than reading the actual book itself. For this book, it is doubly
true that you should at least read these sections, because they contain not just exercises but also
further content including worked exercises and further fundamental expository content.

Finally, throughout this text you will find some technical asides. These are not at all necessary
reading, but are just there to provide the exceptionally eager reader (or perhaps those with
a more formal mathematical background) with some extra context, as well as some pointers
towards further reading. They are usually intentionally vague and scarce in detail.

Notes on this PDF

This book is primarily an online resource: the web version contains links to external sites, em-
bedded videos, and improved accessibility and functionality. Note that this current PDF might be
an outdated version, as can be checked by comparing the “Last updated” date to the web version
(which also includes a change history).

Links to websites (as opposed to sections within this document) appear in a different colour
and are underlined.

The web version of this book can be found at https://qubit.guide.

Technical asides.

In this PDF, the technical asides mentioned in the introduction are formatted like this.
One advantage of the web version is that these are hidden by default, and so don’t inter-
rupt the main text with unnecessary asides.

How to cite this book

BibLaTeX:

@online{qubitguide
author = {Ekert, A and Hosgood, T and Kay, A and Macchiavello, C}
title = {{Introduction to Quantum Information Science}}
url = {https://qubit.guide}
date = {2024-12-08}

}

BibTeX:

@misc{qubitguide
author = {Ekert, A and Hosgood, T and Kay, A and Macchiavello, C}
title = {{Introduction to Quantum Information Science}}
howpublished = {\url{https://qubit.guide}}
date = {2024-12-08}

}
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0.1 Complex numbers

Some mathematical preliminaries

Here we quickly recall most of the fundamental mathematical results that we will rely
on in the rest of this book, most importantly linear algebra over the complex numbers.
However, we will not introduce everything from the ground up. Most notably, we will
assume that the reader understands what a matrix is, and how it represents a linear
transformation; some prior exposure to complex numbers would be helpful.

If an equation like tr |a〉〈b| = 〈b|a〉 makes sense to you, and you can find the
eigenvalues and eigenvectors of a matrix like[

0 1 + i√
2e−iπ/4 0

]
then you can safely skip over this section and get started directly with Chapter 1.

As a small note on notation, we generally write “x := y” to mean “x is defined to
be (equal to) y”, and “x ≡ y” to mean “x is just another name for y”, but sometimes
we simply just write “x = y”.

0.1 Complex numbers

One of the fundamental ingredients of quantum information science (and, indeed, of
quantum physics in general) is the notion of complex numbers. It would be disin-
genuous to expect that a few paragraphs would suffice to make the reader sufficiently
familiar with subject, but we try our best here to give a speedy overview of the core
principles, and end with some exercises that can be a helpful indicator of which things
you might want to read up on elsewhere.

The “classical” way of arriving at complex numbers is as follows: start with the
natural numbers N = {0, 1, 2, . . .}, which we can add; if we want to be able to invert
addition (i.e. subtract), then we end up with the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .},
which we can multiply; if we want to be able to invert multiplication (i.e. divide), then
we end up with the rationals Q = {p

q | p, q ∈ Z}. In this process of “closure under
more and more binary operations”, we have passed from a monoid, to a group, to a
field. Algebraically, then, we seem to be done: we can do all the addition and multi-
plication that we like, and we can invert it whenever it makes sense to do so (e.g. we
can divide, as long as it’s not by 0).

But there are lots of numbers that turn up in geometry that are not rational, such
as
√

2 ≈ 1.414, π ≈ 3.14, and e ≈ 2.718. To include all of these (and simultaneously
make sense of things like infinite sums, and limits), we must do some real analysis
— something which we won’t touch upon here — to end up with the real numbers
R. These form a field, just like the rationals, but now we don’t have any “gaps” in our
number line. So what’s left to do?

Well the reals have one big problem: they are not algebraically closed. That is,
there exist polynomials with no roots, i.e. equations of the form anx

n + an−1x
n−1 +

. . .+ a1x+ a0 = 0 (where the ai are real numbers) that have no solutions. Somehow 0 To explain why we care so
much about polynomials would
be the subject of a whole nother
book, but one important reason
(of the many!), for both ana-
lysts and geometers alike, is the
Weierstrass Approximation Theorem.

the most fundamental such example is the equation x2+1 = 0, which has no solutions,
because the square of any real number must be non-negative, and so

√
−1 6∈ R.

It turns out that if we just throw in this one extra number i :=
√
−1 to R then

we can solve any polynomial — a theorem so important that it’s known as the funda-
mental theorem of algebra. We call the result of doing this the complex numbers,
and denote them by C.

This gives us an algebraic way of understanding what a complex number is: it is
a real number x plus an imaginary number iy (where y ∈ R) That is, every complex
number x+iy simply corresponds to a pair of real numbers (x, y). So now we can think
geometrically! We imagine the complex numbers C as the 2-dimensional Euclidean
space R2, where the x-axis corresponds to the real part of a complex number, and the
y-axis to the imaginary part. This really is a geometric way of thinking, since now
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0.1 Complex numbers

addition (and subtraction) of complex numbers (which is defined by adding their real
and imaginary parts separately) is given by vector addition, as shown in Figure 0.1.

ℜ(z)

ℑ(z)

• z

•
z′

• z + z′

Figure 0.1: Addition of two complex numbers z = x + iy and z′ = x′ + iy′, where
we write Re (resp. Im) for the real (resp. imaginary) part of a complex number:
Re(x + iy) = x and Im(x + iy) = y. Commutativity of addition corresponds to what
is sometimes called the parallelogram law for addition of vectors.

But what about multiplication and division? Following the rules of the game, we
can figure out what the product of two complex numbers is by treating the imaginary
number i as a “formal variable”, i.e. pretending it’s just a variable in some polynomial,
and then remembering that i =

√
−1 at the very end:

(x+ iy)(x′ + iy′) = xx′ + ixy′ + iyx′ + i2yy′

= xx′ + ixy′ + iyx′ − yy′

= xx′ − yy′ + i(xy′ + yx′).

Division works similarly — the most simple example of inverting a complex num-
ber x + iy makes sense whenever x and y are both non-zero, since then we can use
the trick of “multiplying by 1”:

1
x+ iy

= 1
x+ iy

x− iy
x− iy

= x− iy
x2 + y2

= x

x2 + y2 − i
y

x2 + y2

This other complex number x − iy that we used is somehow special because it
is exactly the thing we needed to make the denominator real, so we give it a name:
the complex conjugate of a complex number z = x + iy is the complex number 0 The more common notation in

mathematics is z̄ instead of z?, but
physicists tend to like the latter.

z? := x − iy. Geometrically, this is just the reflection of the vector (x, y) ∈ R2 in
the x-axis. The product zz? = x2 + y2 is also important: you might recognise (from
Pythagoras’ theorem) that

√
x2 + y2 is exactly the length of the vector (x, y), and so

we call the real number |z| :=
√
zz? the modulus (or magnitude, norm, or absolute

value). Note then that we can simply write 1/z = z?/|z|2.
Now things are looking somewhat nice, but the story isn’t complete. We have a

good geometric intuition for what a complex number is (a vector in R2) and how to
add them (vector addition), as well as what the complex conjugate and the modulus
mean (reflection in the x-axis, and the length of the vector, respectively); but what
about multiplication and division?

To understand these we need to switch from our rectangular coordinates z =
x + iy to polar coordinates — instead of describing a point z in R2 as “x units
left/right and y units up/down”, we describe it as “r units from the origin, at an angle
of θ radians”. We already know, given (x, y) ∈ R2, how to calculate its distance r
from the origin, since this is exactly the length of the vector: r = |(x, y)| =

√
x2 + y2.
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0.1 Complex numbers

But what about the angle? Some trigonometry tells us that θ = arctan(y/x), so we
now know how to convert rectangular to polar coordinates:

x+ iy = (x, y) 7−→ (r, θ) := (
√
x2 + y2, arctan(y/x)).

It would be nice to know how to go in the other direction though, but this can also
be solved with some trigonometry:

(r, θ) 7−→ (r cos θ, r sin θ).

ℜ(z)

ℑ(z)

r =

√ x
2 +

y
2

θ = arctan(y/x)

x = r cos θ

y = r sin θ •
z

Figure 0.2: Expressing a complex number z in both planar and polar forms.

Great! . . . but what’s the point of polar coordinates? Well, it turns out that
they give us a geometric way of understanding multiplication: you can show that 0Exercise. Prove this!

(r, θ) multiplied by (r′, θ′) is exactly (rr′, θ + θ′), which says that multiplication by a
complex number (r, θ) is exactly a scaling by a factor of r and a rotation by θ. This
means that we can also easily find the multiplicative inverse of (r, θ), since it’s just
(1/r,−θ). Finally, complex conjugation just means switching the sign of the angle:
(r, θ)? = (r,−θ).

There is one last ingredient that we should mention, which is the thing that really
solidifies the relation between rectangular and polar coordinates. We know that rect-
angular coordinates (x, y) can be written as x + iy, so is there some more algebraic
way of writing polar coordinates (r, θ)? Then we can avoid any ambiguity that might
arise from using pairs of numbers — if I tell you that I’m thinking of the complex
number z = (0.3, 2), do I mean the point 0.3 + 2i, or the point that is distance r from
the origin at an angle of 2 radians?

Given polar coordinates (r, θ), we know that this is equal to (r cos θ, r sin θ) in
rectangular coordinates. For simplicity, let’s first consider the case where r = 1. Then
we can write (1, θ) as cos θ + i sin θ. Using the Taylor series of sin and cos, we can 0 If you don’t know about Taylor

series, then feel free to just skim
this part, but make sure to read
the punchline!

rewrite this as

cos θ + i sin θ =
(

1− θ2

2!
+ θ4

4!
− . . .

)
+ i

(
θ − θ3

3!
+ θ5

5!
− . . .

)
= 1 + iθ − θ2

2!
− iθ

3

3!
+ θ4

4!
+ i

θ5

5!
− . . .

= 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ i4θ4

4!
+ i5θ5

5!
+ . . .

= exp(iθ)

where at the very end we use the Taylor expansion of the exponential function
exp(x) = ex.

We have just “proved” one of the most remarkable formulas in mathematics: Eu- 0 It is very important to point out
that this “proof” is not rigorous or
formal — you need to be very very
careful when rearranging infinite
sums! However, this proof can be
made rigorous by using some real
analysis.
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0.2 Euclidean vectors and vector spaces

ler’s formula

eiθ = cos θ + i sin θ

(a special case of which gives the famous equation eiπ + 1 = 0, uniting five funda-
mental constants: 0, 1, i, e, and π). In summary then, we have two beautiful ways
of expressing a complex number z ∈ C, in either its rectangular/planar form or its
polar/Euler form:

z = x+ iy = reiθ.

Addition and subtraction are most neatly expressed in the planar form x+ iy,
and multiplication and division are most neatly expressed in the polar form
reiθ; complex conjugation looks nice and tidy in both.

Addition of polar vectors.

We know how to perform addition, multiplication, inversion (which is a spe-
cial case of division), and complex conjugation on complex numbers in planar
form, but we’ve only described how to do the last three of these in polar form:
we haven’t said how to write reiθ + r′eiθ′

as seiϕ for some s and ϕ. This is
because it is very messy looking:

s =
√
r2 + (r′)2 + 2rr′ cos(θ′ − θ)

ϕ = θ + atan2
(
r′ sin(θ′ − θ), r + r′ cos(θ′ − θ)

)
and where atan2 is the 2-argument arctangent function.

You do not need to know everything about this whole story of algebraically closed
fields and so on, but it helps to know the basics, so here are some exercises that should
help you to become more familiar. 0 Note that we have not really

given you enough information in
this section to be able to solve all
these exercises, but that is inten-
tional! Sometimes we like to ask
questions and not answer them,
with the hope that you will en-
joy getting to do some research by
yourself.

a. The set Q of rational numbers and the set R of real numbers are both fields, but
the set Z of integers is not. Why not?

b. Look up the formal statement of the fundamental theorem of algebra.
c. Evaluate each of the following quantities:

1 + e−iπ, |1 + i|, (1 + i)42,
√
i, 2i, ii.

d. Here is a simple “proof” that +1 = −1:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1.

What is wrong with it?
e. Prove that, for any two complex numbers w, z ∈ C, we always have the inequal-

ity 0 Hint: use polar form, draw
a diagram, and appeal to the
triangle inequality.|z − w| ⩾ |z| − |w|.

f. Using the fact that e3iθ = (eiθ)3, derive a formula for cos 3θ in terms of cos θ and
sin θ.

0.2 Euclidean vectors and vector spaces

We assume that you are familiar with Euclidean vectors — those arrow-like geometric
objects which are used to represent physical quantities, such as trajectories, velocities,
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0.2 Euclidean vectors and vector spaces

or forces. You know that any two velocities can be added to yield a third, and the mul-
tiplication of a “velocity vector” by a real number is another “velocity vector”. So a
linear combination of vectors is another vector: if v and w are vectors, and λ and µ
are numbers (rational, real, or complex, for example), then λv+µw is another vector.
Mathematicians have simply taken these properties and defined vectors as anything
that we can add and multiply by numbers, as long as everything behaves in a nice
enough way. This is basically what an Italian mathematician Giuseppe Peano (1858–
1932) did in a chapter of his 1888 book with an impressive title: Calcolo geometrico
secondo l’Ausdehnungslehre di H. Grassmann preceduto dalle operazioni della logica de-
duttiva. Following Peano, we define a vector space as a mathematical structure in
which the notion of linear combination “makes sense”.

More formally, a complex vector space is a set V such that, given any two vectors
a and b (that is, any two elements of V ) and any two complex numbers α and β, we
can form the linear combination αa+βb, which is also a vector in V . There are certain
“nice properties” that vector spaces things must satisfy. Addition of vectors must be
commutative and associative, with an identity (the zero vector, which is often written
as 0) and an inverse for each v (written as −v). Multiplication by complex numbers
must obey the two distributive laws: (α+ β)v = αv + βv and α(v + w) = αv + αw.

Modules over a ring.

A more succinct way of defining a vector space is as an abelian group endowed
with a scalar action of a field. This showcases vector spaces as a particularly
well behaved example of a more general object: modules over a ring.

A subspace of V is any subset of V which is closed under vector addition and
multiplication by complex numbers. Here we start using the Dirac bra-ket notation
and write vectors in a somewhat fancy way as |label〉, where the “label” is anything
that serves to specify what the vector is. For example, | ↑〉 and | ↓〉 may refer to
an electron with spin up or down along some prescribed direction, and |0〉 and |1〉
may describe a quantum bit holding either logical 0 or 1. As a maybe more familiar
example, the set of binary strings of length n is a vector space over the field Z/2Z of
integers mod 2; in the case n = 2 we can write down all the vectors in this vector
space in this notation: |00〉, |01〉, |10〉, |11〉, where e.g. |10〉 + |11〉 = |01〉 (addition is
taken mod 2). These are often called ket vectors, or simply kets. (We will deal with
“bras” in a moment).

A basis in V is a collection of vectors |e1〉, |e2〉, . . . , |en〉 such that every vector |v〉
in V can be written (in exactly one way) as a linear combination of the basis vec-
tors: |v〉 =

∑n
i=1 vi|ei〉, where the vi are complex numbers. The number of elements

in a basis is called the dimension of V . The most common, and prototypical, n- 0 Showing that this definition is
independent of the basis that we
choose is a “fun” linear algebra ex-
ercise.

dimensional complex vector space (and the space which we will be using most of the
time) is the space of ordered n-tuples of complex numbers, usually written as column
vectors:

|a〉 =


a1
a2
...
an


with a basis given by the column vectors |ei〉 that are 0 in every row except for a 1 in
the i-th row:

|e1〉 =


1
0
...
0

 |e2〉 =


0
1
...
0

 . . . |en〉 =


0
0
...
1
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0.3 Bras and kets

and where addition of vectors is done component-wise, so that(
n∑

i=1
vi|ei〉

)
+

(
n∑

i=1
wi|ei〉

)
=

n∑
i=1

(vi + wi)|ei〉

or, in column vectors,

|v〉 =


v1
v2
...
vn

 |w〉 =


w1
w2
...
wn



α|a〉+ β|b〉 =


αv1 + βw1
αv2 + βw2

...
αvn + βwn


Throughout the course we will deal only with vector spaces of finite dimensions.

This is sufficient for all our purposes and we will avoid many mathematical subtleties
associated with infinite dimensional spaces, for which we would need the tools of
functional analysis.

Formally, whenever we say n-dimensional Euclidean space, we mean the real
vector space Rn.

0.3 Bras and kets

An inner product on a vector space V (over the complex numbers) is a function that
assigns to each pair of vectors |u〉, |v〉 ∈ V a complex number 〈u|v〉, and satisfies the
following conditions:

• 〈u|v〉 = 〈v|u〉?
• 〈v|v〉 ⩾ 0 for all |v〉
• 〈v|v〉 = 0 if and only if |v〉 = 0

where ? denotes complex conjugation (sometimes written as z 7→ z̄ instead).
The inner product must also be linear in the second argument but antilinear in the

first argument:

〈c1u1 + c2u2|v〉 = c?
1〈u1|v〉+ c?

2〈u2|v〉

for any complex constants c1 and c2.
To any physical system we associate a complex vector space with an inner product, 0 The question of how exactly we

construct this associated space is a
subtle one in the case of arbitrary
physical systems, but we shall see
that this is relatively straightfor-
ward when working with the types
of systems that we consider in this
book.

known as a Hilbert space H. The inner product between vectors |u〉 and |v〉 in H is
written as 〈u|v〉.

Finite-dimensional functional analysis.

If V is a vector space with an inner product 〈−,−〉, then this gives us a norm
on V by defining ‖x‖ =

√
〈x, x〉 and thus a metric by defining d(x, y) =

‖y−x‖. We say that a sequence (xn) in V is Cauchy if its elements “eventually
always get closer”, i.e. if for all ε > 0 there exists some N ∈ N such that for all
m,n > N we have ‖xn − xm‖ < ε. We say that a normed space is complete
if every Cauchy sequence converges in that space, i.e. if the limits of sequences
that should exist actually do exist.

Now one useful fact is the following: on a finite dimensional vector space,
all norms are equivalent. (Note that this does not mean that ‖x‖1 = ‖x‖2
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0.4 Daggers

for any two norms ‖ − ‖1 and ‖ − ‖2, but simply that they “induce the same
topology” — feel free to look up the precise definition elsewhere). This follows
from another useful fact: in a finite dimensional vector space, the unit ball is
compact. By a short topological argument, we can use these facts to show that
what we claimed, namely that every finite dimensional inner product space is
complete (with respect to the norm induced by the inner product, and thus
with respect to any norm, since all norms are equivalent).

In the infinite dimensional case these facts are not true, and we have a spe-
cial name for those inner product spaces which are complete: Hilbert spaces.
So working in the finite dimensional case means that “we do not have to worry
about analysis”, in that the completeness property comes for free the moment
we have an inner product, and we can freely refer to inner product spaces as
Hilbert spaces.

For example, for column vectors |u〉 and |v〉 in Cn written as

|u〉 =


u1
u2
...
un

 |v〉 =


v1
v2
...
vn


their inner product is defined by

〈u|v〉 = u?
1v1 + u?

2v2 + . . .+ u?
nvn.

Following Dirac, we may split the inner product into two ingredients:

〈u|v〉 −→ 〈u| |v〉.

Here |v〉 is a ket vector, and 〈u| is called a bra vector, or a bra, and can be represented
by a row vector:

〈u| =
[
u?

1, u?
2, . . . , u?

n

]
.

The inner product can now be viewed as the result of the matrix multiplication:

〈u|v〉 =
[
u?

1, u?
2, . . . , u?

n

]
·


v1
v2
...
vn


= u?

1v1 + u?
2v2 + . . .+ u?

nvn.

Bras are vectors: you can add them, and multiply them by scalars (which, here, are
complex numbers), but they are vectors in the spaceH? which is dual toH. Elements
of H? are linear functionals, that is, linear maps from H to C. A linear functional 〈u|
acting on a vector |v〉 in H gives a complex number 〈u|v〉.

All Hilbert spaces of the same (finite) dimension are isomorphic, so the dif-
ferences between quantum systems cannot be really understood without ad-
ditional structure. This structure is provided by a specific algebra of operators
acting on H.
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0.4 Daggers

0.4 Daggers

Although H and H? are not identical spaces — the former is inhabited by kets, and
the latter by bras — they are closely related. There is a bijective map from one to the
other given by |v〉 ↔ 〈v|, and denoted by a dagger: 0 “Is this a † which I see before

me. . . ”
〈v| = (|v〉)†

|v〉 = (〈v|)†.

We usually omit the parentheses when it is obvious what the dagger operation applies
to.

The dagger operation, also known as Hermitian conjugation, is antilinear:

(c1|v1〉+ c2|v2〉)† = c?
1〈v1|+ c?

2〈v2|
(c1〈v1|+ c2〈v2|)† = c?

1|v1〉+ c?
2|v2〉.

Also, when applied twice, the dagger operation is the identity map.
You might already be familiar with Hermitian conjugation under another name:

the conjugate transpose of an (n ×m) matrix A is an (m × n) matrix A†, obtained 0 In mathematics texts this opera-
tion is often denoted by ? rather
than †, but we reserve the former
for complex conjugation without
matrix transposition. Note, how-
ever, that scalars can be thought of
as (1×1) matrices, and in this spe-
cial case we have that † = ?.

by interchanging the rows and columns of A and taking complex conjugates of each
entry in A, i.e. A†

ij = A?
ji. In particular then,

|v〉 =


v1
v2
...
vn

 †←→ 〈v| =
[
v?

1 , v?
2 , . . . , v?

n

]
.

We will come back to this † operation on matrices in Section 0.6.

0.5 Geometry

The inner product brings geometry: the length, or norm, of |v〉 is given by ‖v‖ =√
〈v|v〉, and we say that |u〉 and |v〉 are orthogonal if 〈u|v〉 = 0. Any maximal set of

pairwise orthogonal vectors of unit length forms an orthonormal basis {|e1〉, . . . , |en〉}, 0 That is, consider sets of vec-
tors |ei〉 such that 〈ei|ej〉 = δij
(where the Kronecker delta δij is
0 if i 6= j, and 1 if i = j.), and
then pick any of the largest such
sets (which must exist, since we
assume our vector spaces to be fi-
nite dimensional).

and so any vector can be expressed as a linear combination of the basis vectors:

|v〉 =
∑

i

vi|ei〉

where vi = 〈ei|v〉. Then the bras 〈ei| form the dual basis

〈v| =
∑

i

v?
i 〈ei|

where v?
i = 〈v|ei〉.

To make the notation a bit less cumbersome, we will sometimes label the basis
kets as |i〉 rather than |ei〉, and write

|v〉 =
∑

i

|i〉〈i|v〉

〈v| =
∑

j

〈v|i〉〈i|

but do not confuse |0〉 with the zero vector! We never write the zero vector as |0〉, but
only ever as 0, without any bra or ket decorations (so e.g. |v〉+ 0 = |v〉).

Now that we have some notion of geometry, we can explain a bit more about
this idea of associating a Hilbert space to a quantum system — we will use some
terminology that we have not yet introduced, but all will be explained in due time.
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0.6 Operators

To any isolated quantum system, which can be prepared in n perfectly distin-
guishable states, we can associate a Hilbert space H of dimension n such that
each vector |v〉 ∈ H of unit length 〈v|v〉 = 1 represents a quantum state of the
system. The overall phase of the vector has no physical significance: |v〉 and
eiϕ|v〉 (for any real ϕ) both describe the same state.

We note here one more fact that also won’t yet make sense, but which won’t hurt
to have hidden away in the back of your mind.

The inner product 〈u|v〉 is the probability amplitude that a quantum system
prepared in state |v〉 will be found in state |u〉 upon measurement. This means
that states corresponding to orthogonal vectors (i.e. 〈u|v〉 = 0) are perfectly
distinguishable: if we prepare the system in state |v〉, then it will never be
found in state |u〉, and vice versa.

0.6 Operators

A linear map between two vector spaces H and K is a function A : H → K that
respects linear combinations:

A(c1|v1〉+ c2|v2〉) = c1A|v1〉+ c2A|v2〉

for any vectors |v1〉, |v2〉 and any complex numbers c1, c2. We will focus mostly on
endomorphisms, that is, maps from H to H, and we will call them operators. The
symbol 1 is reserved for the identity operator that maps every element of H to itself
(i.e. 1|v〉 = |v〉 for all |v〉 ∈ H). The product BA of two operators A and B is the
operator obtained by first applying A to some ket |v〉 and then B to the ket which
results from applying A:

(BA)|v〉 = B(A|v〉).

The order does matter: in general, BA 6= AB. In the exceptional case in which
AB = BA, one says that these two operators commute. The inverse of A, written as
A−1, is the operator that satisfies AA−1 = 1 = A−1A. For finite-dimensional spaces,
one only needs to check one of these two conditions, since any one of the two implies
the other, whereas, on an infinite-dimensional space, both must be checked. Finally,
given a particular basis, an operator A is uniquely determined by the entries of its
matrix: Aij = 〈i|A|j〉.

The adjoint, or Hermitian conjugate, of an linear map A, denoted by A†, is
defined by the relation

〈i|A†|j〉 = 〈j|A|i〉?

for all |i〉, |j〉 ∈ H

and † turns (n×m) matrices into (m× n) matrices.
An operator A is said to be

• normal if AA† = A†A
• unitary if A† = A−1

• Hermitian (or self-adjoint) if A† = A.

In particular then, being unitary implies being normal, since if A† = A−1 then
AA† = A†A, since both of these are equal to 1. Note also that unitary and Hermitian
operators must indeed be operators, i.e. they are represented by a square matrix.
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0.7 Eigenvalues and eigenvectors

Any physically admissible evolution of an isolated quantum system is represented
by a unitary operator. Note that unitary operators preserve the inner product: given a 0 This is an axiom, justified by ex-

perimental evidence, and also by
some sort of mathematical intu-
ition. So, in this book, we take this
as a fact that we do not question.
It is, however, very interesting to
question it: why should we assume
this to be true?

unitary operator U and two kets |a〉 and |b〉, and defining |a′〉 = U |a〉 and |b′〉 = U |b〉,
we have that

〈a′| = 〈a|U†

〈b′| = 〈b|U†

〈a′|b′〉 = 〈a|U†U |b〉 = 〈a|1|b〉 = 〈a|b〉.

Preserving the inner product implies preserving the norm induced by this product,
i.e. unit state vectors are mapped to unit state vectors, i.e. unitary operations are the
isometries of the Euclidean norm.

Dagger compact categories.

This whole package of stuff and properties and structure (i.e. finite dimen-
sional Hilbert spaces with linear maps and the dagger) bundles up into an ab-
stract framework called a dagger compact category. We will not delve into
the vast world of category theory in this book, and to reach an understanding
of all the ingredients that go into the one single definition of dagger compact
categories would take more than a single chapter. But it’s a good idea to be
aware that there are researchers in quantum information science who work
entirely from this approach, known as categorical quantum mechanics.

One particular method within this approach is the use of string diagrams,
which allow for the use of so-called diagrammatic reasoning, with the
ZX-calculus being a particularly successful example. For an introduction to
string diagrams of this flavour, it’s maybe a good idea to start with under-
standing how they can express the linear algebra that you already know. For
example, Pawel Sobocinski’s “Graphical Linear Algebra” aims to teach linear
algebra entirely through the introduction of string diagrams.

0.7 Eigenvalues and eigenvectors

Given an operator A, an eigenvector is a non-zero vector |v〉 such that

A|v〉 = λ|v〉

for some λ ∈ C (which is called the corresponding eigenvalue). We call the pair
(λ, |v〉) an eigenpair, and we call the set of eigenvalues the spectrum of A, denoted
by σ(A). It is a surprising (but incredibly useful) fact that every operator has at least
one eigenpair. Geometrically, an eigenvector of an operator A is a vector upon which 0 You can prove this for an (n ×

n) matrix A by considering the
set {|v〉, A|v〉, A2|v〉, . . . , An|v〉}
of vectors in Cn. Since this
has n + 1 elements, it must be
linearly dependent, and so (after
some lengthy algebra) we can con-
struct an eigenpair.

A simply acts by “stretching”. Note that eigenvectors can be scaled by an arbitrary
non-zero length: if A|v〉 = λ|v〉 then

A(µ|v〉) = µ(A|v〉)
= µλ|v〉
= λ(µ|v〉)

for any µ 6= 0. Because of this, we usually assume all eigenvectors to be of length 1.
Rewriting the defining property of an eigenpair (λ, |v〉), we see that

(A− λ1)|v〉 = 0

which tells us that the operator A − λ1 has a non-zero kernel, and is thus non-
invertible. This gives a useful characterisation of the spectrum in terms of a deter-
minant:

σ(A) = {λ ∈ C | det(A− λ1) = 0}.
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0.7 Eigenvalues and eigenvectors

The spectrum σ(A) allows us to recover information about the operator A. For
example, the trace of A is equal to the sum of all its eigenvalues, and the determinant
of A is equal to the product of all its eigenvalues. We can show this easily for normal
operators using the fact that their eigenvectors are orthogonal: they satisfy 〈v|w〉 = 0 0 Exercise. Prove this! Hint: start

by showing that, if (λ, |v〉) is an
eigenpair of A, then (λ?, |v〉) is an
eigenpair of A†.

for v 6= w. Because eigenvectors can always be scaled, this means that we can assume
the eigenvectors of a normal operator to be orthonormal. If we write the eigenpairs
as (λi, |vi〉), we can define

U =
∑

i

|i〉〈vi|

for an orthonormal basis {|1〉, . . . , |n〉}, which is an orthogonal matrix (since the
eigenvectors are also assumed to be orthonormal). Then we see that

UAU† =
∑
i,j

|i〉〈vi|A|vj〉〈j|

=
∑
i,j

|i〉〈vi|λj |vj〉〈j|

=
∑
i,j

λj |i〉(〈vi|vj〉)〈j|

=
∑

i

λi|i〉〈i|

(where we again use this hypothesis that the eigenvectors of A are all orthonormal)
which is the diagonal matrixD consisting of the eigenvalues λi ofA along its diagonal.
Then, since UAU† = D, we can equally write A = U†DU , which gives us

A =
∑

i

λi|vi〉〈vi|.

We call each λi|vi〉〈vi| the eigenspace projector, since a projector is defined to be
any operator P that satisfies P = P † and P 2 = P . Note that projectors can only have
eigenvalues equal to 0 or 1, since if |v〉 is an eigenvector of P then, using the fact that
P 2 = P ,

0 = (P 2 − P )|v〉
= (λ2 − λ)|v〉

=⇒ λ(λ− 1) = 0

and so λ must be equal to either 0 or 1.
Finally we can now return to the relationship between eigenvalues and the trace

and determinant, using this fact that any normal operator A gives a unitary operator
U such that A = U†DU for the diagonal matrix D of eigenvalues of A. Indeed,

tr(A) = tr(U†DU)
= tr(DUU†)
= tr(D)

=
∑

i

λi
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0.8 Outer products

which proves that the trace is equal to the sum of the eigenvalues, and

det(A) = det
(
U†DU

)
= det

(
U†) det(D) det(U)

= det(D) det
(
U†) det(U)

= det(D) det
(
U†U

)
= det(D)

=
∏

i

λi

which proves that the determinant is equal to the product of the eigenvalues.
The eigenspace projectors give us the spectral decomposition of A, which is

where we write

A =
∑

i

λi|vi〉〈vi|.

Extending functions to matrices.

The spectral decomposition of a normal operator gives an effective way of
calculating the action of a function on a matrix. If f : C → C is a function,
then we can define

f(A) =
∑

i

f(λi)|vi〉〈vi|.

For example, if f(x) = x2, then, by this definition, f(A) =
∑

i λ
2
i |vi〉〈vi|. But

this is consistent with the definition of A2 that you expect:

A2 =

(∑
i

λi|vi〉〈vi|

)(∑
i

λi|vi〉〈vi|

)
=
∑
i,j

λiλj |vi〉〈vi||vj〉〈vj |

=
∑

i

λ2
i |vi〉〈vi|

using the fact that the eigenvectors |vi〉 are orthonormal and that projectors
P = |vi〉〈vi| satisfy P 2 = P .

0.8 Outer products

Apart from the inner product 〈u|v〉, which is a complex number, we can also form the
outer product |u〉〈v|, which is a linear map (operator) on H (or on H?, depending
how you look at it). This is what physicists like (and what mathematicians dislike!)
about Dirac notation: a certain degree of healthy ambiguity.

• The result of |u〉〈v| acting on a ket |x〉 is |u〉〈v|x〉, i.e. the vector |u〉 multiplied
by the complex number 〈v|x〉.

• Similarly, the result of |u〉〈v| acting on a bra 〈y| is 〈y|u〉〈v|, i.e. the linear func-
tional 〈v| multiplied by the complex number 〈y|u〉.

The product of two maps, A = |a〉〈b| followed by B = |c〉〈d|, is a linear map BA,
which can be written in Dirac notation as

BA = |c〉〈d|a〉〈b| = 〈d|a〉|c〉〈b|
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0.9 The trace

i.e. the inner product (complex number) 〈d|a〉 times the outer product (linear map)
|c〉〈b|.

Any operator on H can be expressed as a sum of outer products. Given an or-
thonormal basis {|ei〉}i=1,...,n, any operator which maps the basis vectors |ei〉 to vec-
tors |fi〉 can be written as

∑n
i=1 |fi〉〈ei|. If the vectors {|fi〉} also form an orthonormal

basis then the operator simply “rotates” one orthonormal basis into another. These
are unitary operators which preserve the inner product. In particular, if each |ei〉 is
mapped to |ei〉, then we obtain the identity operator:∑

i

|ei〉〈ei| = 1.

This relation holds for any orthonormal basis, and it is one of the most ubiquitous
and useful formulas in quantum theory, known as completeness. For example, for 0 Not to be confused with “com-

pleteness” in the sense of Hilbert
spaces.

any vector |v〉 and for any orthonormal basis {|ei〉}, we have

|v〉 = 1|v〉

=
∑

i

|ei〉〈ei| |v〉

=
∑

i

|ei〉 〈ei|v〉

=
∑

i

vi|ei〉

where vi = 〈ei|v〉 are the components of |v〉.
Finally, note that calculating the adjoint of an outer product boils down to just

swapping the order:

(|a〉〈b|)† = |b〉〈a|.

0.9 The trace

The trace is an operation which turns outer products into inner products,

tr : |b〉〈a| 7−→ 〈a|b〉.

We have just seen that any linear operator can be written as a sum of outer products,
and so we can extend the definition of trace (by linearity) to any operator. Equiv-
alently, for any square matrix A, the trace of A can be defined to be the sum of its
diagonal elements:

trA =
∑

k

〈ek|A|ek〉 =
∑

k

Akk.

In fact, the trace of A is equal to the sum of the eigenvalues of A, even in the case
where A is not diagonalisable.

You can show, using this definition or otherwise, that the trace is cyclic (tr(AB) = 0 Note that “cyclic” does not mean
the same thing as “permutation in-
variant”! It is not true in general
that tr(ABC) = tr(CBA), but
only that tr(ABC) = tr(BCA) =
tr(CAB), i.e. we can only cycli-
cally permute the operators.

tr(BA)) and linear (tr(αA + βB) = α tr(A) + β tr(B), where A and B are square
matrices and α and β complex numbers).

To recover the first definition from the second, we argue as follows:

tr |b〉〈a| =
∑

k

〈ek|b〉〈a|ek〉

=
∑

k

〈a|ek〉〈ek|b〉

= 〈a|1|b〉
= 〈a|b〉.
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Here, the second term can be viewed both as the sum of the diagonal elements of
|b〉〈a| in the |ek〉 basis, and as the sum of the products of two complex numbers 〈ek|b〉
and 〈a|ek〉. We have used the decomposition of the identity,

∑
k |ek〉〈ek| = 1. Given

that we can decompose the identity by choosing any orthonormal basis, it is clear that
the trace does not depend on the choice of the basis.

0.10 Some useful identities

Here is a summary of some particularly useful equalities concerning bras, kets, inner
products, outer products, traces, and operators, that we will be using time and time
again. In all of these, |a〉, |b〉 ∈ H are kets, A,B,C are operators on H, and α, β ∈ C
are scalars.

Dagger for bras and kets:
• |a〉† = 〈a|
• 〈a|† = |a〉
• (|a〉〈b|)† = |b〉〈a|
• (α|a〉+ β|b〉)† = α?〈a|+ β?〈b|

Dagger for operators:
• (AB)† = B†A†

• (A†)† = A
• (αA+ βB)† = α?A† + β?B†

Trace:
• tr(αA+ βB) = α tr(A) + β tr(B)
• tr(ABC) = tr(CAB) = tr(BCA)
• tr |a〉〈b| = 〈b|a〉
• tr(A|a〉〈b|) = 〈b|A|a〉 = tr(|a〉〈b|A)

0.11 Probabilities

In a sense, the basics of quantum theory boil down to the combination of two bits of
mathematics: linear algebra over the complex numbers, and probability theory. We
have just gone over all the linear algebra that we will need, so now let’s tackle the
other topic (though we will immediately revisit it in Chapter 1).

Probability theory is a vast and beautiful subject which has undergone many trans-
formations over the centuries. What started as something understood in terms of
gambling odds later evolved into the theory of measure spaces, and is now even able
to be expressed in terms of diagrammatic category theory. But for our purposes, we
only need the very elementary parts of the subject, so we will stick with the first
interpretation: probability tells us the odds of something happening. 0 What we actually mean by

“the odds of something happen-
ing” and how we should really in-
terpret probabilities “in the real
world” is a profound philosophical
problem that we shall completely
pass over.

The setup is always the same: we have some process (rolling some dice, flipping
a coin, drawing a card, etc.) that has some possible outcomes (getting a 5, heads,
or an ace of hearts, etc.) but is realised in some way which means that we cannot
be certain which outcome we will see whenever we run the process (or “perform the
experiment”).

The first thing to define in any such scenario is the sample space, usually denoted
by Ω, which is the set of all possible outcomes. Next we have the event space F ,
which is the set of all events, where an event is a set of outcomes (this might sound

23
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confusing at first, but we’ll give some examples shortly). Whenever we run the pro-
cess, we will get some outcome, and we say that any event that contains that outcome
occurred. Finally, we will have a probability function, which assigns to any event
a probability, which is a number between 0 and 1. This probability function has to
satisfy some axioms, but we’ll come to these later; for now, let us give some examples.
Here is a table of the sample spaces for some processes.

Process Sample space Ω

Rolling a six-sided die {1, 2, 3, 4, 5, 6}
Flipping a coin {H,T}
Flipping two distinct coins {HH,TH,HT, TT}
Flipping two identical coins {HH,TH, TT}

And here’s a table of some (but not all, except for in the case of flipping a single
coin) of the events corresponding to these sample spaces.

Process Example events A ∈ F Interpretation

Rolling a six-sided die {1} rolling a 1
{1, 3, 5} rolling an odd number
{1, 2, 3} rolling a number less than

or equal to 3
{2, 3} rolling a prime number

less than 4
Flipping a coin {H} getting heads

{T} getting tails
{H,T} any outcome at all

Flipping two distinct coins {HH} getting two heads
{HH,TH,HT} getting at least one heads
{HH,TT} getting two the same

Flipping two identical
coins

{HH} getting two heads

{HH,TH} getting at least one heads

In the table above we can see that, for example, if we rolled a 1 on a six-sided die
then many events occurred: we rolled a 1, but we also rolled an odd number, and a
number less than 3; but we did not roll a prime number.

Something else that arises in these examples the notion of distinguishable out-
comes, when we look at how the sample space of flipping two coins depends on
whether or not they are identical. That is, if we have a gold coin and a silver coin
then it makes sense to say that HT is different from TH, because the first means that
the gold coin was the one that landed on heads, and the second means that it was in-
stead the silver coin. But if we have two identical coins, then how can we distinguish
between HT and TH? We would have to be able to point to one of them, say, the
one on the left, and say “that’s the coin that’s on the left”, but if we can do this then
by definition we can distinguish between them! In general, the sample space consists 0 Another possibility would be to

distinguish the coins in time in-
stead of space, i.e. to flip one
coin first and then the other af-
terwards. A coin cannot remem-
ber what happened the last time it
was flipped, so is there really a dif-
ference between flipping a single
coin twice or two coins once? In
the eyes of probability theory, the
answer is “no”.

only of distinguishable outcomes, but what counts as distinguishable really depends
on the specifics of the experiment that we have set up.
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Measure theory.

This approach towards probability, where we think of a “scenario” as such a
triple (Ω,F , P ), places us firmly within the setting of measure theory. What
we have described is a probability measure, and there are many more general
types of measure that exist, but they all describe the same sort of idea: we
have a set Ω that we think of as our “space”, some particularly well-behaved
collection F of subsets of Ω, and a function µ : F → R t {±∞} known as the
measure. We think of the measure µ as telling us how big any element of F is,
be it interpreted as geometric size or, in the example of probability measures,
the likelihood. This formalism becomes very useful when we want to do any
analysis (which happens as soon as we want to deal with infinite-dimensional
spaces, or even just “introduce some geometry”), such as in constructing the
Lebesgue integral. Thinking of probability spaces through measure theory
allows us to make use of the many powerful tools of real analysis.

Now we can define probability rather succinctly.

In a fair process, where all outcomes are equally likely, the probability P (A)
of an event A is the number of desired outcomes divided by the number of
total outcomes, i.e.

P (A) = # of elements of A
# of elements of Ω

.

In particular, the probability will always be a number between 0 and 1.

Running through some of the above examples of events, we see that this definition
of probability agrees with what we might already expect.

Event Probability

Getting heads on a single coin flip 1/2
Rolling a 6 with a single die 1/6
Rolling an odd number with a single die 3/6 = 1/2

Pascal’s triangle.

Flipping a fair coin (or actually, even an unfair one) is a common scenario
in discussing probability, because it has just two outcomes — the smallest
amount you can have without things becoming purely deterministic. There
are lots of numbers that you will see turn up time and time again in calcu-
lations of probability for binary outcome events, and most usually they are
binomial coefficients. These are numbers that can be read directly from the
rows of Pascal’s triangle (which, as is often the case in mathematics, is more
deserving of being named after a different person: Al-Karaji, or maybe Omar
Khayyam), and they satisfy many interesting combinatorial patterns.

Now let’s look at what happens when we’re interested in more than one event
occurring. We might study the possibility of either event A or event B happening,
where the “or” here can be exclusive (we want exactly one of them to happen, but
not both) or inclusive (we want at least one of them to happen), or we could study
the possibility of both event A and event B happening. It turns out that these two
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notions, which seem somehow opposite, are delicately related.
First of all, let’s consider both events A and B occurring. What does this mean?

Well, by our definition of “occurring”, it means that the outcome of the process is an
element of A and also of B, which is equivalent to saying that it is an element of their
intersection A ∩B. In other words,

P (A and B) = P (A ∩B).

This lets us define two very important terms.

We say that A and B are mutually exclusive if P (A ∩ B) = 0, and indepen-
dent if P (A ∩B) = P (A)P (B).

In words, A and B are mutually exclusive if one of them occurring pre-
cludes the other from occurring, i.e. if at most one of them can occur, and they
are independent if one of them occurring has no effect on the other occurring.

Usually, when we talk of mutually exclusive events we are referring to a single
run of an experiment, and for independent events we are referring to multiple runs.
For example, “rolling an even number” and “rolling an odd number” are mutually
exclusive events when rolling a single die once, but independent events when rolling
a single die twice. Basically, we should be careful when talking about events and 0 Exercise. Are the events “rolling

an even number” and “rolling
an odd number” still independent
when we think of rolling two die
simultaneously?

make sure to be precise as to what our sample space is, and how the event is actually
realised as a subset of this.

We can think of mutually exclusive and independent as extreme ends of a scale:
on one side we have events that affect each other so strongly that if one occurs then
we know with absolute certainty that the other one did not; on the other we have
events that have absolutely no effect on each other whatsoever. One might wonder
about what the opposite of mutually exclusive might be, and there are two ideas that
seem like they might be interesting: events A and B such that P (A ∩ B) = 1, and
events A and B such that, if one occurs, then the other also always occurs. The first
of these two putative definitions is not so interesting, because if P (A ∩ B) = 1 then
both A and B always occur, and so, by the definition of P (A) = P (B) = 1, this means
that A = B = Ω is just the event that “anything happens”. The second is a bit less
trivial, but also not so deep: saying that A occurs if and only if B occurs is equivalent
to saying that A = B as events.

Now let’s think about either event A or event B occurring, in the inclusive-or sense
of the word (we will return to the exclusive one afterwards). This is equivalent to the
event given by the union A ∪B occurring. In other words,

P (A or B) = P (A ∪B).

The relationship between P (A ∪ B) and P (A ∩ B) is given by the following prin-
ciple.

Inclusion–exclusion principle. P (A ∪B) = P (A) + P (B)− P (A ∩B).

We will not prove this, but it’s a fun exercise to think about why this must be
true. In fact, the general inclusion–exclusion principle describes what happens for an 0 Drawing a Venn diagram might

help.arbitrary finite number of events. Using this, we can see why mutually independent
events are particularly nice: if A and B are mutually exclusive, then P (A ∪ B) =
P (A) + P (B), i.e. the probability of (A or B) is the sum of the probability of A and
the probability of B.

In the same way that mutually exclusive events are special in the eyes of the
inclusion–exclusion principle, independent events are special in the eyes of condi-
tional probability. Oftentimes we consider events that are not independent, such as
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drawing cards from a deck without replacing them afterwards: if I take the ace of
hearts, then the probability of me drawing a heart the next time has gone down from
13/52 to 12/51, since there is now one fewer heart in the deck. Even worse, the prob-
ability of me drawing the ace of hearts again is now 0. Given two events A and B, we
define the conditional probability P (B|A), of B given A, to be the probability that
B occurs assuming that A has just previously occurred. Thinking back to the definition
of probability, we can calculate this by taking the number of outcomes in A ∩ B (our
desired outcomes, the outcomes in B that also are outcomes in A) and dividing it by
the number of outcomes in A (all possible outcomes, since we are assuming that A
has happened), so that

P (B|A) = P (A ∩B)
P (A)

.

Conditional probabilities are the source of many misunderstandings. For example,
it’s intuitively obvious that the probability of flipping a coin 100 times and getting
heads every single time is very small. So say we’ve flipped a coin 99 times and man-
aged to get a heads every single time, are we now more likely to flip a tail, because
the chance of getting 100 heads in a row must be small? Well we don’t even need
mathematics to answer this: the coin has no way of remembering what has happened
on the previous flips! In other words, also the probability P (H100) = P (H99 and H)
is very small, the (conditional) probability P (H|H99) is still exactly 1/2. Looking at
the definition of conditional probability, this makes sense: P (H99) is itself very small,
almost as small as P (H100), so it’s not surprising that when we divide one by the
other we get a number that’s not so far away from 1.

Now we can see how independent events are special: if P (A ∩ B) = P (A)P (B)
then

P (B|A) = P (A ∩B)
P (A)

= P (A)P (B)
P (A)

= P (B)

and so the probability of B given A is exactly the same as the probability of B without
knowing anything about the outcome of A (and similarly for P (A|B) = P (A)).

Finally, we mention what might be called the fundamental theorem of conditional
probability.

Bayes’ theorem. Let A and B be events with P (B) 6= 0. Then

P (A|B) = P (B|A)P (A)
P (B)

.

You should now be able to answer the following questions:

1. When you roll a normal six-sided die, what is the set of distinguishable out-
comes?

2. What is the probability of getting a 5?
3. What is the probability of getting a number (strictly) less than 3?

Now imagine that you have two six-sided dice.

4. If you roll both dice at the same time, what is the probability of them both
landing on a 6?

5. What is the probability of getting two numbers that add up to 6?

27



0.11 Probabilities

Finally, we give our two six-sided dice to a friend for them to roll in secret.

6. If they tell us that they rolled two numbers that added up to 6, what is the
probability that they rolled a 1?

Diagrammatic probability theory.

We mentioned in Section 0.6 that a lot of the structure inherent in our formal-
ism of quantum theory can be encapsulated by the notion of a dagger compact
category, and can thus be investigated with a diagrammatic approach. It turns
out that parts of probability theory — specifically Markov processes, which
describe scenarios where different events can happen with varying probabil-
ities, but where nothing depends on the history of the scenario, only on the
here-and-now — are also amenable to such an approach. This leads to the
definition of a Markov category.

28

https://en.wikipedia.org/wiki/Markov_chain


Part I

Foundations

29



1 Quantum interference

About complex numbers, called probability amplitudes, that, unlike
probabilities, can cancel each other out, leading to quantum inter-
ference, and consequently qualitatively new ways of processing infor-
mation.

The classical theory of computation does not usually refer to physics. Pioneers
such as Alan Turing, Alonzo Church, Emil Post, and Kurt Gödel managed to capture
the correct classical theory by intuition alone and, as a result, it is often falsely as-
sumed that its foundations are self-evident and purely abstract. They are not!

Possibly the most important motto of this book is the following: “Computation
is a physical process. Computation is a physical process. Computation is . . . ”

The concepts of information and computation can be properly formulated only in
the context of a physical theory — information is stored, transmitted and processed
always by physical means. Computers are physical objects and computation is a phys-
ical process. Indeed, any computation, classical or quantum, can be viewed in terms
of physical experiments, which produce outputs that depend on initial preparations
called inputs. Once we abandon the classical view of computation as a purely logical
notion independent of the laws of physics it becomes clear that whenever we improve
our knowledge about physical reality, we may also gain new means of computation.
Thus, from this perspective, it is not very surprising that the discovery of quantum
mechanics in particular has changed our understanding of the nature of computation.
In order to explain what makes quantum computers so different from their classical
counterparts, we begin with the rudiments of quantum theory.

Some of what we say in this chapter will be repeated in later chapters, but usually
in much more detail. Feel free to think of this chapter as a sort of “aeroplane tour” of
the rudiments, knowing that we will soon land on the ground to go out exploring by
foot.

1.1 Two basic rules

Quantum theory, at least at some instrumental level, can be viewed as a modification
of probability theory: we replace positive real numbers (i.e. probabilities) with com-
plex numbers z, called probability amplitudes (or simply “amplitudes”), such that
the squares of their absolute values |z|2 are interpreted as probabilities.

The correspondence between probability amplitudes z and probabilities |z|2
is known as Born’s rule, named for physicist and mathematician Max Born
(1882–1970).

The rules for combining amplitudes are very reminiscent of the rules for combining
probabilities:

1. Whenever something can happen in a sequence of independent steps, we multiply
the amplitudes of each step.
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z1
z2

z = z1z2

2. Whenever something can happen in several alternative ways, we add the ampli-
tudes for each separate way.

z1

z2

z = z1 + z2

That’s it! These two rules are basically all you need to manipulate amplitudes
in any physical process, no matter how complicated. They are universal and apply to 0We will, however, amend the two

rules later on when we touch upon
particle statistics.

any physical system, from elementary particles through atoms and molecules to white
dwarfs stars. They also apply to information, since, as we have already emphasised,
information is physical. The two rules look deceptively simple but, as you will see in
a moment, their consequences are anything but trivial.

1.2 The failure of probability theory

Modern mathematical probability theory is based on three axioms, proposed by Andrey
Nikolaevich Kolmogorov (1903–1987) in his monograph with the impressive German
title Grundbegriffe der Wahrscheinlichkeitsrechnung (“Foundations of Probability The-
ory”). The Kolmogorov axioms are simple and intuitive: 0 It’s an interesting coincidence

that the two basic ingredients of
modern quantum theory — prob-
ability and complex numbers —
were discovered by the same per-
son, an extraordinary man of
many talents: a gambling scholar
by the name of Girolamo Cardano
(1501–1576).

1. Once you identify all elementary outcomes, or events, you may then assign
probabilities to them, where. . .

2. . . . a probability is a number between 0 and 1, and an event which is certain
has probability 1.

3. Finally, the probability of any event can be calculated using a deceptively simple
rule — the additivity axiom: whenever an event can occur in several mutually
exclusive ways, the probability for the event is the sum of the probabilities for each
way considered separately.

Obvious, isn’t it? So obvious, in fact, that probability theory was accepted as a
mathematical framework, a language that can be used to describe actual physical
phenomena. Physics should be able to identify elementary events and assign numeri-
cal probabilities to them. Once this is done we may revert to mathematical formalism
of probability theory. The Kolmogorov axioms will take care of the mathematical con-
sistency and will guide us whenever there is a need to calculate probabilities of more
complex events. This is a very sensible approach, apart from the important fact that
it does not always work! Today, we know that probability theory, as ubiquitous as it
is, fails to describe many common quantum phenomena. In order to see the need for
quantum theory let us consider a simple experiment in which probability theory fails
to give the right predictions.

1.3 The double-slit experiment

In a double-slit experiment, a particle (such as a photon) emitted from a source S can
reach a detector D by taking two different paths, e.g. through an upper or a lower slit
in a barrier between the source and the detector. After sufficiently many repetitions
of this experiment we can evaluate the frequency of clicks in the detector D and show
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1.3 The double-slit experiment

that it is inconsistent with the predictions based on probability theory. Let us use the
quantum approach to show how the discrepancy arises.

The particle emitted from S can reach detector D by taking two different paths,
which are assigned probability amplitudes z1 and z2, respectively. We may then say
that the upper slit is taken with probability p1 = |z1|2 and the lower slit with probabil-
ity p2 = |z2|2. These are two mutually exclusive events. With the two slits open, 0 That is, if one happens then the

other one cannot. For example,
“heads” and “tails” are mutually
exclusive outcomes of flipping a
coin, but “heads” and “6” are not
mutually exclusive outcomes of si-
multaneously flipping a coin and
rolling a dice.

allowing the particle to take either path, probability theory declares (by the Kol-
mogorov additivity axiom) that the particle should reach the detector with probability
p1 + p2 = |z1|2 + |z2|2. But this is not what happens experimentally!

Let us see what happens if we instead follow the two “quantum rules”: first we add
the amplitudes, then we square the absolute value of the sum to get the probability.
Thus, the particle will reach the detector with probability

p = |z|2

= |z1 + z2|2

= |z1|2 + |z2|2 + z?
1z2 + z1z

?
2

= p1 + p2 + |z1||z2|
(
ei(ϕ2−ϕ1) + e−i(ϕ2−ϕ1)

)
= p1 + p2 + 2√p1p2 cos(ϕ2 − ϕ1)︸ ︷︷ ︸

interference terms

(‡)

where we have expressed the amplitudes in their polar forms:

z1 = |z1|eiϕ1

z2 = |z2|eiϕ2 .

The appearance of the interference terms marks the departure from the classical the-
ory of probability. The probability of any two seemingly mutually exclusive events is
the sum of the probabilities of the individual events p1 + p2 modified by the interfer-
ence term 2√p1p2 cos(ϕ2 − ϕ1). Depending on the relative phase ϕ2 − ϕ1, the in-
terference term can be either negative (giving what we call destructive interference)
or positive (constructive interference), leading to either suppression or enhancement
(respectively) of the total probability p.

The algebra is simple; our focus is on the physical interpretation. Firstly, note that
the important quantity here is the relative phase ϕ2 − ϕ1 rather than the individual
phases ϕ1 and ϕ2. This observation is not trivial at all: if a particle reacts only to the
difference of the two phases, each pertaining to a separate path, then it must have,
somehow, experienced the two paths, right? That is, we cannot say that the parti-
cle has travelled either through the upper or the lower slit, because it has travelled
through both. In the same way, quantum computers follow, in some tangible way,
all computational paths simultaneously, producing answers that depend on all these
alternative calculations. Weird, but this is how it is!

Secondly, what has happened to the additivity axiom in probability theory? What
was wrong with it? One problem is the assumption that the processes of taking the
upper or the lower slit are mutually exclusive; in reality, as we have just mentioned,
the two transitions both occur, simultaneously. However, we cannot learn this from
probability theory, nor from any other a priori mathematical construct — we can only
observe this by repeated scientific experiments in our physical world. 0 According to the philosopher

Karl Popper (1902–1994) a the-
ory is genuinely scientific only
if it is possible, in principle, to
establish that it is false. Gen-
uinely scientific theories are never
finally confirmed because, no mat-
ter how many confirming obser-
vations have been made, observa-
tions that are inconsistent with the
empirical predictions of the theory
are always possible.

There is no fundamental reason why Nature should conform to the additivity
axiom.

We find out how nature works by making “intelligent” guesses, running experi-
ments, checking what happens and formulating physical theories. If our guess dis-
agrees with experiments then it is wrong, so we try another intelligent guess, and
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another, etc. Right now, quantum theory is the best guess we have: it offers good
explanations and predictions that have not been falsified by any of the existing exper-
iments. This said, rest assured that one day quantum theory will be falsified, and then
we will have to start guessing all over again.

The quantum eraser.

This section is not yet finished.

1.4 Superpositions

Amplitudes are more than just tools for calculating probabilities: they tell us some-
thing about physical reality. When we deal with probabilities, we may think about
them as numbers that quantify our lack of knowledge. Indeed, classically, when we
say that “a particle goes through the upper or the lower slit with some respective
probabilities”, what we really mean is that it does go through one of the two slits,
but we just do not know which one for sure. In contrast, according to quantum the-
ory, a particle that goes through the upper and the lower slit with certain amplitudes
does explore both of the two paths, not just one of them. This is a statement about
a real physical situation — about something that is out there and with which we can
experiment.

The assumption that the particle goes through one of the two slits but we just
don’t know which one, is inconsistent with many experimental observations.

We have to accept that, apart from some easy to visualise states, known as the
basis states (such as the particle at the upper slit or the particle at the lower slit),
there are infinitely many other states, all of them equally real, in which the particle is
in a superposition of the two basis states. This rather bizarre picture of reality is the
best we have at the moment, and it works (at least, for now!).

Physicists write such superposition states as 0 Dirac notation will likely be fa-
miliar to physicists, but may look
odd to mathematicians or com-
puter scientists. Love it or hate it
(and we suggest the former), the
notation is so common that you
simply have no choice but to learn
it, especially if you want to study
anything related to quantum the-
ory.

|ψ〉 = α|upper slit〉+ β|lower slit〉,

meaning the particle goes through the upper slit with amplitude α, and through the
lower slit with amplitude β. Mathematically, you can think about this expression as
a vector |ψ〉 in a two-dimensional complex vector space written in terms of the two
basis vectors |upper slit〉 and |lower slit〉. You could also write this vector as a column
vector with two complex entries α and β, but then you would have to explain the
physical meaning of the basis states. Here, we use the Dirac notation | 〉, introduced
by Paul Dirac (1902–1984) in the early days of the quantum theory as a useful way
to write and manipulate vectors. In Dirac notation you can put into the “box” | 〉
anything that serves to specify what the vector is: it could be | ↑〉 for spin up and
| ↓〉 for spin down (whatever this technical terminology “spin” means), or |0〉 for a
quantum bit holding logical 0 and |1〉 for a quantum bit holding logical 1, etc. As we
shall soon see, there is much more to this notation, and learning to manipulate it will
help you greatly.

1.5 Interferometers

One of the most fundamental family of experiments for our purposes are so-called
interference experiments, modern versions of which are performed using internal
degrees of freedom of atoms and ions. For example, Ramsey interferometry, named
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after American physicist Norman Ramsey (1915–2011), is a generic name for an in-
terference experiment in which atoms are sent through two separate “resonant in-
teraction” zones, known as Ramsey zones, separated by an intermediate “dispersive
interaction” zone.

Many beautiful experiments of this type were carried out in the 1990s in Serge
Haroche’s lab at the Ecole Normale Supérieure in Paris. Rubidium atoms were sent
through two separate interaction zones (resonant interaction in the first and the third
cavity) separated by a phase inducing dispersive interaction zone (the central cavity).
The atoms were subsequently measured, via a selective ionisation, and found to be
in one of the two preselected energy states, here labeled as |0〉 and |1〉. The fraction
of atoms found in states |0〉 or |1〉 showed a clear dependence on the phase shifts
induced by the dispersive interaction in the central cavity. In 2012, Serge Haroche and
Dave Wineland shared the Nobel Prize in physics for “ground-breaking experimental
methods that enable measuring and manipulation of individual quantum systems.”
Let us now try to understand what this experiment actually entails.

|0⟩

|1⟩

|0⟩

resonant dispersive resonant

Figure 1.1: A schematic diagram of a Ramsey interference experiment.

The three rectangular boxes in Figure 1.1 represent three cavities, each cavity be-
ing an arrangement of mirrors which traps electromagnetic field (think about standing
waves in between two mirrors). The oval shapes represent rubidium atoms with two
preselected energy states labelled as |0〉 and |1〉. Each atom is initially prepared in 0If the language of energy states of

atoms is unfamiliar to you, don’t
worry! Here we are just trying
to give some physical motivation
for one of the fundamental quan-
tum circuits which we will see pop
up time and time again. Vaguely,
though, you can just have in your
mind the idea that atoms have a
certain amount of energy at any
given time, but the amount that
they can have is one of a num-
ber of fixed amounts, depending
on the chemistry of the atom. This
is in fact one of the key principles
in the history of quantum physics,
and is the reason for the word
“quantum”.

a highly excited internal energy state |0〉 and zips through the three cavities, from
the left to the right. In each cavity the atom interacts with the cavity field. The first
and the third cavities are, for all theoretical purposes, identical: their frequencies are
tuned to the resonant frequency of the atom, and the atom exchanges energy with
the cavity, going back and forth between its energy states |0〉 and |1〉. In contrast, in
the second (central) cavity, the atom undergoes the so-called dispersive interaction:
it is too off-resonance for the atom to exchange energy with the field, but the atom’s
energy states “feel” the field and acquire phase shifts. After experiencing this well
timed sequence of resonant–dispersive–resonant interactions, the energy of the atom
is measured and the atom is found to be either in state |0〉 or state |1〉. The (surprising)
result of this experiment is analogous to that of the double-slit experiment described
above: the fraction of atoms found in state |0〉 or |1〉 shows a clear dependence on the
phase shifts induced by the dispersive interaction in the central cavity.

We can understand this interference better if we follow the two internal states of
the atom as it moves through the three cavities.
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1.5 Interferometers

resonant dispersive resonant

|0⟩

|1⟩

|0⟩

|1⟩

eiφ0

eiφ1

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

−1√
2

−1√
2

Figure 1.2: The Ramsey interferometer represented as an abstract diagram, to be read
from left to right. The line segments represent transitions between the two states, |0〉
and |1〉, and the numbers are the corresponding probability amplitudes.

Suppose we are interested in the probability that the atom, initially in state |0〉,
will be found, after completing its journey through the three cavities, in state |1〉. As
you can see in Figure 1.2, this can happen in two ways, as indicated by the two thick
paths connecting the input state |0〉 on the left with the output state |1〉 on the right.
Again, let Uij denote the probability amplitude that input |j〉 generates output |i〉 (for
i, j = 0, 1).

We can see from the diagram that

U10 = 1√
2
eiϕ0

1√
2

+ 1√
2
eiϕ1
−1√

2

= 1
2
(
eiϕ0 − eiϕ1

)
.

Then, using the trick of writing x = x+y
2 + x−y

2 and y = x+y
2 −

x−y
2 , followed by Euler’s

formula (eiα = cosα+ i sinα), we see that

U10 = 1
2
(
eiϕ0 − eiϕ1

)
= 1

2

(
ei

ϕ0+ϕ1
2 ei

ϕ0−ϕ1
2 − ei

ϕ0+ϕ1
2 e−i

ϕ0−ϕ1
2

)
= 1

2
ei

ϕ0+ϕ1
2

(
ei

ϕ0−ϕ1
2 − e−i

ϕ0−ϕ1
2

)
= 1

2
ei

ϕ0+ϕ1
2

(
2i sin

(
ϕ0 − ϕ1

2

))
= −iei

ϕ0+ϕ1
2 sin ϕ1 − ϕ0

2
where the relative phase ϕ = ϕ1 − ϕ0 shows up yet again.

The corresponding probability (i.e. that an atom, initially in state |0〉, will be found
in state |1〉) is then 0 From the classical probability

theory perspective the resonant in-
teraction induces a random switch
between |0〉 and |1〉 (why?) and
the dispersive interaction has no
effect on these two states (why?).
One random switch followed by
another random switch is exactly
the same as a single random
switch (if you flip a coin twice
and just observe the last result,
this is probabilistically the same as
just flipping the coin once), which
gives 1

2 for the probability that in-
put |0〉 becomes output |1〉.

P10 = |U10|2

=
∣∣∣∣−iei

ϕ0+ϕ1
2 sin ϕ1 − ϕ0

2

∣∣∣∣2
=
∣∣∣∣sin ϕ1 − ϕ0

2

∣∣∣∣2
= 1

2
(1− cosϕ)
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1.6 Qubits, gates, and circuits

where we use the fact that |i|2 = 1 and |eiα|2 = 1 for any α, along with the double
angle formula cos 2θ = 1− 2 sin2 θ.

You should recognise the first term 1
2 as the “classical” probability and the second

one − 1
2 cosϕ as the interference term. We can repeat such calculations for any other

pair of input–output states. This approach works fine here but, in general, tracking
all possible paths in evolving quantum systems can become messy when the number
of input and output states increases. There is, however, a neat way of doing these
calculations: matrix multiplication.

The effect of each interaction on atomic states can be described by a matrix of
transition amplitudes, as illustrated in Figure 1.3, and then the sequence of indepen-
dent interactions is described by the product of these matrices: we compile all the Uij

into one matrix U .

U =

[
1√
2

1√
2

1√
2

−1√
2

] [
eiϕ0 0

0 eiϕ1

][ 1√
2

1√
2

1√
2

−1√
2

]

= ei
ϕ0+ϕ1

2

[
cos ϕ

2 −i sin ϕ
2

−i sin ϕ
2 cos ϕ

2

]
=
[
U00 U01
U10 U11

]
where ϕ = ϕ1 − ϕ0, as before.

[
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2

1√
2

1√
2

−1√
2

] [
eiφ0 0
0 eiφ1

] [
1√
2

1√
2

1√
2

−1√
2

]
=

[
cos φ

2 −i sin φ
2

−i sin φ
2 cos φ

2

]

=

1√
2

1√
2

1√
2

1√
2
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2
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2
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2
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2
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−1√
2

−1√
2

Figure 1.3: The Ramsey interferometer represented as an abstract diagram (matrix
approach). Here we have omitted the |0〉 and |1〉 labels, just to simply the diagram.
We also ignore (for reasons that we will later explain) the global phase factor of
ei

ϕ0+ϕ1
2 .

In general, quantum operation A followed by quantum operation B is the quan-
tum operation described by the matrix product BA. Indeed, the expression (BA)ij = 0 Note the order of the matrices:

the composition “A followed by
B” is BA, not AB! This reflects
the fact that, in linear algebra, we
apply a matrix to a vector on the
left, i.e. A applied to v is written
Av.

∑
k BikAkj is the sum over amplitudes that input |j〉 generates output |i〉 via a specific

intermediate state |k〉. As you can see, the matrix approach is a wonderful bookkeep-
ing tool: in one package it takes care of both multiplying and adding probability
amplitudes corresponding to all the contributing paths.

1.6 Qubits, gates, and circuits

Atoms, trapped ions, molecules, nuclear spins, and many other quantum objects with
two pre-selected basis states labelled as |0〉 and |1〉 can be used to implement sim-
ple quantum interference — from now on we will call such objects quantum bits,
or qubits. But note that there is no need to learn about the physics behind these
diverse technologies (e.g. “what is nuclear spin?”) if all you want is to understand
the basics of quantum theory. Indeed, from now on we will conveniently forget about
any specific experimental realisation of a qubit and represent a generic single-qubit
interference graphically as a circuit diagram: 0 Do not confuse the interference

diagrams of Figure 1.1 and Fig-
ure 1.3 with the circuit diagram.
In the circuit diagrams, which we
will use almost constantly from
now on, a single line represents a
single qubit.
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1.7 Quantum decoherence

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

This diagram should be read from left to right. The horizontal line represents a
qubit that is inertly carried from one quantum operation to another. We often call this
line a quantum wire. The wire may describe translation in space (e.g. atoms travel-
ling through cavities) or translation in time (e.g. a sequence of operations performed
on a trapped ion). The boxes or circles on the wire represent elementary quantum 0Yet again we see that we can con-

veniently forget about the actual
physical implementations, treat-
ing them all with the same ab-
stract description.

operations, called quantum (logic) gates.
In the example circuit above, we have two types of gates: two Hadamard gates H

(think “resonant interaction”) and one phase gate Pϕ (think “dispersive interaction”),
where 0 Global phase factors are irrele-

vant; it is only the relative phase
ϕ = ϕ1 −ϕ0 that matters. For ex-
ample, in a single-qubit phase gate
Pϕ we usually factor out eiϕ0 ,
leaving us with the two diagonal
entries: 1 and eiϕ.

H =

[
1√
2

1√
2

1√
2

−1√
2

]
and Pϕ =

[
1 0
0 eiϕ

]
.

The input qubits appear as state vectors on the left side of circuit diagrams, and
the output qubits as state vectors on the right. The product of the three matrices 0 cf. Figure 1.3. Note again that

circuits are read left to right, but
matrix composition goes right to
left. Since the first and last matri-
ces/gates are the same (i.e. both
are H), we don’t notice this, but
it’s important to note that the
first (i.e. leftmost) H in the ma-
trix product HPϕH corresponds
to the last (i.e. rightmost)H in the
circuit diagram.

HPϕH =
[

cos ϕ
2 −i sin ϕ

2
−i sin ϕ

2 cos ϕ
2

]
describes the action of the whole circuit, telling us that it maps input state vectors to
output state vectors as follows:

|0〉 7−→ cos ϕ
2 |0〉 − i sin

ϕ
2 |1〉,

|1〉 7−→ −i sin ϕ
2 |0〉+ cos ϕ

2 |1〉.

1.7 Quantum decoherence

We do need quantum theory to describe many physical phenomena, but, at the same
time, there are many other phenomena where the classical theory of probability works
pretty well. Indeed, we hardly see quantum interference on a daily basis. Why? The
answer is decoherence. The addition of probability amplitudes, rather than probabil-
ities, applies to physical systems which are completely isolated. However, it is almost
impossible to isolate a complex quantum system, such as a quantum computer, from
the rest of the world: there will always be spurious interactions with the environment
(such as heat transfer), and when we add amplitudes, we have to take into account
not only different configurations of the physical system at hand, but also different
configurations of the environment.

For example, consider an isolated system composed of a quantum computer and
its environment. The computer is prepared in some input state I and generates output
O. Let us look at the following two scenarios:

1. The computer is isolated and quantum computation does not affect the environ-
ment. The computer and the environment evolve independently from each other
and, as a result, the environment does not hold any physical record of how the
computer reached output O. In this case we add the amplitudes for each of the
two alternative computational paths.

I

O

z1

z2

p = |z1 + z2|2
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1.7 Quantum decoherence

2. Quantum computation affects the environment. The environment now holds a
physical record of how the computer reached output O, which results in two
final states of the composed system (computer and environment) which we
denote O1 and O2. We add the probabilities for each of the two alternative
computational paths.

I
O1

O2

z1

z2

p = |z1|2 + |z2|2

When quantum computation affects the environment (or vice versa), we have to
include the environment in our analysis, since it is now involved in the computation.
Depending on which computational path was taken, the environment may end up in
two distinct states. The computer itself may show output O, but when we include the
environment we have not one, but two, outputs, O1 and O2, denoting, respectively,
“computer shows output O and the environment knows that path 1 was taken” and
“computer shows output O and the environment knows that path 2 was taken”. There
are no alternative ways of reaching O1 or O2, hence there is no interference, and the
corresponding probabilities read p1 = |z1|2 for O1, and p2 = |z2|2 for O2. The proba-
bility that the computer shows output O, regardless the state of the environment, is
the sum of of the two probabilities: p = p1 + p2. We have lost the interference term
and, with this, any advantages of quantum computation are also lost. In the presence
of decoherence, the interference formula in Equation (‡) is modified and reads

p = p1 + p2 + 2v√p1p2 cos(ϕ2 − ϕ1),

where the parameter v, called the visibility of the interference pattern, ranges from
0 (the environment can perfectly distinguish between the two paths, i.e. total deco-
herence, or no interference) to 1 (the environment cannot distinguish between the
two paths, i.e. no decoherence, or full interference), with the values in between
corresponding to partial decoherence.

p1 + p2

1

relative phase

probability p

We shall derive this formula later on, and you will see that v quantifies the degree
of distinguishability between O1 and O2. The more the environment knows about
which path was taken, the less interference we see, and the less we can leverage the
computational power of quantum effects.

Decoherence suppresses quantum interference.
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Decoherence is chiefly responsible for our classical description of the world: with-
out interference terms we may as well add probabilities instead of amplitudes (thus
recovering the additivity axiom). While decoherence is a serious impediment to build-
ing quantum computers, depriving us of the power of quantum interference, it is not
all doom and gloom: there are clever ways around decoherence, such as quantum
error correction and fault-tolerant methods, both of which we will meet later.

1.8 Types of computation

One single qubit has two logical (i.e. non-superposition) states: |0〉 and |1〉. Bring
another qubit and the combined systems has four logical states: |00〉, |01〉, |10〉, and
|11〉. In general n qubits will give us 2n states, representing all possible binary strings
of length n. It is important to use subsystems — here qubits — rather than one chunk
of matter, since, by operating on at most n qubits, we can reach any of the 2n states
of the composed system. Now, if we let the qubits interact in a controllable fashion,
then we are computing!

Think about computation as a physical process that evolves a prescribed initial
configuration of a computing machine, called INPUT, into some final configuration,
called OUTPUT. We shall refer to the configurations as states. Figure 1.4 shows five
consecutive computational steps performed on four distinct states.

input

output

Figure 1.4: Deterministic computation.

That computation was deterministic: every time you run it with the same input,
you get the same output.

But a computation does not have to be deterministic — we can augment a comput-
ing machine by allowing it to “toss an unbiased coin” and to choose its steps randomly.
It can then be viewed as a directed tree-like graph where each node corresponds to a 0So we read left to right, and omit

the arrowheads.state of the machine, and each edge represents one step of the computation, as shown
in Figure 1.5

input

p = p1 + p2

Figure 1.5: Probabilistic computation.

The computation starts from some initial state (INPUT) and it subsequently branches
into other nodes representing states reachable with non-zero probability from the ini-
tial state. The probability of a particular final state (OUTPUT) being reached is equal
to the sum of the probabilities along all mutually exclusive paths which connect the
initial state with that particular state. Figure 1.5 shows only two computational paths,
but, in general, there could be many more paths (here, up to 256) contributing to the
final probability.

Quantum computation can be represented by a similar graph, as in Figure 1.6.
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input

p = p1 + p2
+2

√
p1p2 cos(φ2 − φ1)

Figure 1.6: Quantum computation.

For quantum computations, we associate with each edge in the graph the probabil-
ity amplitude that the computation follows that edge. The probability amplitude that
a particular path to be followed is the product of amplitudes pertaining to the transi-
tions in each step. The probability amplitude of a particular final state being reached
is equal to the sum of the amplitudes along all mutually exclusive paths which connect
the initial state with that particular state:

z =
∑

all paths k

zk.

The resulting probability, as we have just seen, is the sum of the probabilities pk

pertaining to each computational path modified by the interference terms. To show
this, note first that

p = |z|2 = z?z

=

 N∑
j=1

zj

?(
N∑

k=1

zk

)
= (z?

1 + z?
2 + · · ·+ z?

N ) (z1 + z2 + · · ·+ zN )

Multiplying out these two sums gives us terms of the form z?
i zj for 1 ⩽ i, j ⩽ N ,

so we can think of these as forming a square matrix and then split the sum into the
“diagonal” terms and the “off-diagonal” terms:

p =
∑

k

|zk|2︸ ︷︷ ︸
diagonal
elements

+
∑
k>j

(
z?

kzj + z?
j zk

)
︸ ︷︷ ︸

off-diagonal
elements

=
∑

k

|zk|2 +
∑
k>j

(
|zk||zj |ei(ϕj−ϕk) + |zj ||zk|ei(ϕk−ϕj)

)
=
∑

k

|zk|2 +
∑
k>j

(
|zk||zj |e−i(ϕk−ϕj) + |zj ||zk|ei(ϕk−ϕj)

)
=
∑

k

pk +
∑
k>j

2|zk||zj | cos(ϕk − ϕj)

=
∑

k

pk +
∑
k>j

2√pkpj cos(ϕk − ϕj)︸ ︷︷ ︸
interference terms

.

Quantum computation can be viewed as a complex multi-particle quantum
interference involving many computational paths through a computing device.
The art of quantum computation is to shape the quantum interference through
a sequence of computational steps, enhancing probabilities of the “correct”
outputs and suppressing probabilities of the “wrong” ones.
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1.9 Computational complexity

Is there a compelling reason why we should care about quantum computation? It may
sound like an extravagant way to compute something that can be computed anyway.
Indeed, your standard laptop, given enough time and memory, can simulate pretty
much any physical process. In principle, it can also simulate any quantum interference
and compute everything that quantum computers can compute. The snag is that this
simulation is, in general, very inefficient. And efficiency does matter, especially if you
have to wait more than the age of the universe for your laptop to stop and deliver an
answer! 0 The age of the universe is cur-

rently estimated to be around
13.772 billion years.

In order to solve a particular problem, computers (classical or quantum) follow
a precise set of instructions called an algorithm. Computer scientists quantify the
efficiency of an algorithm according to how rapidly its running time, or the use of
memory, increases when it is given ever larger inputs to work on. An algorithm is said
to be efficient if the number of elementary operations taken to execute it increases no
faster than a polynomial function of the size of the input. We take the input size to be 0 Note that technological progress

alone, such as increasing the
speed of classical computers, will
never turn an inefficient (expo-
nential scaling) algorithm into an
efficient (polynomial scaling) al-
gorithm. Why?

the total number of binary digits (bits) needed to specify the input. For example, using
the algorithm taught in elementary school, one can multiply two n digit numbers in a
time that grows like the number of digits squared, n2. In contrast, the fastest-known
method for the reverse operation — factoring an n-digit integer into prime numbers
— takes a time that grows exponentially, roughly as 2n. This is considered inefficient.

input size n

execution time

2n n2

polynomial
is good :)

exponential
is bad :(

The class of problems that can be solved in polynomial time by a deterministic
computer is represented by the capital letter P, for polynomial time. The class of
problems that can be solved in polynomial time by a probabilistic computer is called
BPP, for bounded-error probabilistic polynomial time.

It is clear that BPP contains P, since deterministic computation is a special case
of probabilistic computation in which we never consult the source of randomness.
When we run a probabilistic (a.k.a. randomised) computation many times on the
same input, we will not get the same answer every time, but the computation is
useful if the probability of getting the right answer is high enough.

Finally, the class of problems that can be solved in polynomial time by a quantum
computer is called BQP, for bounded-error quantum polynomial. Since a quantum com- 0 The phrase “bounded-error” has

a precise meaning: the probability
of error is at most 1/3.

puter can easily generate random bits and simulate a probabilistic classical computer,
BQP certainly contains the class BPP (which itself contains the class P). Here we are
interested in problems that are in BQP but not known to be in BPP. The most popular
example of such a problem is factoring.
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P

BPP

BQP

A quantum algorithm, discovered by Peter Shor in 1994, can factor n-digit num-
bers in a number of steps that grows only as n2, as opposed to the 2n that we have
classically. Since the intractability of factorisation underpins the security of many 0 It must be stressed that not

all quantum algorithms are so ef-
ficient. In fact many are no
faster than their classical counter-
parts. Which particular problems
will lend themselves to quantum
speed-ups is an open question.

methods of encryption, Shor’s algorithm (see Section 10.11) was soon hailed as the
first “killer application” for quantum computation: something very useful that only a
quantum computer could do. Since then, the hunt has been on for interesting things
for quantum computers to do, and at the same time, for the scientific and technologi-
cal advances that could allow us to build quantum computers in reality.

1.10 Outlook

When the physics of computation was first investigated, starting in the 1960s, one of
the main motivations was a fear that quantum-mechanical effects might place funda-
mental bounds on the accuracy with which physical objects could render the prop-
erties of the abstract entities (such as logical variables and operations) that appear
in the theory of computation. It turned out, however, that quantum mechanics it-
self imposes no significant limits, and even breaks through some of those problems
that were imposed by classical physics. The quantum world has a richness and in-
tricacy that allows new practical technologies, and new kinds of knowledge. In this
course we will merely scratch the surface of the rapidly developing field of quan-
tum computation. We will concentrate mostly on the fundamental issues and skip
many experimental details. However, it should be mentioned that quantum comput-
ing is a serious possibility for future generations of computing devices. At present it
is not clear how and when fully-fledged quantum computers will eventually be built,
but this notwithstanding, the quantum theory of computation already plays a much
more fundamental role in the scheme of things than its classical predecessor did. It
is reasonable to argue that anyone who seeks a fundamental understanding of either
physics, computation, or logic must incorporate into their world view the new insights
brought by quantum theory.

1.11 Remarks and exercises

1.11.1 A historical remark

Back in 1926, Max Born simply postulated the connection between amplitudes and
probabilities, but did not get it quite right on his first attempt. In the original paper 0 Max Born, “Zur Quanten-

mechanik der StoSSvorgänge”,
Zeitschrift für Physik 37 (1926),
pp. 893–867.

proposing the probability interpretation of the state vector (wavefunction) he wrote:

. . . If one translates this result into terms of particles only one inter-
pretation is possible. Θη,τ,m(α, β, γ) [the wavefunction for the partic-
ular problem he is considering] gives the probability∗ for the electron
arriving from the z direction to be thrown out into the direction des-
ignated by the angles α, β, γ. . .
∗ Addition in proof: More careful considerations show that the proba-
bility is proportional to the square of the quantity Θη,τ,m(α, β, γ).
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1.11.2 Modifying the Born rule

Suppose that we modified the Born rule, so that probabilities were given by the abso-
lute values of amplitudes raised to the power p (for some p > 0 not necessarily equal
to 2). Then physically admissible evolutions would still have to preserve the normal-
isation of probability: mathematically speaking, they would have to be isometries of
p-norms.

The p-norm of a vector v = (v1, v2, . . . , vn), for p ∈ N, is defined as 0 In the case p = 2, we recover
the usual Pythagorean/Euclidean
equation that we all know and
love: the distance of the point
(v1, v2, . . . , vn) from the origin is√
v2

1 + v2
2 + . . .+ v2

n; if we take
n = 2 as well then we recover the
Pythagoras theorem.

p
√
|v1|p + |v2|p + . . .+ |vn|p.

It is clear that any permutation of vector components and multiplication by phase
factors (i.e. unit complex numbers, of the form eiϕ for some ϕ) will leave any p-norm
unchanged. It turns out that these complex permutations are the only isometries, ex-
cept for one special case: p = 2. For p = 2, the isometries are exactly unitaries, which
form a continuous group; in all other cases we are restricted to discrete permutations.
We do not have to go into details of the proof since we can see this result.

v1

v2

p
=
1

p
=
2

p
=
42

p = ∞

Figure 1.7: The unit spheres in the p-norm for p = 1, 2, 42,∞ (where the definition of
the∞-norm is slightly different; we will come back to this in Section 12.11.2).

The image of the unit sphere must be preserved under probability preserving op-
erations. As we can see in Figure 1.7, the 2-norm is special because of its rotational
invariance (it describes a circle) — the probability measure picks out no preferred
basis in the space of state vectors. Moreover, it respects unitary operations and does
not restrict them in any way. If the admissible physical evolutions were restricted to
discrete symmetries, e.g. permutations, then there would be no continuity, and no
concept of “time” as we know it.

1.11.3 Many computational paths

A quantum computer starts calculations in some initial state, then follows n different
computational paths which lead to the final output. The computational paths are
followed with probability amplitudes 1

ne
ikϕ, where ϕ is a fixed angle 0 < ϕ < 2π and

k = 0, 1, ...n − 1. Using the fact that 1 + z + z2 + . . . + zn = 1−zn+1

1−z , show that the
probability P of generating the output is given by

P = 1
n2

∣∣∣∣1− einϕ

1− eiϕ

∣∣∣∣2 = 1
n2

sin2(nϕ
2 )

sin2( ϕ
2 )

.

for 0 < ϕ < 2π, and that P = 1 when ϕ = 0. Plot the probability as a function of ϕ.
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1.11.4 Distant photon emitters

Imagine two distant stars, A and B, that emit identical photons. If you point a single
detector towards them you will register a click every now and then, but you never
know which star the photon came from. Now prepare two detectors and point them
towards the stars. Assume the photons arrive with the probability amplitudes spec-
ified in Figure 1.8. Every now and then you will register a coincidence: the two
detectors will both click.

a. Calculate the probability of such a coincidence.
b. Now assume that z ≈ 1

r e
i2rπ/λ, where r is the distance between detectors and

the stars and λ is some fixed constant. How can we use this to measure r?

A

B

1

2

z

z

zeiϕ

zeiϕ

Figure 1.8: Two photon detectors pointing at two stars, with the probabilities of
detection labelling the arrows.

1.11.5 Quantum Turing machines

The classical theory of computation is essentially the theory of the universal Turing
machine — the most popular mathematical model of classical computation. Its sig-
nificance relies on the fact that, given a possibly very large but still finite amount of
time, the universal Turing machine is capable of any computation that can be done
by any modern classical digital computer, no matter how powerful. The concept of
Turing machines may be modified to incorporate quantum computation, but we will
not follow this path. It is much easier to explain the essence of quantum computa-
tion talking about quantum logic gates and quantum Boolean networks or circuits.
The two approaches are computationally equivalent, even though certain theoretical
concepts, e.g. in computational complexity, are easier to formulate precisely using the
Turing machine model. The main advantage of quantum circuits is that they relate
far more directly to proposed experimental realisations of quantum computation.

1.11.6 More time, more memory

A quantum machine has N perfectly distinguishable configurations. What is the maxi-
mum number of computational paths connecting a specific input with a specific output
after k steps of the machine?

Suppose you are using your laptop to add together amplitudes pertaining to each
of the paths. As k and N increase you may need more time and more memory to
complete the task. How does the execution time and the memory requirements grow
with k andN? In particular, which will be the thing that limits you sooner: not having
enough memory, not having enough time, or both?

1.11.7 Asymptotic behaviour: big-O

In order to make qualitative distinctions between how different functions grow we
will often use the asymptotic big-O notation. For example, suppose an algorithm
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running on input of size n takes an2 + bn + c elementary steps, for some positive
constants a, b and c. These constants depend mainly on the details of the implemen-
tation and the choice of elementary steps. What we really care about is that, for large
n, the whole expression is dominated by its quadratic term. We then say that the
running time of this algorithm grows as n2, and we write it as O(n2), ignoring the
less significant terms and the constant coefficients. More precisely, let f(n) and g(n)
be functions from positive integers to positive reals. You may think of f(n) and g(n)
as the running times of two algorithms on inputs of size n. We say f = O(g), which 0f = O(g) is pronounced as “f is

big-oh of g”.means that f grows no faster than g, if there is a constant c > 0 such that f(n) ⩽ cg(n)
for all sufficiently large values of n. Essentially, f = O(g) is a very loose analogue of
f ⩽ g. In addition to the big-O notation, computer scientists often use Ω for lower
bounds: f = Ω(g) means g = O(f). Again, this is a very loose analogue of f ⩾ g.

1. When we say that f(n) = O(logn), why don’t we have to specify the base of the
logarithm?

2. Let f(n) = 5n3 + 1000n+ 50. Is f(n) = O(n3), or O(n4), or both?
3. Which of the following statements are true?

a. nk = O(2n) for any constant k
b. n! = O(nn)
c. if f1 = O(g) and f2 = O(g), then f1 + f2 = O(g).

1.11.8 Polynomial is good, and exponential is bad

In computational complexity the basic distinction is between polynomial and expo-
nential algorithms. Polynomial growth is good and exponential growth is bad, es-
pecially if you have to pay for it. There is an old story about the legendary in-
ventor of chess who asked the Persian king to be paid only by a grain of cereal,
doubled on each of the 64 squares of a chess board. The king placed one grain
of rice on the first square, two on the second, four on the third, and he was sup-
posed to keep on doubling until the board was full. The last square would then have
263 = 9, 223, 372, 036, 854, 775, 808 grains of rice, more than has been ever harvested
on planet Earth, to which we must add the grains of all previous squares, making
the total number about twice as large. If we placed that many grains in an unbroken
line we would reach the nearest star Alpha Centauri, our closest celestial neighbour
beyond the solar system, about 4.4 light-years away. 0 One light year (the distance that

light travels through a vacuum in
one year) is 9.4607 × 1015 metres.

The moral of the story: if whatever you do requires an exponential use of re-
sources, you are in trouble.

1.11.9 Imperfect prime tester

There exists a randomised algorithm which tests whether a given number N is prime. 0 Primality used to be given as the
classic example of a problem in
BPP but not P. However, in 2002
a deterministic polynomial time
test for primality was proposed by
Manindra Agrawal, Neeraj Kayal,
and Nitin Saxena in the wonder-
fully titled paper “PRIMES is in
P”. Thus, since 2002, primality has
been in P.

The algorithm always returns yes when N is prime, and the probability it returns yes
when N is not prime is ε, where ε is never greater than a half (independently, each
time you run the algorithm). You run this algorithm r times (for the same value of
N), and each time the algorithm returns yes. What is the probability that N is not
prime?

1.11.10 Imperfect decision maker

Suppose a randomised algorithm solves a decision problem, returning yes or no an-
swers. It gets the answer wrong with a probability not greater than 1

2−δ, where δ > 0
is a constant. If we are willing to accept a probability of error no larger than ε, then 0This result is known as the Cher-

noff bound.it suffices to run the computation r times, where r = O(log 1/ε).
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x

1 + x

ex

1. If we perform this computation r times, how many possible sequences of out-
comes are there?

2. Give a bound on the probability of any particular sequence with w wrong an-
swers.

3. If we look at the set of r outcomes, we will determine the final outcome by
performing a majority vote. This can only go wrong if w > r/2. Give an upper
bound on the probability of any single sequence that would lead us to the wrong
conclusion.

4. Using the bound 1−x ⩽ e−x, conclude that the probability of our coming to the
wrong conclusion is upper bounded by e−2rδ2

.
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2 Qubits

About quantum bits and quantum circuits, including the “impossi-
ble” square root of NOT, as well as an introduction to single-qubit
unitaries and rotations of the Bloch sphere, and the implications
concerning universal gates.

When studying classical information theory, one single bit isn’t usually the most
interesting object to think about — it’s either 0 or 1. Yet in the quantum case, just
working with one “quantum bit” (which we call a qubit) opens up a whole world
of interesting mathematics. In fact, single-qubit interference is arguably the fun-
damental building block for quantum computing, and so deserves to be thoroughly
investigated and understood.

2.1 Composing quantum operations

In order to understand something in its full complexity it is always good to start with
the simplest case. Let us take a closer look at quantum interference in the simplest
possible computing machine: the one that has only two distinguishable configurations
— two quantum states — which we label as |0〉 and |1〉. We prepare the machine in
some input state, usually |0〉, and let it evolve: the machine undergoes a prescribed
sequence of computational steps, each of which induces transitions between the two
“computational states” |0〉 and |1〉. The machine then ends in the output state |ψ〉 =
α0|0〉 + α1|1〉, meaning the two outputs, |0〉 and |1〉, are reached with probability
amplitudes α0 and α1, respectively. In the process of computation each computational
step U (also referred to as an operation) sends state |k〉 to state |l〉, where k, l = 0, 1,
but only with some amplitude Ulk. We write this as

|k〉 7−→
∑

l

Ulk|l〉.

(watch out for the order of the indices). In words, the state |k〉 evolves into the specific
state |l〉 with probability amplitude Ulk and probability |Ulk|2, so the whole situation
is described by the superposition (i.e. the sum) of all of these.

Thus any computational step U of this machine can be described by a matrix which
tabulates all the transition amplitudes:

U =
[
U00 U01
U10 U11

]
.

The matrix element Ulk represents the amplitude of transition from state |k〉 to state |l〉
(again, watch the order of indices). To be clear, the entries in this matrix are not any
random complex numbers: their moduli squared represent transition probabilities,
which in turn implies that such matrices must be unitary. 0Recall that matrix U is called uni-

tary if

U†U = UU† = 1

where the adjoint or Hermitian
conjugate U† of any matrix U
with complex entries Uij is ob-
tained by taking the complex con-
jugate of every element in the ma-
trix and then interchanging rows
and columns (U†

kl
= U?lk).

We can also describe U by drawing a diagram, which contains exactly the same
information as the matrix representation, but just in a different form:

|0⟩

|1⟩

|0⟩

|1⟩

U00

U11

U10

U01

Now how can we find some quantum interference to study? Consider two com-
putational steps, U and V . What is the amplitude that input |k〉 will generate output
|m〉? We have to check all computational paths leading from input |k〉 to output |m〉
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2.2 Quantum bits, called “qubits”

and add the corresponding amplitudes. For example, as you can see in Figure 2.1, in-
put |0〉 and output |1〉 are connected by the two computational paths: |0〉 7→ |0〉 7→ |1〉
(amplitude V10U00) and |0〉 7→ |1〉 7→ |1〉 (amplitude V11U10). Thus the total ampli-
tude that input |0〉 gives output |1〉 is the sum V10U00 +V11U10, and when we take the
modulus squared of this expression we will see the interference term.

|0⟩

|1⟩

|0⟩

|1⟩

|0⟩

|1⟩U11

V01U01

V00U00

U10

V11

V10

Figure 2.1: The composition of two computational steps, U and V , with the possible
paths from |0〉 to |1〉 highlighted.

In general, given U and V

|k〉 7−→
∑

l

Ulk|l〉

|l〉 7−→
∑
m

Vml|m〉

we can compose the two operations: we first apply U , and then V , to obtain

|k〉 7−→
∑

l

Ulk

(∑
m

Vml|m〉

)

=
∑
m

(∑
l

VmlUlk

)
|m〉

=
∑
m

(V U)mk|m〉.

If you want to hone your quantum intuition think about it the following way.
The amplitude that input |k〉 evolves to |m〉 via a specific intermediate state |l〉 is
given by VmlUlk (evolutions are independent so the amplitudes are multiplied). This
done, we have to sum over all possible values of l (the transition can occur in several
mutually exclusive ways so the amplitudes are added) to obtain

∑
l VmlUlk. Thus the

matrix multiplication V U (watch the order of matrices) in one swoop takes care of the
multiplication and addition of amplitudes corresponding to different computational
paths.

2.2 Quantum bits, called “qubits”

Such a two-state machine that we have just described in abstract terms is usually
realised as a controlled evolution of a two-state system, called a quantum bit, or
qubit for short. For example, the state |0〉 may be chosen to be the lowest energy 0More general n-state systems can

also be of interest, and are some-
times called q-nits; three-state
systems in particular are some-
times called qutrits. In this book,
however, we will only concern
ourselves with qubits, since they
readily generalise the classical no-
tion of bits (and also give us more
than enough interesting construc-
tions to get started with!).

state of an atom (the ground state), and state |1〉 a higher energy state (the excited
state). Pulses of light of the appropriate frequency, duration, and intensity can take
the atom back and forth between the basis states |0〉 and |1〉 (implementing logical
NOT).

Some other pulses (say, half the duration or intensity) will take the atom into states
that have no classical analogue. Such states are called coherent superpositions of
|0〉 and |1〉, and represent a qubit in state |0〉 with some amplitude α0 and in state |1〉
with some other amplitude α1. This is conveniently represented by a state vector

|ψ〉 = α0|0〉+ α1|1〉 ↔
[
α0
α1

]
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2.3 Quantum gates and circuits

|0⟩ |1⟩ |ψ⟩

By Born’s rule, we know that α0 and α1 cannot be arbitrary complex numbers:
they must satisfy |α0|2 + |α1|2 = 1. This lets us draw the state vector “geometrically”,
using the fact that the locus of vectors of magnitude equal to 1 describes a circle:

|0⟩

|1⟩

|ψ⟩

α0

α1

But recall that amplitudes are complex numbers, and so α0 and α1 cannot really
be drawn as 1-dimensional real vectors on a flat screen or piece of paper; the picture
above provides good intuition, but to be fully accurate we would need to draw it in
four-dimensional space (or at least on some three-dimensional paper).

A qubit is a quantum system in which the Boolean states 0 and 1 are repre-
sented by a prescribed pair of normalised and mutually orthogonal quantum
states labelled by |0〉 and |1〉. The two states form a so-called computational
(or standard) basis, and so any other state of an isolated qubit can be written
as a coherent superposition

|ψ〉 = α0|0〉+ α1|1〉

for some α0 and α1 such that |α0|2 + |α1|2 = 1.
In practice, a qubit is typically a microscopic system, such as an atom, a

nuclear spin, or a polarised photon.

As we have already mentioned, any computational step, that is, any physically 0 Here we are talking about iso-
lated systems. As you will soon
learn, a larger class of physically
admissible operations is described
by completely positive maps. It
may sound awfully complicated
but, as you will soon see, it is ac-
tually very simple.

admissible operation U on a qubit, is described by a (2 × 2) unitary matrix U . It
modifies the state of the qubit as

|ψ〉 7−→ |ψ′〉 = U |ψ〉

which we can write explicitly as[
α′

0
α′

1

]
=
[
U00 U01
U10 U11

] [
α0
α1

]
That is, the operation U turns the state |ψ〉, with components αk, into the state |ψ′〉 =
U |ψ〉, with components α′

l =
∑

k Ulkαk.

2.3 Quantum gates and circuits

Atoms, trapped ions, molecules, nuclear spins and many other quantum objects,
which we call qubits, can be used to implement simple quantum interference (some-
thing which we have still yet to explain), and hence simple quantum computation.
There is no need to learn about physics behind these diverse technologies if all you
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2.4 Single qubit interference

want is to understand the basics of quantum computation. We may now conveniently
forget about any specific experimental realisation of a qubit and just remember that
any manipulations on qubits have to be performed by physically admissible opera-
tions, and that such operations are represented by unitary transformations.

A quantum (logic) gate is a device which performs a fixed unitary operation
on selected qubits in a fixed period of time, and a quantum circuit is a device
consisting of quantum logic gates whose computational steps are synchronised
in time.

The size of such a circuit is the number of gates it contains. The gates in a
circuit can be divided into layers, where the gates in the same layer operate at
the same time, and the number of such layers is called the depth of a circuit.

Some unitary U acting on a single qubit is represented diagrammatically as

U

This diagram should be read from left to right. The horizontal line represents a
qubit that is inertly carried from one quantum operation to another. We often call this
line a quantum wire. The wire may describe translation in space (e.g. atoms travel-
ling through cavities) or translation in time (e.g. a sequence of operations performed
on a trapped ion). A sequence of two gates acting on the same qubit, say U followed
by V , is represented by

U V

and is described by the matrix product V U (note the order in which we multiply
the matrices).

2.4 Single qubit interference

Let us now describe what is probably the most important sequence of operations
performed on a single qubit: a generic single-qubit interference. It is typically con-
structed as a sequence of three elementary operations:

1. the Hadamard gate
2. a phase-shift gate
3. the Hadamard gate again.

We represent it graphically as 0 We sometimes write the phase
gate as Pϕ instead, if it makes the
circuit easier to read.φ

|0⟩ H H cos φ
2 |0⟩ − i sin φ

2 |1⟩

where the definitions of the Hadamard and phase-shift gates are as in Section 1.6:

Hadamard: H = 1√
2

[
1 1
1 −1

] |0〉 7−→ 1√
2 (|0〉+ |1〉)

|1〉 7−→ 1√
2 (|0〉 − |1〉)

Phase-shift: Pϕ =
[
1 0
0 eiϕ

]
|0〉 7−→ |0〉
|1〉 7−→ eiϕ|1〉
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2.4 Single qubit interference

Note that we sometimes use the notation |+〉 and |−〉when talking about Hadamard
gates, where

|+〉 := H|0〉 = 1√
2

(|0〉+ |1〉)

|−〉 := H|1〉 = 1√
2

(|0〉 − |1〉).

You will see this specific sequence of gates over and over again, for it is quantum
interference that gives quantum computation additional capabilities. 0 Indeed, you have already seen

this sequence: recall our study
of Ramsey interferometry (Section
1.5), and note how this is essen-
tially the same!Something that many explanations of quantum computing say is the follow-

ing: “quantum computers are quicker because they evaluate all possible solu-
tions at once, in parallel”. This is not accurate.

Firstly, quantum computers are not necessarily “quicker” than classical
computers, but can simply implement quantum algorithms, some of which are
quicker than their classical counterparts. Secondly, the idea that they “just do
all the possible computations at once” is false — instead, they rely on thought-
fully using interference (which can be constructive or destructive) to modify
the probabilities of specific outcomes.

The motto to keep in mind is that the power of quantum computing comes
from quantum interference.

The product of the three matrices HPϕH describes the action of the whole circuit:
it gives the transition amplitudes between states |0〉 and |1〉 at the input and the output
as

1√
2

[
1 1
1 −1

] [
1 0
0 eiϕ

]
1√
2

[
1 1
1 −1

]
= ei ϕ

2

[
cosϕ/2 −i sinϕ/2
−i sinϕ/2 cosϕ/2

]
Given that our input state is almost always |0〉, it is sometimes much easier and

more instructive to step through the execution of this circuit and follow the evolving
state. The interference circuit effects the following sequence of transformations: 0We ignore the global phase factor

ei
ϕ
2 .

|0〉 H7−→ 1√
2

(|0〉+ |1〉)

Pφ7−→ 1√
2
(
|0〉+ eiφ|1〉

)
H7−→ cos φ

2
|0〉 − i sin φ

2
|1〉.

The first Hadamard gate prepares an equally weighted superposition of |0〉 and |1〉
and the second Hadamard closes the interference by bringing the interfering paths
together. The phase shift ϕ in between effectively controls the entire evolution and
determines the output. The probabilities of finding the qubit in state |0〉 or |1〉 at the
output are, respectively,

Pr(0) = cos2 φ

2

Pr(1) = sin2 φ

2
.

This simple quantum process contains, in a nutshell, the essential ingredients of quan-
tum computation. This sequence (Hadamard–phase shift–Hadamard) will appear
over and over again. It reflects a natural progression of quantum computation: first
we prepare different computational paths, then we evaluate a function which effec-
tively introduces phase shifts into different computational paths, then we bring the
computational paths together at the output.
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2.5 The square root of NOT

2.5 The square root of NOT

Now that we have poked our heads into the quantum world, let us see how quantum
interference challenges conventional logic. Consider the following task:

Design a logic gate that operates on a single bit and such that when
it is followed by another, identical, logic gate the output is always the
negation of the input.

Let us call the resulting logic gate the square root of NOT, or
√

NOT.

√
NOT

√
NOT

NOT

A simple check, such as an attempt to construct a truth table, should persuade you
that there is no such operation in logic. It may seem reasonable to argue that since
there is no such operation in logic,

√
NOT is impossible. But it does exist! Experimental

physicists routinely construct such “impossible” gates in their laboratories. It is a
physically admissible operation described by the unitary matrix 0There are infinitely many unitary

operations that act as the square
root of NOT.√

NOT = 1
2

[
1 + i 1− i
1− i 1 + i

]
= 1√

2

[
ei π

4 e−i π
4

e−i π
4 ei π

4

]
.

Indeed,

1
2

[
1 + i 1− i
1− i 1 + i

]
1
2

[
1 + i 1− i
1− i 1 + i

]
=
[
0 1
1 0

]
.

0

1

0

1

1+i
2

1−i
2

1−i
2

1+i
2

1+i
2

1−i
2

1−i
2

1+i
2

=

0

1

0

1

√
NOT

√
NOT NOT

Figure 2.2: A computation that, when repeated, gives exactly NOT. An unlabelled line
means that it has probability 1, and the lack of a line corresponds to having probability
0.

We could also step through the circuit diagram and follow the evolution of the
state vector:

|0⟩ 1√
2

[
ei

π
4 |0⟩+ e−iπ

4 |1⟩
]

|1⟩

√
NOT

√
NOT

Or, if you prefer to work with column vectors and matrices, you can write the two
consecutive application of

√
NOT to state |0〉 as 0 Just remember that circuits dia-

grams are read from left to right,
and vector and matrix operations
go from right to left.

[
0
1

]
←−| 1√

2

[
ei π

4

e−i π
4

]
←−|

[
1
0

]
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where each “←−|” denotes multiplication by 1√
2

[
ei π

4 e−i π
4

e−i π
4 ei π

4

]
.

One way or another, quantum theory explains the behaviour of
√

NOT, and so,
reassured by the physical experiments that corroborate this theory, logicians are now 0 One such experiment (which we

will soon discuss, in Section 3.1) is
the so-called Mach-Zehnder inter-
ferometer.

entitled to propose a new logical operation
√

NOT. Why? Because a faithful physical
model for it exists in nature!

2.6 Phase gates galore

We have already met the generic phase gate Pϕ =
[
1 0
0 eiϕ

]
which acts via

|0〉 7−→ |0〉
|1〉 7−→ eiϕ|1〉

but there are three specific examples of Pϕ that are important enough to merit their
own names (two of which are rather confusing, at first glance).

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

π
4 -phase: S =

[
1 0
0 i

]
|0〉 7−→ |0〉
|1〉 7−→ i|1〉

π
8 -phase: T =

[
1 0
0 ei π

4

]
|0〉 7−→ |0〉
|1〉 7−→ ei π

4 |1〉

Recall that a phase gate Pϕ is only defined up to a global phase factor, and so we
can write its matrix either as

Pϕ =
[
1 0
0 eiϕ

]
or as

Pϕ =
[
e−i ϕ

2 0
0 ei ϕ

2

]
The first version is more common in the quantum information science community,
but the second one is sometimes more convenient to use, as it has determinant 1, and
hence belongs to a group called SU(2). We will occasionally switch to the SU(2) ver-
sion of phase gates, and this is where the π

4 -phase and π
8 -phase gates get their names,

since their SU(2) versions have e∓iπ/4 and e∓iπ/8 (respectively) on the diagonal, even
though they are actually of phase π/2 and π/4 (respectively).

The groups SU(2) and SO(3).

We will soon explain what this group SU(2) is and how it relates to another
important group called SO(3), but it turns up in many places throughout quan-
tum physics, as well as mathematics in general. Other places you might see
SU(2) appear are when talking about quaternions (which are somehow the
next thing in the sequence R ↪→ C ↪→ H) and two of the four “fundamental in-
teractions”, namely electromagnetism and the weak nuclear force, which get
bundled together into something known as electroweak interaction.
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2.7 Pauli operators

We will also eventually talk about how this aforementioned relation-
ship between SU(2) and SO(3) lets us describe rotations of things in three-
dimensional space. The abstract mathematical concept lying behind this is
one with a very lofty-sounding title indeed: representation theory of Lie al-
gebras. This lets us formally talk about things like (non-relativistic) spin. As
for this application of SU(2) in studying the electroweak interaction, this is an
example of something known as gauge theory.

The remaining gate, the phase-flip Z, is arguably the most important specific phase
gate, since it is one of the Pauli operators, which we will now discuss.

While we’re talking about phase, we should also justify why we keep on saying
“let us ignore the global phase factors”. In general, states differing only by a global
phase are physically indistinguishable, and so it is physical experimentation that leads
us to this mathematical choice of only defining things up to a global phase.

Global phase.

If you are more mathematically minded, then we can justify ignoring the
global phase in a few other ways. Taking the axiomatic approach, where
values of physical observables correspond to eigenvalues of operators, think
about how the eigenvalues of a matrix A relate to those of the matrix µA,
where µ is a complex number with |µ| = 1. One “high-level” way of deal-
ing with this, in the language of gauge theory, is to talk of invariance under
gauge symmetry (here, in particular, we’re talking about U(1) symmetries).

2.7 Pauli operators

Adding to our collection of common single-qubit gates, we now look at the three
Pauli operators σx, σy, and σz, also denoted by X, Y , and Z, respectively. These 0Most of the time we refer to “op-

erators” as “matrices”, where the
implicit assumption is that we are
using the standard basis {|0〉, |1〉}.

three operators, combined with the identity, satisfy a lot of nice formal properties,
which we shall examine briefly here, and then return to in more detail later on, in
Section 3.3. After that, these operators will turn up everywhere, so it’s good to get
familiar with them!

Identity: 1 =
[
1 0
0 1

]
|0〉 7−→ |0〉
|1〉 7−→ |1〉

Bit-flip: X =
[
0 1
1 0

]
|0〉 7−→ |1〉
|1〉 7−→ |0〉

Bit-phase-flip: Y =
[
0 −i
i 0

]
|0〉 7−→ i|1〉
|1〉 7−→ −i|0〉

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

The identity is just a quantum wire, and we have already seen (Section 2.6) the
X and Z gates as the bit-flip and phase-flip, respectively. Note that, of the X and Z
gates, only the X gate has a classical analogue (namely the logical NOT operator). The
remaining gate, the Y operator, describes the combined effect of both the bit- and the
phase-flip: ZX = iY .
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2.8 From bit-flips to phase-flips, and back again

In fact, this is just one of the equations that the Pauli matrices satisfy. The Pauli
matrices are unitary and Hermitian, they square to the identity, and they anticom-
mute. By this last point, we mean that

XY = −Y X,
XZ = −ZX,
Y Z = −ZY.

As already mentioned, they satisfy ZX = iY , but also any cyclic permutation of this
equation (that is, replace X with Y , Y with Z, and Z with X, and repeat this as many
times as you wish).

These operators are also called sigma operators (usually when we use the nota-
tion σx, σy, σz) or (when written as matrices in the standard basis, as we have done)
as Pauli spin matrices. They are so ubiquitous in quantum physics that they should
certainly be memorised.

2.8 From bit-flips to phase-flips, and back again

The Pauli Z gate is a special case of a phase gate Pϕ with ϕ = π. When we insert it
into the interference circuit we obtain

=H Z H X

If you wish to verify this, write the Hadamard gate as H = (X + Z)/
√

2 and use
the properties of the Pauli operators. So the Hadamard gate turns phase-flips into
bit-flips, but it also turns bit-flips into phase-flips:

=H X H Z

Let us also add, for completeness, that HYH = −Y . You will see these identities
again and again, especially when we discuss quantum error corrections. 0 Unitaries, such as H, that take

the three Pauli operators to the
Pauli operators via conjugation
form the so-called Clifford group,
which we will meet later on, in
Chapter 7. Which phase gate is
in the Clifford group of a single
qubit?

HXH = Z

HZH = X

HYH = −Y

2.9 Any unitary operation on a single qubit

There are infinitely many single-qubit unitaries, i.e. unitary operations that can be
performed on a single qubit. In general, any complex (n× n) matrix has n2 complex
entries, and can thus be specified by 2n2 real independent parameters. The unitarity 0 Any complex number z is

uniquely specified by two real pa-
rameters, writing z = x + iy or
z = reiϕ, for example. This is an
instance of the fact that C is a two-
dimensional vector space over R.

constraint removes n2 of these (why? the argument is that once we specify n2 pa-
rameters, the rest are uniquely determined by solving the equation that needs to be
satisfied in order for the matrix to be unitary). So any unitary (n × n) matrix has n2

real independent parameters.

Parameter counting.

This sort of argument — counting how many parameters determine a family of
matrices — is really an example of calculating the dimension of a vector space.
More generally, saying things like “imposing a polynomial equation condition
on the coefficients lowers the number of (complex) parameters necessary by 1”
is the bread and butter of algebraic geometry, where we try to understand how
satisfying polynomial equations can be interpreted as geometrically modifying
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2.10 The Bloch sphere

high-dimensional “shapes”.

In particular, we need four real parameters to specify a (2×2) unitary matrix. If we
are prepared to ignore global phase factors (which we are!) then there are only three
real parameters left. The real question is, can we use this to construct and implement
any unitary on a single qubit in some simple way?

Delightfully, the answer is yes, we can.
Any unitary operation on a qubit (up to an overall multiplicative phase factor) can

be implemented by a circuit containing just two Hadamards and three phase gates,
with adjustable phase settings, as in Figure 2.3.

α φ β
H H

Figure 2.3: The universal circuit for unitary (2× 2) matrices, exhibiting how any such
matrix is uniquely determined (up to a global phase) by three real parameters.

If we multiply the matrices corresponding to each gate in the network we obtain 0 Remember that the order of
matrix multiplication is reversed
when compared to reading circuit
diagrams.

the single matrix

U(α, β, ϕ) =

[
e−i( α+β

2 ) cosϕ/2 −iei( α−β
2 ) sinϕ/2

−ie−i( α−β
2 ) sinϕ/2 ei( α+β

2 ) cosϕ/2

]
.

Any (2×2) unitary matrix (up to global phase) can be expressed in this form using the
three independent real parameters, α, β, and ϕ, which take values in [0, 2π]. In order
to see that this construction does what it claims, let us explore an intriguing mathe-
matical connection between single-qubit unitaries and rotations in three dimensions.

2.10 The Bloch sphere

Unitary operations on a single qubit form a group. More precisely, the set of all (2×2)
unitary matrices forms a (non-abelian) group under matrix multiplication, denoted by
U(2). It turns out that compositions of single-qubit unitaries behave pretty much the
same as compositions of rotations in three dimensions. Technically speaking, we claim
that U(2)/U(1) ∼= SO(3). That is, (2 × 2) unitaries, up to global phase, form a group 0 Note that U(1) ∼= C×, where

C× is the multiplicative group of
invertible elements of the complex
numbers, i.e. the set C \ {0} with
the group operation given by mul-
tiplication.

which is isomorphic to the group of rotations in three dimensions, which denoted by
SO(3). This isomorphism helps to visualise the actions of single-qubit gates.

There are many ways to introduce this isomorphism. Here we will just show
how to represent single-qubit state vectors in terms of Euclidean vectors in three
dimensions; later (in Section 3.4) we will actually relate unitary operations on state
vectors to rotations in this Euclidean space, demonstrating this isomorphism. 0 That is, we have the group U(2)

acting on the space of single-qubit
state vectors, and we have the
group SO(3) acting on the unit
sphere S2 ⊂ R3. In this chapter
we will discuss how to go from one
space (i.e. the thing being acted
upon) to the other; in Section 3.4
we will discuss how to go from one
group (i.e. the thing doing the act-
ing) to the other.

Any single-qubit state can be written as |ψ〉 = α|0〉 + β|1〉, constrained by the
relation |α|2 + |β|2 = 1. This suggests a more natural parametrisation as

|ψ〉 = cos(θ/2)eiϕ0 |0〉+ sin(θ/2)eiϕ1 |1〉

(note that there is a good reason to use θ/2 instead of θ, and we we will explain why
later on). We can then factor out a global phase:

|ψ〉 = eiϕ0
(
cos(θ/2)|0〉+ sin(θ/2)eiϕ|1〉

)
,

and even remove it completely, since states that are identical up to a global phase are
physically indistinguishable.

The parametrisation in terms of θ and ϕ should remind you (if you are familiar
with it) of spherical polar coordinates for the surface of a sphere.
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2.10 The Bloch sphere

|0⟩

y

|1⟩

x

θ

φ

s⃗

Figure 2.4: The Bloch sphere, with the point ~s corresponding to |ψ〉 marked.

We call this sphere the Bloch sphere, and the unit vector ~s defined by θ and ϕ the
Bloch vector. This is a very useful way to visualise quantum states of a single qubit
and unitary operations that we perform on it. Any unitary action on the state vector
will induce a rotation of the corresponding Bloch vector. But what kind of rotation?

We give a complete answer to this question soon, in Section 3.4, but we might as
well give some specific results here first, since some are easy enough to calculate “by
hand”. Here is one fundamental observation: any two orthogonal state vectors appear
on the Bloch sphere as two Bloch vectors pointing in opposite directions. Now, the two
eigenvectors of a single-qubit unitary U are always orthogonal, and so must define an
axis running through the centre of the Bloch sphere. This is the axis about which the
Bloch vector is rotated when U acts on the corresponding state vector. The rotation
angle α is given by the eigenvalues of U , which, up to a global phase factor, are of the
form e∓iα/2.

It is instructive to work out few simple cases and get a feel for the rotations corre-
sponding to the most common unitaries. For example, it is easy to check that a phase
gate Pα acts by

cos θ
2
|0〉+ eiϕ sin θ

2
|1〉 7−→ cos θ

2
|0〉+ ei(ϕ+α) sin θ

2
|1〉.

The azimuthal angle changes from ϕ to ϕ + α, and so the Bloch sphere is rotated
anticlockwise by α about the z-axis. The Bloch vectors corresponding to the two
eigenvectors of Pα, namely |0〉 and |1〉, define the axis of the rotation.

s⃗ Pαs⃗

Figure 2.5: Phase gates Pα represent rotations of the Bloch sphere around the z-axis.
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2.11 Drawing points on the Bloch sphere

As previously mentioned, the Pauli operator Z = σz is a special case of a phase
gate, and represents rotation by 180◦ (that is, π radians), about the z-axis. You can
also verify that X = σx, with eigenvectors (|0〉 ± |1〉)/

√
2, represents rotation by 180◦

about the x-axis, and Y = σy, with eigenvectors (|0〉 ± i|1〉)/
√

2, represents rotation
by 180◦ about the y-axis. Again, note that, by the definition of the axis, the points
of intersection of these axes with the Bloch sphere are exactly the eigenvectors of the
operator.

How about the Hadamard gate? Like the Pauli operators, it squares to the identity
(H2 = 1), which implies that its eigenvalues are ±1. Thus it will correspond to a
rotation by 180◦. But about which axis? This time, rather than finding eigenvectors of
H, we notice that HXH = Z and HZH = X, thus H must swap the x- and z-axes,
turning rotations about the z-axis into rotations about the x-axis, and vice versa. The
Hadamard gate must then represent rotation by 180◦ about the diagonal (x+ z)-axis.
You may also notice that, after this rotation, the y-axis points in the opposite direction,
which seems to be related to another identity: HYH = −Y . This is not a coincidence!

We will eventually show that the effect of the rotation represented by unitary U
on the Bloch vector with components sx, sy, sz is summarised in the formula

U(sxX + syY + szZ)U† = s′
xX + s′

yY + s′
zZ,

where s′
x, s′

y, and s′
z are the components of the rotated Bloch vector.

2.11 Drawing points on the Bloch sphere

We know that the state |0〉 corresponds to the north pole of the Bloch sphere, and
the state |1〉 to the south, but what about an arbitrary state |ψ〉 = α|0〉 + β|1〉? By
definition, we can find the parametrisation in terms of θ and ϕ, but there is also a
neat “trick” for finding the point on the Bloch sphere that corresponds to |ψ〉, which
goes as follows.

1. Calculate λ = β/α (assuming that α 6= 0, since otherwise |ψ〉 = |1〉).
2. Write λ = λx + iλy and mark the point p = (λx, λy) in the xy-plane (i.e. the

plane {z = 0}).
3. Draw the line going through the south-pole (which corresponds to |1〉) and the

point p. This will intersect the Bloch sphere in exactly one other point, and this
is exactly the point corresponding to |ψ〉.

Note that this lets you draw the point on the sphere, but doesn’t (immediately)
give you the coordinates for it. That is, this method is nice for geometric visualisa-
tion, but the parametrisation method is much better when it comes to actually doing
calculations.

2.12 Composition of rotations

We are now in a position to understand the circuit in Figure 2.3 in geometric terms. It
is a very useful fact of geometry (which we shall take for granted) that any rotation in
three-dimensional Euclidean space can be performed as a sequence of three specific
rotations: one about the z-axis, one about the x-axis, and one more about z-axis. The
circuit does exactly this:

α φ β
H H

The first phase gate effects rotation by α about the z-axis, the second phase gate is
sandwiched between the two Hadamard gates, and these three gates together effect
rotation by ϕ about the x-axis, and, finally, the third phase gates effects rotation by
β about the z-axis. So we can implement any unitary U by choosing the three phase
shifts, α, ϕ, and β, which are known as the three Euler angles.
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2.13 A finite set of universal gates

2.13 A finite set of universal gates

The Hadamard gate and the phase gates, with adjustable phases, allow us to imple-
ment an arbitrary single-qubit unitary exactly. The tacit assumption here is that we
have infinitely many phase gates: one gate for each phase. In fact, we can pick just
one phase gate, namely any phase gate Pα with the phase α that is incommensurate 0 That is, there do not exist any

m,n ∈ Z such that mα = nπ. For
example, it suffices to take α to be
rational, since π is irrational.

with π. It is clear that repeated iteration of Pα can be used to approximate any other
phase gate to arbitrary accuracy: indeed, rotate the Bloch sphere by α about the z-axis
sufficiently many times and you end up as close as you please to any other rotation
about the z-axis.

If you want to be ε-close to the desired angle of rotation, then you may need to
repeat the rotation by α roughly 1/ε times. Indeed, within n applications (for nα � 0The notation x � y is rather im-

precise, but it basically means “x is
much much larger than y, and, in
particular, large enough for what-
ever we are claiming to be true”.

2π) of Pα, we expect the accessible angles to be approximately evenly distributed
within the range [0, 2π], i.e. any angle of rotation can be achieved to an accuracy of
ε = 2π/n by using up to n ≈ 1/ε applications of Pα. So we can use just one phase
gate to approximate the three phase gates in the circuit in Figure 2.3.

There are other ways of implementing irrational rotations of the Bloch sphere. For
example, take the Hadamard gate and the T gate (also known as the π/8-phase gate,
despite being the phase gate Pϕ for ϕ = π/4 as we saw earlier in Section 2.6). You
can check that the compositions THTH and HTHT represent rotations by angles
which are irrational multiples of π, about two different axes. We can then compose
a sequence of these two rotations to approximate any other rotation of the sphere.
This may look very nice in theory, but there are issues with the actual physical im-
plementation of this approach: in reality, all the gates in the circuit will operate with
only finite precision, and the phase gates will deviate from implementing the required
irrational rotations. It turns out, however, that we can tolerate minor imperfections;
the final result will not be that far off.

2.14 Remarks and exercises

2.14.1 One simple circuit

Let B be the matrix

B = 1√
2

[
1 i
i 1

]
.

1. Show that B is unitary.

2. Find the overall unitary corresponding to the circuit 0 If you get the answer
[

0 1
i 0

]
then you performed the matrix
multiplication in the wrong order!π/2

|0⟩ H B |1⟩

2.14.2 Change of basis

Write the state

|ψ〉 = 3
5
|0〉+ 4

5
|1〉

as a superposition of the states |±〉 = (|0〉 ± |1〉)/
√

2. In other words, find α, β ∈ C
such that

|ψ〉 = α|+〉+ β|−〉.
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2.14 Remarks and exercises

2.14.3 Operators as unitary matrices

Say we have a linear operator that acts on a qubit as follows:

|0〉 7→ α|0〉+ β|1〉
|1〉 7→ β?|0〉 − α?|1〉.

1. Show that this linear operator is equal to

M =
(
α|0〉+ β|1〉

)
〈0|+

(
β?|0〉 − α?|1〉

)
〈1|

by calculating M |0〉 and M |1〉.
2. If we pick the standard basis

|0〉 ≡
[
1
0

]
|1〉 ≡

[
0
1

]
then what is the matrix representation of M?

3. Verify that M is unitary.

2.14.4 Completing an orthonormal basis

Imagine that some quantum system has four energy levels: |0〉, |1〉, |2〉, and |3〉. Con-
sider the three orthonormal vectors

|ψ1〉 = 1√
3

(|0〉+ |1〉+ |2〉)

|ψ2〉 = 1√
2

(|0〉 − |2〉)

|ψ3〉 = |3〉.

Find a vector |ψ4〉 such that {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉} is an orthonormal basis.

2.14.5 Some sums of inner products

Let {|v1〉, . . . , |vN 〉} be an orthonormal basis. Evaluate the following: 0 All of your answers should be
numbers (in fact, they’ll all even
be integers).1.

∑N−1
k=1 k2〈vN−1|vk〉

2.
∑N−1

k=1 k2〈vN |vk〉

3.
∑N

k=1〈vN−1|vk〉〈vk|vN−1〉

4.
∑N−1

j,k=1〈vj |vk〉

2.14.6 Some circuit identities

1. Prove the following circuit identities, ignoring any global phase:

α β
=

α+ β

α
=

−α
X X

2. Using the above, find θ1 and θ2 such that

θ1 θ2
=
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2.14 Remarks and exercises

θ1 θ2
=

δ
X X

for some value δ.

3. We can think of the second identity in the previous question as an implemen-
tation of “if the two X gates are absent then do nothing; otherwise implement
the phase gate Pδ”. Given that unitary matrices are normal, adapt this circuit
so that implements “if the two X gates are absent then do nothing; otherwise
implement the unitary U” where U is a one-qubit unitary.

2.14.7 Unitaries preserve length

Let M be a linear operator that sends an orthonormal basis {|u1〉, . . . , |uN 〉} to a set
of states {|v1〉, . . . , |vn〉} where each |vi〉 is of length 1.

1. Show that the length of the vector M(|u1〉+ |u2〉)/
√

2 is√
1 + Re〈v1|v2〉.

2. Find a correctly normalised superposition |ψ〉 = λ(α|u1〉+β|u2〉) such thatM |ψ〉
is of length√

1 + Im〈v1|v2〉.

3. Using the above, show that, for all |ψ〉 of length 1, the vector M |ψ〉 is of length
1 if and only if M is unitary.

2.14.8 Unknown phase

Consider the usual quantum interference circuit:

φ
|0⟩ H H |1⟩

Suppose you can control the input of the circuit and measure the output, but you
do not know the phase shift ϕ introduced by the phase gate. You prepare input |0〉
and register output |1〉. What can you say about ϕ?

Now you are promised that ϕ is either 0 or π. You can run the circuit only once to
find out which of the two phases was chosen. Is it possible to then always correctly
guess whether ϕ was 0 or π?

This problem forms the basis for a lot of material later on: most quantum
algorithms build upon it. We will return to it again and again in Chapter 10.

2.14.9 One of the many cross-product identities

When working with three-dimensional geometry, the cross product of vectors is very
useful, so here is an exercise to help you get used to working with it.

Let’s say we want to derive the identity 0 Hint: all you need here are the
Pauli matrices’ commutation and
anticommutation relations, but it
is instructive to derive the identity
using the component notation, and
below we give a sketch of how such
a derivation would go.

(~a · ~σ)(~b · ~σ) = (~a ·~b)1 + i(~a×~b) · ~σ.

First, notice that the products of Pauli matrices can be written succinctly as

σiσj = δij1 + iεijk σk,
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2.14 Remarks and exercises

where δij is Kronecker delta (equal to 0 if i 6= j, and to 1 if i = j) and εijk is the
Levi-Civita symbol:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)

0 if i = j, or j = k, or k = i

That is, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), it is −1 if it is an odd
permutation, and it is 0 if any index is repeated. The Levi-Civita symbol is anti-
symmetric, meaning when any two indices are changed, its sign alternates. Then
recall that the scalar (dot) product and vector (cross) product of two Euclidean vectors
~a and ~b can be written, in terms of the components, as

~a ·~b =
3∑

i=1
aibi

(~a×~b)i =
3∑

j,k=1

εijkajbk.

The rest is rather straightforward:

(~a · ~σ)(~b · ~σ) =
∑
i,j

aibjσiσj = . . . .
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3 Quantum gates

About understanding the square root of NOT via a physical implemen-
tation using symmetric beam-splitters. More about the Bloch sphere,
via the omnipresent Pauli matrices, which can be described in a more
algebraic way.

Before introducing too many new ideas, we first want to study two things we’ve
already seen in more depth, namely the square root of NOT, and the Bloch sphere.

The goal for the latter is to be able to visualise sequences of unitary operations
on a qubit as sequences of rotations, and to see the action of some quantum circuits
without getting engaged in lengthy calculations; this also leads us back to the question
of universal sets of gates. The goal for the former is to study a way of implementing
this gate using physical experiments, and then studying a related construction (the
so-called Mach–Zehnder interferometer).

3.1 Beam-splitters: physics against logic

A symmetric beam-splitter is a cube of glass which reflects half the light that im-
pinges upon it, while allowing the remaining half to pass through unaffected. For our
purposes it can simply be viewed as a device that has two input and two output ports,
which we label with |0〉 and |1〉 as in Figure 3.1.

|0⟩

|1⟩

|0⟩

|1⟩

Figure 3.1: A symmetric beam-splitter, with input ports on the bottom and the left
sides, and output ports on the top and the right sides.

When we aim a single photon at such a beam-splitter using one of the input ports,
we notice that the photon doesn’t split in two: we can place photo-detectors wherever
we like in the apparatus, fire in a photon, and verify that if any of the photo-detectors
registers a hit, none of the others do. In particular, if we place a photo-detector behind
the beam-splitter in each of the two possible exit beams, the photon is detected with
equal probability at either detector, no matter whether the photon was initially fired
into input port |0〉 or |1〉.

If we fire the photon into the input port |0〉, it may seem obvious that, at the very
least, the photon is either in the transmitted beam |0〉 or in the reflected beam |1〉
during any one run of this experiment. Thus we may be tempted to think of the
beam-splitter as a random binary switch which, with equal probability, transforms
any binary input into one of the two possible outputs. However, as you might expect
(now having already learnt about the double-slit experiment), this is not necessarily
the case. Let us introduce a second beam-splitter and place two normal mirrors so
that both paths intersect at the second beam-splitter, as well as putting a detector at
each output port of the second beam-splitter (see Figure 3.2).
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3.1 Beam-splitters: physics against logic

1

0

|0⟩

|1⟩

Figure 3.2: Two beam-splitters with mirrors, arranged so that the photon travels
through both, along with two detectors. We label the detectors in such a way that, if a
photon enters input |j〉 and is transmitted (not reflected) through both beam-splitters,
then it is detected by detector j.

Recall the Kolmogorov additivity axiom in classical probability theory: whenever
something can happen in several alternative ways, we add probabilities for each way
considered separately. We might argue that a photon fired into the input port |0〉 can
reach the detector 0 in two mutually exclusive ways: either by two consecutive reflec-
tions or by two consecutive transmissions. Each reflection happens with probability
1/2, and each transmission happens with probability 1/2, so the total probability of a
photon fired into input |0〉 reaching detector 0 is the sum of the probability of the two
consecutive reflections (1/2 × 1/2 = 1/4) and the probability of the two consecutive
transmissions (1/2×1/2 = 1/4), which gives a probability of 1/2. This is summarised
in Figure 3.3, and makes perfect sense — a random switch followed by a random
switch should give nothing else but a random switch.

However, if we set up such an experiment in a lab, this is not what happens!

There is no reason why probability theory (or any other a priori mathemati-
cal construct for that matter) should make any meaningful statements about
outcomes of physical experiments.
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3.1 Beam-splitters: physics against logic

1

0

|0⟩

two consecutive transmissions:

probability = 1√
2

1√
2
= 1

2

1

0

|0⟩

two consecutive reflections:

probability = 1√
2

1√
2
= 1

2

Figure 3.3: The two possible classical scenarios. Note that this is not what actually
happens in the real physical world!

In experimental reality, when the optical paths between the two beam-splitters
are the same, the photon fired from input port |0〉 always strikes detector 1 and never
detector 0 (and the photon fired from input port |1〉 always strikes detector 0 and
never detector 1). In other words, a beam-splitter is a physical implementation of a√

NOT gate.
The action of the beam-splitter — in fact, the action of any quantum device — can

be described by tabulating the amplitudes of transitions between its input and output
ports. 0 Note that gate B is not the same

square root of NOT as the one we
have already seen. In fact, there
are infinitely many ways of imple-
menting this “impossible” logical
operation.

B =
[
B00 B01
B10 B11

]
=

[
1√
2

i√
2

i√
2

1√
2

]
.

The matrix element Blk, where k, l = 0, 1, represents the amplitude of transition
from input |k〉 to output |l〉 (watch the order of indices). Each reflection (entries B01
and B10) happens with amplitude i/

√
2, and each transmission (entries B00 and B11)

happens with amplitude 1/
√

2. So the total amplitude that a photon fired from in-
put port |0〉 will reach detector 0 is the sum of the amplitude of the two consecutive
reflections (i/

√
2× i/

√
2 = −1/2) and the amplitude of the two consecutive transmis-

sions (1/
√

2 × 1/
√

2 = 1/2) which gives the total amplitude 0, and thus a resulting
probability of zero.

Unlike probabilities, amplitudes can cancel each other out, witnessing destruc-
tive interference.

We can now go on and calculate the amplitude that the photon will reach detector
1. In this case we will get i, which gives probability 1 (since |i|2 = 1). We can then
switch to input |1〉 and repeat our calculations. All possible paths and associated
amplitudes are shown in Figure 3.4.
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|0⟩

|1⟩

|0⟩

|1⟩

1√
2

i√
2

i√
2

1√
2

1√
2

i√
2

i√
2

1√
2

B B

Figure 3.4: All possible transitions and their amplitudes when we compose two beam-
splitters, as described by the matrix B above.

However, instead of going through all the paths in this diagram and linking specific
inputs to specific outputs, we can simply multiply the transition matrices:

BB =

[
1√
2

i√
2

i√
2

1√
2

][
1√
2

i√
2

i√
2

1√
2

]
=
[
0 i
i 0

]
= iX

where

X = NOT =
[
0 1
1 0

]
.

Bit-flip: NOT ≡ X
[
0 1
1 0

]

Beam-splitter:
√

NOT ≡ B 1√
2

[
1 i
i 1

]

3.2 Beam-splitters: quantum interference, revisited

One of the simplest quantum devices in which quantum interference can be controlled
is a Mach–Zehnder interferometer — see Figure 3.5. 0 You can play around with

a virtual Mach–Zehnder inter-
ferometer at Quantum Flytrap’s
Virtual Lab. (There are also lots of
other things you can do in this vir-
tual lab — go have a look!).

1

0

φ0

φ1

Input |0⟩

Input |1⟩

Figure 3.5: The Mach–Zehnder interferometer, with the input photon represented by
the coloured dot. This experimental set-up is named after the physicists Ludwig Mach
and Ludwig Zehnder, who proposed it back in 1890s.
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3.2 Beam-splitters: quantum interference, revisited

This is a slightly modified version of the construction shown in Figure 3.2, where
we have added two slivers of glass of different thickness into each of the optical
paths connecting the two beam-splitters. The slivers are usually referred to as “phase
shifters”, and their thicknesses ϕ0 and ϕ1 are measured in units of the photon’s wave-
length multiplied by 2π. These phase shifters are so called because they modify the
probability amplitudes by phase factors eiϕ0 and eiϕ1 , respectively. The only other
change that we make is replacing the symmetric beam-splitters with non-symmetric
ones, i.e. they no longer transmit or reflect with equal probability, but instead reflect
with some (fixed) probability amplitude i

√
R and transmit with some probability am-

plitude
√
T , where R + T = 1. As before, the two input ports of the interferometer

are labelled as |0〉 and |1〉, and each of the two output ports, also labelled as 0 and 1,
terminates in a photodetector.

A photon (the coloured dot in the figure) impinges on the first beam-splitter from
one of the two input ports (here input |0〉) and begins its journey towards one of the
two photodetectors. Let Uij denote the probability amplitude that the photon initially 0 We will often use i as an index

even though it is also used for the
imaginary unit. Hopefully, no con-
fusion will arise for it should be
clear from the context which one
is which.

in input port j = 0, 1 ends up in detector i = 0, 1.

In quantum theory we almost always work with probability amplitudes, and
only once we have a full expression for the amplitude of a given outcome do
we square its absolute value to get the corresponding probability.

For example, let us calculate U00. We notice that there are two alternative ways
for the photon in the input port |0〉 to end up at the output port 0: It can take the
lower path, through the phase shifter ϕ0, or the upper path, through the phase shifter
ϕ1. The lower path implies two consecutive transmissions at the beam-splitters and
the phase factor eiϕ0 , whereas the upper path implies two consecutive reflections and
the phase factor eiϕ1 . Once the photon ends in the output port 0 there is no way of
knowing which path was taken, so we add the amplitudes pertaining to each path.
The resulting amplitude is

U00 =
√
Teiϕ0

√
T + i

√
Reiϕ1i

√
R,

and the corresponding probability P00 = |U00|2 is

P00 =
∣∣∣√Teiϕ0

√
T + i

√
Reiϕ1i

√
R
∣∣∣2

=
∣∣Teiϕ0 −Reiϕ1

∣∣2
= T 2 +R2 − 2TR cos(ϕ1 − ϕ0).

The “classical” part of this expression, T 2 + R2, basically says that the photon
undergoes either two consecutive transmissions with probability T 2, or two consec-
utive reflections with probability R2. The probability of being transmitted through
any phase shifter is always 1, hence the phase shifters play no role in the classical
description of this process. But the classical description is not correct — it doesn’t
agree with physical experiments! — whence the interference term 2TR cos(ϕ1 − ϕ0)
in which the phase shifters play the essential role. Depending on the relative phase
ϕ = ϕ1 − ϕ0 the probability that the detector 0 “clicks” after having fired a photon
into input |0〉 can vary from (T −R)2 to 1.
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0 π 2π

(T −R)2

T 2 +R2

1

relative phase

P00

If we do not care about the experimental details, we can represent the action of
the Mach–Zehnder interferometer in terms of a diagram, as in Figure 3.6.

first beamsplitter phase second beamsplitter

|0⟩

|1⟩

|0⟩

|1⟩

eiφ0

eiφ1

i
√
R

i
√
R

i
√
R

i
√
R

√
T

√
T

√
T

√
T

Figure 3.6: The Mach–Zehnder interferometer represented as an abstract diagram.

Here we can follow, from left to right, the multiple different paths that a photon
can take in between specific input and output ports. The amplitude along any given
path is just the product of the amplitudes pertaining to the path segments (Rule 1,
Section 1.1), while the overall amplitude is the sum of the amplitudes for the many
different paths (Rule 2, Section 1.1). You can, for example, see that the probability
amplitude U10 is given by

U10 =
√
Teiϕ0i

√
R+ i

√
Reiϕ1

√
T

and the corresponding probability is

P10 =
∣∣∣√Teiϕ0i

√
R+ i

√
Reiϕ1

√
T
∣∣∣2

= 2RT + 2RT cos(ϕ1 − ϕ0).

Again, the first term is of “classical” origin and represents probabilities corresponding
to each path: one reflection followed by one transmission plus one transmission fol-
lowed by one reflection, that is, RT +TR = 2RT . The second term is the interference
term. Clearly, the photon entering port |0〉 will end up in one of the two detectors,
hence

P00 + P10 = R2 + 2RT + T 2 = (T +R)2 = 1.

The action of the interferometer is thus fully described by the four probability ampli- 0Any isolated quantum device can
fully be described by the matrix of
probability amplitudes Uij that in-
put j generates output i.

tudes Uij (i, j = 0, 1).
The most popular instance of a Mach–Zehnder interferometer involves only sym-

metric beam-splitters (i.e. R = T = 1
2 ) and is fully described by the matrix 0Really, when you write down the

matrices describing the action of
the symmetric beam-splitters and
the phase gates, and then multiply
them all together (which is an ex-
ercise worth doing!), you actually

obtain iei
ϕ0+ϕ1

2 U rather than U ,
but as we have already said, we
can ignore global phase factors.
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U =
[
− sinϕ/2 cosϕ/2
cosϕ/2 sinϕ/2

]
where ϕ = ϕ1 − ϕ0.

3.3 The Pauli matrices, algebraically

Matrices (of a fixed size, with entries in a fixed field) form a vector space: you
can add them, and you can multiply them by a scalar. One possible choice of a
basis in the vector space of (2 × 2) matrices (over any field) is the set of matrices
{M00,M01,M10,M11}, where the entries of Mij are all 0 except for the ij-th entry,
which is 1 (e.g. M01 = [ 0 1

0 0 ]). However, it turns out that there is a different ba-
sis which offers lots of insights into the structure of the general single-qubit unitary
transformations, namely {1, X, Y, Z}, i.e. the identity matrix and the three Pauli ma-
trices. We have already defined the Pauli operators (Section 2.7), but we recall their 0 In this chapter we are concerned

only with the single-qubit Pauli
operators. There are analogous
multi-qubit Pauli operators, but be
careful: these do not satisfy all
the same properties! For example,
anticommutativity (explained be-
low) is special to the single-qubit
case.

definition here.

Identity: 1 =
[
1 0
0 1

]
|0〉 7−→ |0〉
|1〉 7−→ |1〉

Bit-flip: X =
[
0 1
1 0

]
|0〉 7−→ |1〉
|1〉 7−→ |0〉

Bit-phase-flip: Y =
[
0 −i
i 0

]
|0〉 7−→ i|1〉
|1〉 7−→ −i|0〉

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

Recall that the Pauli operators (as well as the identity operator) are unitary and
Hermitian, square to the identity, and anticommute. 0Anticommutativity says that

XY + Y X = 0,
XZ + ZX = 0,
Y Z + ZY = 0.

The fact that {1, X, Y, Z} forms a basis for the space of (2×2) complex matrices is
equivalent to the statement that any (2×2) complex matrix A has a unique expansion
in the form

A =
[
a0 + az ax − iay

ax + iay a0 − az

]
= a01 + axσx + ayσy + azσz.

for some complex numbers a0, ax, ay, and az.
If we define vectors ~a = (ax, ay, az) and ~σ = (σx, σy, σz), then we can write the

above expansion very concisely:

A = a01 + ~a · ~σ.

The algebraic properties of the Pauli matrices can then be neatly compacted (see
Exercise 3.7.4) into a single expression:

The multiplication rule:

(~a · ~σ) (~b · ~σ) = (~a ·~b) 1 + i(~a×~b) · ~σ.

Recall that the trace of a square matrix A, denoted by trA, is defined to be the
sum of the elements on the main diagonal of A, and defines a linear mapping: for any
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3.4 Unitaries as rotations

scalars α and β,

tr(αA+ βB) = α trA+ β trB.

Moreover, the trace is invariant under cyclic permutations: e.g.

tr(ABC) = tr(BCA) = tr(CAB).

Note, however, that this does not imply that e.g. tr(ABC) = tr(ACB).
We can also define an inner product on the vector space of matrices: 0 The 1

2 coefficient in this defi-
nition is simply the normalisation
factor, which changes if we con-
sider multi-qubit Pauli operators.
It is not necessary, but simplifies
some calculations.

The Hilbert–Schmidt product of A and B is given by

(A|B) = 1
2

trA†B.

We will return to the algebraic structure of these Pauli matrices in Chapter 7,
before explaining how they turn out to be useful for things such as quantum error
correction.

3.4 Unitaries as rotations

Now we can finish off our previous discussion (Section 2.10) of the Bloch sphere: we
know how single-qubit state vectors correspond to points on the Bloch sphere, but
now we can study how (2× 2) unitary matrices correspond to rotations of this sphere.

Geometrically speaking, the group of (2× 2) unitaries U(2) is a three-dimensional
sphere S3 in R4. We often make the additional assumption that the determinant is
equal to +1, and can then express these matrices as

U = u01 + i(uxσx + uyσy + uzσz).

Such matrices form a very important subgroup of U(2), called the special (meaning
the determinant is equal to 1) unitary group, and denoted by SU(2).

In quantum theory, any two unitary matrices that differ by some global multiplica-
tive phase factor represent the same physical operation, so we are “allowed to” fix the
determinant to be +1, and thus restrict ourselves to considering matrices in SU(2).
This is a sensible approach, practised by many theoretical physicists, but again, for
some historical reasons, this convention is not usually followed in quantum informa-
tion science. For example, phase gates are usually written as

Pα =
[
1 0
0 eiα

]
rather than

Pα =
[
e−i α

2 0
0 e i α

2

]
Still, as we’ve already mentioned, sometimes the T gate

T =
[
1 0
0 eiπ/4

]
=
[
e−iπ/8 0

0 eiπ/8

]
is called the π/8 gate, because of its SU(2) form.

Here we’re going to work with SU(2), so that we can write any (2 × 2) unitary
(i.e. up to an overall phase factor) as

U = u01 + i(uxσx + uyσy + uzσz) = u01 + i~u · ~σ
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3.4 Unitaries as rotations

where u2
0 + |~u|2 = 1.

This last restriction on u0 and ~u allows us to parametrise u0 and ~u in terms of a
real unit vector ~n, parallel to ~u, and a real angle θ, in such a way that 0 As you can see, we often

make progress and gain insights
simply by choosing a convenient
parametrisation.

U = (cos θ)1 + (i sin θ)~n · ~σ.

An alternative way of writing this expression is

U = eiθ~n·~σ,

as follows from the power-series expansion of the exponential. Indeed, any unitary
matrix can always be written in the exponential form as

eiA = 1 + iA+ (iA)2

1 · 2
+ (iA)3

1 · 2 · 3
. . .

=
∞∑

n=0

(iA)n

n!

where A is an anti-Hermitian matrix. This is analogous to writing complex numbers
of unit modulus as eiα.

Now comes a remarkable connection between two-dimensional unitary matrices
and ordinary three-dimensional rotations:

The unitary U = eiθ~n·~σ represents a clockwise rotation through the angle 2θ
about the axis defined by ~n.

The fact that the angle is 2θ, not θ, comes from our choice of parametrisation;
the “better” convention is to parametrise so that U = ei −θ

2 ~n·~σ, and then the direction 0 It is a good exercise to show that
you can write any U in this way as
well.

follows from the right-hand rule, and the rotation corresponds to that in the Bloch
sphere.

For example,

eiθσx =
[

cos θ i sin θ
i sin θ cos θ

]
eiθσy =

[
cos θ sin θ
− sin θ cos θ

]
eiθσz =

[
eiθ 0
0 e−iθ

]
represent rotations by 2θ about the x-, y- and z-axis, respectively. In fact, these rota-
tions are so important that they get a name. 0 Be careful: the precise definition

can vary a lot between different
texts, with some including a factor
of 1/2, or even a negative sign.

Rotating a state about a Pauli axis (the x-, y-, or z-axes) is known as a Pauli
rotation. We can write these as

eiθσk = (cos θ)1 + (i sin θ)σk

for k ∈ x, y, z.
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3.4 Unitaries as rotations

n⃗

s⃗

Figure 3.7: The matrix eiθ~n·~σ rotates the vector ~s about ~n by angle 2θ, sending it to a
point on the blue circle, which is defined by being the unique circle whose centre is
passed through by ~n and containing ~s.

Now we can show that the Hadamard gate

H = 1√
2

[
1 1
1 −1

]
= 1√

2
(σx + σz)

= (−i)ei π
2

1√
2

(σx+σz)

represents (since we can ignore the global phase factor of −i) rotation about the
diagonal (x+ z)-axis by an angle of π.

In somewhat abstract terms, we make the connection between unitaries and ro-
tations by looking how the unitary group U(2) acts on the three-dimensional vector
space V of (2 × 2) Hermitian matrices with zero trace. All such matrices S ∈ V can
be written as S = ~s · ~σ for some real ~s, i.e. each matrix is represented by a Euclidean
vector ~s in R3.

Traceless matrices.

The vector space of traceless matrices (i.e. matrices S such that trS = 0)
might seem like an odd one, but it’s actually one of the fundamental examples
of a structure which is fundamental to modern mathematical physics, namely
that of a Lie algebra. These arise when studying Lie groups — which are a
combination of groups and manifolds, i.e. “a geometric space which has an
algebraic structure” — via the notion of a tangent space.

In particular, the space of (n × n) traceless skew-Hermitian (A† = −A)
matrices is the Lie algebra known as su(2), which is the Lie algebra of SU(2),
since the latter is indeed a Lie group.

You might be wondering why we have suddenly switched to
skew-Hermitian instead of Hermitian, but this is really just a
mathematician/physicist convention: you can go from one to the other
by simply multiplying by i. For example, mathematicians would usually
prefer to work with iσx, iσy, and iσz instead of the Pauli matrices σx, σy, and
σz themselves; the former are skew-Hermitian, the latter are Hermitian.

Now, U ∈ U(2) acts on the space V by S 7→ S′ = USU†, i.e.

~s · ~σ 7−→ ~s′ · ~σ = U(~s · ~σ)U† (‡)

This gives a linear map R3 → R3, and is thus given by some (3×3) real-valued matrix:

RU : R3 → R3.
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3.4 Unitaries as rotations

Next, note that this map is an isometry (a distance preserving operation), since it 0 We will talk more about isome-
tries in Section 9.3.preserves the scalar product in the Euclidean space: for any two vectors ~s and ~t,

~s′ · ~t′ = 1
2

tr[S′T ′]

= 1
2

tr[(USU†)(UTU†)]

= 1
2

tr[ST ]

= ~s · ~t

(where S = ~s · ~σ and T = ~t · ~σ) using the cyclic property of the trace. This means
that the matrix RU is orthogonal: orthogonal transformations preserve the length of
vectors as well as the angles between them.

Furthermore, we can show that detRU = 1. But the only isometries in three 0 Some mathematicians might say
that detRU = 1 because “any ma-
trix in U(2) can be smoothly con-
nected to the identity”.

dimensional Euclidean space (which are described by orthogonal matrices with de-
terminant 1) are rotations.

Thus, in the mathematical lingo, we have established a group homomorphism 0 Recall that a homomorphism
is a structure-preserving map be-
tween two algebraic structures of
the same type; in our case, two
groups. An isomorphism between
algebraic structures of the same
type is a homomorphism that has
an inverse homomorphism.

U(2) −→ SO(3)
U 7−→ RU

where SO(3) stands for the special orthogonal group in three dimensions — the
group of all rotations about the origin of three-dimensional Euclidean space R3 under
the operation of composition, which can be represented by the group of (3 × 3) or-
thogonal (and thus real) matrices. It follows from Equation (‡) that unitary matrices
differing only by a global multiplicative phase factor (e.g. U and eiϕU) represent the
same rotation.

Versors.

This mathematical argument is secretly using the language of unit
quaternions, also known as versors, since these provide a very convenient
way of describing spatial rotation, and are often used in e.g. 3D computer
graphics software.

Physicists, however, usually prefer a more direct demonstration of this rotation
interpretation, which might go roughly as follows. Consider the map ~s 7→ ~s′ induced
by U = eiα~n·~σ. For small values of α, we can write

~s′ · ~σ = U(~s · ~σ)U†

=
(

1 + iα(~n · ~σ) + . . .
)

(~s · ~σ)
(

1− iα(~n · ~σ) + . . .
)
.

To the first order in α, this gives

~s′ · ~σ =
(
~s+ 2α(~n× ~s)

)
· ~σ

that is,

~s′ = ~s+ 2α(~n× ~s)

which we recognise as a good old textbook formula for an infinitesimal clockwise
rotation of ~s about the axis ~n through the angle 2α.
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3.5 Universality, again

Although this may all seem tediously abstract, it is surprisingly useful. Take another
look at the single-qubit interference circuit

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

and the corresponding sequence of unitary operations

H
(
e−i ϕ

2 Z
)
H = e−i ϕ

2 X

=
[

cosϕ/2 −i sinϕ/2
−i sinϕ/2 cosϕ/2

]

The single-qubit interference circuit has a simple geometrical meaning: it
shows how a rotation about the z-axis, induced by the phase gate Pϕ, is
turned, by the two Hadamard gates, into a rotation about the x-axis.

Now, take a look at this circuit:

α φ β
H H

What does it represent? The central part is a rotation by ϕ about the x-axis,
sandwiched between two rotations about the z-axis. Recall our previous discussion
(Section 2.12) about a universal set of gates: any rotation in the Euclidean space can
be performed as a sequence of three rotations: one about z-axis, one about x-axis,
and one more about the z-axis. In this context, this implies that any unitary U , up to
a global phase factor, can be written as

U(α, β, ϕ) = e−i β
2 Ze−i ϕ

2 Xe−i α
2 Z

=

[
e−i( α+β

2 ) cos ϕ
2 iei( α−β

2 ) sin ϕ
2

ie−i( α−β
2 ) sin ϕ

2 ei( α+β
2 ) cos ϕ

2

]
.

That is, once you are given a pair of Hadamard gates and an infinite supply of
phase gates (so that you can choose the three phases you need) you can construct an
arbitrary unitary operation on a single qubit.

It is important to note that the two axes in question, z and x, do not have any spe-
cial status, geometrically speaking — if we have rotations about any two orthogonal 0 In fact, even this orthogonality

condition isn’t necessary! See Fig-
ure 3.8

axes then we can create any one-qubit unitary that we want.
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3.6 Some quantum dynamics

Figure 3.8: If we can move along the two families of circles, then from any point
on the sphere we can reach any other point. The two axes do not even have to be
orthogonal: any two different (i.e. non-collinear) axes will do! Can you see why?

Now consider the following circuit:

A Z A† B Z B†

where both A and B are unitary operations. We claim that any unitary U can be
represented in this form, for some A and B.

Again, we can prove this geometrically. The circuit represents two rotations by
180◦ about the two axes obtained by rotating the z-axis via unitaries A and B, respec-
tively. Any rotation in the three-dimensional space is the composition of two rotations
by 180◦, as shown in Figure 3.9. The resulting axis of rotation is perpendicular to the
two axes about which rotations by 180◦ are performed, and the angle of the composed
rotation is twice the angle between the two axes.

x

z

yα

α/2

Figure 3.9: Rotating by α around the z-axis is the same as the composition of two
rotations by 180◦ around axes which both lie in the xy-plane, with angle α/2 between
them.

3.6 Some quantum dynamics

We will finish this chapter with a short aside on some more fundamental quantum
theory. Although this isn’t our main focus — we will happily black box away this
stuff, happy in the knowledge that some scientists in a lab somewhere have already
packaged everything up into nice quantum logic gates that we can use — it is a nice
opportunity to talk about other aspects of the subject that might be of interest.

The time evolution of a quantum state is a unitary process which is generated by
a Hermitian operator called the Hamiltonian, which we denote by Ĥ. The Hamil-
tonian contains a complete specification of all interactions within the system under
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consideration — in general, it may change over time. In an isolated system, the state
vector |ψ(t)〉 changes smoothly in time according to the Schrödinger equation:

d
dt
|ψ(t)〉 = − i

ℏ
Ĥ|ψ(t)〉.

In the same way that Newton’s second law describes certain future behaviour of a
classical system given some initial knowledge, Schrödinger’s equation describes the
future behaviour of a quantum system given some initial knowledge.

Lagrangian and Hamiltonian mechanics.

The first approach towards classical mechanics that you might meet is the
Newtonian framework, where we talk about the equations that are satisfied
by forces. It is Newton’s second law that we usually apply the most in order to
describe the behaviour of classical systems, and it is usually stated as F = ma,
where m is mass and a is acceleration. But really the notion of “force” is
not a fundamental one — a slightly more instructive way of writing Newton’s
second law for a system whose mass can change over time is as F = dp

dt , where
p = mv is (linear) momentum: the product of mass (a scalar) with velocity
(a vector).

Instead of talking about forces within a system, we can instead describe
things entirely in terms of either position and velocity (where the latter is just
the time derivative of the former) — using coordinates (q, q̇), where q (con-
fusingly) stands for “position”, and we write q̇ to mean d

dt q — or position and
momentum — using coordinates (q,p), where (again, confusingly) p stands
for momentum (maybe it’s like “pneumatic”, and we should call it “pmomen-
tum”).

If we take either of these two approaches, then we have a suitable replace-
ment for Newton’s second law:

1. The first approach results in Lagrangian mechanics, where we have
some function L(t,q(t), q̇(t)) called the Lagrangian, and study the
Euler–Lagrange equations

d
dt

(
∂L
∂q̇

)
= ∂L
∂q

which is a second-order differential equation.
2. The second approach results in [Hamiltonian mechanics], where we

have some function H(t,p(t),q(t)) called the Hamiltonian, and study
the Hamilton equations

dq
dt

= ∂H
∂p

dp
dt

= ∂H
∂q

which is a pair of first-order differential equations.

These two important functions, the Lagrangian and the Hamiltonian, are
given by the total energies of the system: the former is the difference of the
kinetic and potential energies; the latter is the sum of the kinetic and potential
energies.

There are many situations where one framework is more useful than the
other, but in quantum physics we normally find the Hamiltonian approach
more easier than the Lagrangian, since momentum is a conserved quantity,
whereas velocity is not. In fact, the Hamiltonian approach is hidden all over

76

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion%23Second
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation


3.6 Some quantum dynamics

the place: the position and momentum operators in quantum physics are truly
fundamental, and will show up again when we talk about uncertainty prin-
ciples in Section 4.6.

Here ℏ is a very (very) small number known as the Planck constant. Physicists
often pick a unit system such that ℏ is equal to 1, to make calculations simpler. But in
SI units, 2πℏ is exactly equal to 6.62607015× 10−34 joules per hertz. 0 The kilogram is now defined in

SI in terms of the Planck constant,
the speed of light, and the atomic
transition frequency of of caesium-
133.

As a historical note, Planck’s constant ℏ has its roots right in the very birth of
quantum physics, since it shows up in the equation for the energy of a photon. More
generally, in 1923 de Broglie postulated that the ratio between the momentum and
quantum wavelength of any particle would be 2πℏ. Even before this, it turned up in
1905 when Einstein stated his support for Planck’s idea that light is not just a wave,
but simultaneously consists of tiny packets of energy, called quanta (whence the name
quantum physics!), which we now call photons. We will see the Planck constant turn 0 The whole history of quantum

physics, arguably starting with the
black-body problem, accounting
for the Rayleigh–Jeans law, and
leading on to the discovery of the
photoelectric effect, is a wonderful
story, but one that we do not have
the space to tell here.

up again when we talk about uncertainty principles in Section 4.6.
Back to quantum dynamics. For time-independent Hamiltonians Ĥ(t) = Ĥ, the

formal solution of the Schrödinger equation is given by

|ψ(t)〉 = e− i
ℏ Ĥt|ψ(0)〉.

Note that the function |ψ(t)〉 thus obtained is separable: it is written as a product
of two functions e− i

ℏ Ĥt · |ψ(0)〉, where the first is purely time dependent, and the
second has no time dependence. In fact, the time-dependent part is exactly the phase
factor U(t) = e− i

ℏ Ĥt, and we know that this does not affect the resulting probabil-
ities: ||ψ(t)〉|2 = |U(t)|2||ψ(0)〉|2 = ||ψ(0)〉|2. This means that ||ψ(t)〉|2 is constant
throughout time — we call such a state stationary, or refer to it as a standing wave.

Quantum confinement.

We will not delve into a proper study of the Schrödinger equation — this is
the subject of entire books already, and deserves a lengthy treatment — but it
is nice to mention at least one worked example (although we will skip almost
all of the details!), since its applications are commonplace in day-to-day life.

In the time-independent case, the Schrödinger equation can simply be writ-
ten as Ĥ|ψ〉 = E|ψ〉, where E is the total energy of the system. When written
like this, we can sneak a glimpse at what the Hamiltonian is really all about: it
is some operator whose eigenstates are solutions of the Schrödinger equation,
and whose eigenvalues are the corresponding energy levels.

One particularly instructive situation to consider is that of a particle in a
box: we have some 1-dimensional region of space in which a particle is free
to move around, but outside of this finite segment there is infinite potential
energy, restricting the particle from moving beyond this region. It turns out
that, in this case, the Hamiltonian is given by

Ĥ = − ℏ2

2m
d2

dx2

and the general solution to the resulting Schrödinger equation can be shown
to be

ψ(x) = C sin(kx) +D cos(kx)

where k = nπ/L for some positive integer n, and where L is the length of
the potential-free region. This implies (after some algebra) that the energy
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3.6 Some quantum dynamics

E = En of the solution with k = nπ/L is equal to

En = (2πnℏ)
8mL2 .

What is utterly unique and important to quantum physics is not really this
specific fraction, but the fact that the possible energy levels of the system are
purely discrete — energy cannot be any real value, as is the case in the classical
world, but it can only take values within some discrete set {E1, E2, . . .}.

But what are the applications of this particle in a box? Well, this phenom-
ena of a system having a discrete energy spectrum when restrained to small
enough spaces is known as quantum confinement, and quantum well lasers
are laser diodes which have a small enough active region for this confinement
to occur. Such lasers are arguably the most important component of fiber optic
communications, which form the underlying foundations of the internet itself.

Before moving on to understand the relevance of this to what we have already
been discussing, let us take a moment to see why we might have expected to stumble
across such a solution as e− i

ℏ Ĥt (or, from the opposite point of view, how we could
derive the Schrödinger equation). We start with state vectors, which we want to
evolve according to transition operators — we have already justified why we should
think about representing these transitions by matrices (namely because matrices sim-
ply package up all the multiplication and addition in the “right” way). But now we
want these evolutions to be continuous, whatever that might formally mean.

For a start, this means that we want not only to be able to multiply the matri-
ces that represent these transitions, but also to do the inverse: take any transition
and “chop it up” into smaller time chunks, viewing any evolution T as a sequence
TnTn−1 . . . T1 of evolutions Ti that take place on a shorter time scale. Directly then,
we want to be able to consider roots (square roots, cube roots, and so on) of our
matrices, which means that they must at the very least have complex entries.

But let us try to take this continuity requirement a bit more seriously: say that any
transition T is parametrised by a real parameter t, which we will think of as “time”.
It makes sense to ask for T (t + t′) = T (t)T (t′) for any t, t′ ∈ R, and to say that “at
time 0, things are exactly how we found them”, i.e. T (0) = 1. But we know how to
solve for such requirements: take T (t) = exp(tX), where X is an arbitrary complex
matrix! This also solves the problem of wanting to take roots, since T (t) 1

n = T (t/n),
and T (t)−1 = T (−t).

Next, as we’ve already mentioned, complex matrices have a polar form — analo-
gous to how any z ∈ C can be written as z = reiϕ, we can write any complex matrix
Z as Z = RU , where R is positive semi-definite and U is unitary. In this decomposi-
tion, just as for the polar decomposition z = reiϕ, the R corresponds to “stretching”
and the U corresponds to “rotation”. But we don’t want to have to worry about con-
vergence issues, and the idea of “exponential stretching” sounds like it might give us
some problems, so let us just consider Z = RU with R = 1, i.e. just unitary matrices.
And if we want T (t) to be unitary, then it suffices to take X to be anti-Hermitian.

In summary, from just asking for our evolutions to be continuous and not have
any convergence issues, we end up with the conclusion that we are interested in
evolutions described by exponentials of anti-Hermitian matrices, i.e. U(t) = exp(itX)
for some Hermitian matrix X.
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3.7 Remarks and exercises

Stone’s theorem.

This correspondence between so-called one-parameter unitary groups
— families (Ut)t∈R of unitary operators (satisfying some analytic prop-
erty) — and Hermitian operators, given by Ut = eitA, is known as
Stone’s theorem (on one-parameter unitary groups).

For example, if we consider the translation operators Tt, which are de-
fined by Tt(ψ)(x) = ψ(x + t), then we have the corresponding Hermitian op-
erator −i d

dx , which is known (for good reason) as the momentum operator.
In fancy words, this says that 1-dimensional motion is infinitesimally generated
by momentum.

Now, to relate this to the earlier parts of this chapter, we note that the Hamiltonian
of a qubit can always be written in the form H = E01 + ω(~n · ~σ), hence

U(t) = e−iωt~n·~σ

= (cosωt)1− (i sinωt)~n · ~σ

which is a rotation with angular frequency ω about the axis defined by the unit vector
~n.

The 4π world of qubits.

This section is not yet finished.

3.7 Remarks and exercises

3.7.1 Quantum bomb tester

You have been drafted by the government to help in the demining effort in a former
war-zone. In particular, retreating forces have left very sensitive bombs in some of 0 This is a slightly modified ver-

sion of a bomb-testing problem
described by Avshalom Elitzur
and Lev Vaidman in Quantum-
mechanical interaction-free mea-
surement, Found. Phys. 47
(1993), pp. 987–997.

the sealed rooms. The bombs are configured such that if even one photon of light
is absorbed by the fuse (i.e. if someone looks into the room), the bomb will go off.
Each room has an input and output port which can be hooked up to external devices.
An empty room will let light go from the input to the output ports unaffected, whilst
a room with a bomb will explode if light is shone into the input port and the bomb
absorbs even just one photon — see Figure 3.10.

empty room
bomb

Figure 3.10: Left: the passage of a photon through an empty room. Right: the passage
of a photon through a room containing a bomb.

Your task is to find a way of determining whether a room has a bomb in it without
blowing it up, so that specialised (limited and expensive) equipment can be devoted
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3.7 Remarks and exercises

to defusing that particular room. You would like to know whether a particular room
has a bomb in it with as much certainty as possible.

1. To start with, consider the setup in Figure 3.11, where the input and output
ports are hooked up in the lower arm of a Mach–Zehnder interferometer.

a. Assume an empty room. Send a photon to input port |0〉. Which detector,
at the output port, will register the photon?

b. Now assume that the room does contain a bomb. Again, send a photon
to input port |0〉. Which detector will register the photon and with which
probability?

c. Design a scheme that allows you — at least some of the time — to decide
whether a room has a bomb in it without blowing it up. If you iterate
the procedure, what is its overall success rate for the detection of a bomb
without blowing it up?

2

1

|0⟩

|1⟩

room

Figure 3.11: The Mach–Zehnder interferometer hooked up to the bomb-testing room.

2. Assume that the two beam splitters in the interferometer are different. Say the
first beam-splitter reflects incoming light with probability R and transmits with
probability T = 1 − R, but the second one transmits with probability R and
reflects with probability T (that is, the two beam-splitters are asymmetric, but
“inverse” to one another). Would the new setup improve the overall success rate
of the detection of a bomb without blowing it up?

3. There exists a scheme, involving many beam-splitters and something called the
quantum Zeno effect, such that the success rate for detecting a bomb without
blowing it up approaches 100%. Try to work it out, or find a solution on the
internet. 0 You can play around with this

setup on the Quantum Flytrap
Virtual Lab.

3.7.2 Orthonormal Pauli basis

Show that {1, σx, σy, σz} is an orthonormal basis of the space of complex (2 × 2)
matrices with respect to the Hilbert-Schmidt product.

3.7.3 Pauli matrix expansion coefficients

Recall that any (2× 2) complex matrix A has a unique expansion in the form

A =
[
a0 + az ax − iay

ax + iay a0 − az

]
= a01 + axσx + ayσy + azσz

= a01 + ~a · ~σ.

(?)
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3.7 Remarks and exercises

for some complex numbers a0, ax, ay, and az.

1. Show that the coefficients ak (for k = x, y, z) are given by the inner product
ak = (σk|A) = 1

2 trσkA.

In these notes, we usually deal with matrices that are Hermitian (A = A†) or
unitary (AA† = 1). It is easy to see that, if A is Hermitian, then a0 and the three
components of ~a are all real. The (2× 2) unitaries are usually parametrised as

U = eiϕ
(
u01 + i(uxσx + uyσy + uzσz)

)
where eiϕ is an overall multiplicative phase factor, with ϕ real, and u0 and the three
components ux, uy, uz are all real numbers.

2. Show that the unitarity condition implies that

u2
0 + u2

x + u2
y + u2

z = 1

and show, using this parametrisation, that the determinant of U is ei2ϕ.

3.7.4 Linear algebra of the Pauli vector

In what follows, we use the notation from our algebraic treatment of Pauli operators
in Section 3.3, where we defined the Pauli vector ~σ.

1. Show that 1
2 tr(~a · ~σ)(~b · ~σ) = ~a ·~b. 0 Hint: you may find Exercise

2.14.9 helpful.
2. Show that any ~n · ~σ has eigenvalues ±|~n|.

3. Show that, if ~n · ~m = 0, then the operators ~n · ~σ and ~m · ~σ anticommute.

3.7.5 Matrix Euler formula

1. Show that, if A2 = 1, then we can manipulate the power series expansion of eiA

into a simple expression: for any real α,

eiαA = (cosα)1 + (i sinα)A.

2. Show that any (2 × 2) unitary matrix U can be written, up to an overall multi-
plicative phase factor, as 0 Hint: the argument here is the

same as the argument that eiθ =
cos θ + i sin θ.U = eiθ~n·~σ = (cos θ)1 + (i sin θ)~n · ~σ.

3.7.6 Special orthogonal matrix calculations

1. Show that trσxσyσz = 2i.

2. Let U be a unitary matrix, and write ~ex, ~ey, and ~ez to mean the unit vectors
along the x-, y-, and z-axis, respectively. We define new unit vectors ~fx, ~fy, and
~fz by applying U to our existing unit vectors. Then

U(~ek · σk)U† = UσkU
† = ~fk · ~σ.

We already know that, in Euclidean space, this transformation is described by a
(3× 3) orthogonal matrix RU . How are the three vectors ~fx, ~fy, and ~fz related
to the entries in matrix RU ?
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3.7 Remarks and exercises

3. Show that

trσxσyσz = tr(~fx · ~σ)(~fy · ~σ)(~fz · ~σ)
= 2idetRU

(which implies that detRU = 1).

4. Use the orthonormality of the Pauli basis along with Equation (‡) to show that
the elements of the matrix R = RU can be expressed in terms of those of the
matrix U , in the form

Rij = 1
2

tr
(
σiUσjU

†) .
Here, i and j take values in {1, 2, 3}, and σ1 ≡ σx, σ2 ≡ σy, σ3 ≡ σz.

3.7.7 Phase as rotation

1. Show that the phase gate 0 Hint: it might be helpful to start
with the SU(2) version of the phase
gate:

Pϕ = e−iϕ
2 σz

=
[
e−iϕ

2 0
0 ei

ϕ
2

]
which gives

RPϕ =

[
cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

]

Pϕ =
[
1 0
0 eiϕ

]
represents an anticlockwise rotation about the z-axis through the angle ϕ.

3.7.8 Calculating a Pauli rotation

1. Express the Pauli rotation eiσyπ/3 as a matrix.
2. Give a decomposition of this rotation in the form

0Hint: recall Section 3.5.RZ(α)HRZ(β)HRZ(γ)

where RZ(θ) denotes a Pauli σz-rotation by angle θ.

3.7.9 Geometry of the Hadamard

1. Express the Hadamard gate H in terms of ~n · ~σ, and show that

HZH = X

HXH = Z

HYH = −Y.

2. Show that the Hadamard gate H turns rotations about the x-axis into rotations
about the z-axis, and vice versa. That is,

H
(
e−i ϕ

2 Z
)
H = e−i ϕ

2 X

H
(
e−i ϕ

2 X
)
H = e−i ϕ

2 Z .

3.7.10 Swiss Granite Fountain

In the Singapore Botanic Gardens, there is a sculpture by Ueli Fausch called “Swiss
Granite Fountain”. It is a spherical granite ball which measures 80cm in diameter and
weighs 700kg, and is kept afloat by strong water pressure directed through a basal
block. It is easy to set the ball in motion, and it keeps rotating in whatever way you
start for a long time. Suppose you are given access to this ball only near the top, so
that you can push it to make it rotate around any horizontal axis, but you don’t have
enough of a grip to make it turn around the vertical axis. Can you make it rotate
around the vertical axis anyway?
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3.7.11 Dynamics in a magnetic field

A qubit initially in state |0〉 is placed in a uniform magnetic field. The interaction
between the field and the qubit is described by the Hamiltonian

H = ω

[
0 −i
i 0

]
where ω is proportional to the strength of the field. What is the state of the qubit after 0In Earth’s magnetic field, which is

about 0.5 gauss, the value of ω is
of the order of 106 cycles per sec-
ond.

time t = π/4ω?
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4 Measurements

About the Hilbert-space formalism of quantum theory, and the role
of measurements in quantum information theory, as well as intro-
ducing the quantum dramas of Alice and Bob.

Eventually we have to talk about quantum measurements, since, at some point,
someone has to look at a measuring device and register the outcome of whatever
quantum circuits we’ve been designing. It turns out that this is a bit more tricky than
one might think. Quantum measurement is not a passive acquisition of information:
if you measure, you disturb. Even though it is a physical process, like any other
quantum evolution, it is traditionally described by a different set of mathematical
tools.

4.1 Hilbert spaces, briefly

A formal mathematical setting for a quantum system is that of a Hilbert space H,
which is (for us) just a vector space along with an inner product. 0 As mentioned in Section 0.3, we

only work with finite dimensional
vector spaces, and it is a very con-
venient fact that any finite dimen-
sional inner product space is auto-
matically a Hilbert space.

Given a Hilbert space corresponding to our system, the result of any preparation
of the system is then represented by some unit vector |ψ〉 ∈ H, and any test is rep-
resented by some other unit vector |e〉 ∈ H. The inner product of these two vectors,
〈e|ψ〉, gives the probability amplitude that an object prepared in state |ψ〉 will pass a
test for being in state |e〉. As always, probabilities are obtained by squaring absolute
values of probability amplitudes:

|〈e|ψ〉|2 = 〈ψ|e〉〈e|ψ〉.

After the test, in which the object was found to be in state |e〉, say, the object forgets
about its previous state |ψ〉 and is, indeed, actually now in state |e〉. That is, if we
immediately measure the object again, we will find it to still be in state |e〉 with
probability 1. This is the mysterious quantum collapse, which we will further discuss
later on.

A more complete test involves multiple states ek that form an orthonormal basis
{|e1〉, . . . , |en〉}. These states are perfectly distinguishable from each other: the con-
dition 〈ek|el〉 = δkl implies that a quantum system prepared in state |el〉 will never be
found in state |ek〉 (unless k = l). The probability amplitude that the system in state
|ψ〉 will be found in state |ek〉 is 〈ek|ψ〉 and, given that the vectors |ek〉 span the whole
vector space, the system will be always found in one of the basis states, whence∑

k

|〈ek|ψ〉|2 = 1.

As a result:

A complete measurement in quantum theory is determined by the choice of an
orthonormal basis {|ei〉} in H, and every such basis (in principle) represents a
possible complete measurement.

4.2 Complete measurements

A projector is any Hermitian (P = P †) operator which is idempotent (P 2 =
P ). The rank of P is given by tr(P ). In the Dirac notation, if |e〉 is a unit
vector, then |e〉〈e| is a rank-one projector on the subspace spanned by |e〉, and
it acts on any vector |v〉 via (|e〉〈e|)|v〉 = |e〉〈e|v〉.
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4.2 Complete measurements

The most common measurement in quantum information science is the standard
measurement on a qubit, also referred to as the measurement in the standard (or
computational) basis: {|0〉, |1〉}. When we draw circuit diagrams it is tacitly assumed
that such a measurement is performed on each qubit at the end of quantum evolution.

|0⟩

|1⟩

|ψ⟩

α0

α1

Figure 4.1: The standard/computational basis defines the so-called standard mea-
surements.

However, if we want to emphasise the role of the measurement, then we can
include it explicitly in the diagram as a special quantum gate, e.g. as

|ψ⟩ = α0 |0⟩+ α1 |1⟩

{
|0⟩ with probability |α0|2

|1⟩ with probability |α1|2

or, in an alternative notation, as

k|ψ⟩ = α0 |0⟩+ α1 |1⟩ |k⟩ with probability |αk|2 (k = 0, 1).

As we can see, if the qubit is prepared in state |ψ〉 = α0|0〉+α1|1〉 and subsequently
measured in the standard basis, then the outcome is |k〉 (for k = 0, 1) with probability 0This slick argument is a good ex-

ample of how nice the bra-ket no-
tation can be when we leverage
the ambiguity of an expression like
〈a||b〉|b〉〈a|, which we can read as
the scalar product of two scalars
or as a projector sandwiched be-
tween a bra and a ket.

|αk|2 = |〈k|ψ〉|2

= 〈ψ|k〉︸ ︷︷ ︸
α?

k

〈k|ψ〉︸ ︷︷ ︸
αk

= 〈ψ| |k〉〈k|︸ ︷︷ ︸
projector

|ψ〉

= 〈ψ|Pk|ψ〉

where Pk = |k〉〈k| is the projector on |k〉. If the outcome of the measurement is
|k〉, then the output state of the measurement gate is |k〉. The original state |ψ〉 is
irretrievably lost. This sudden change of the state, from the pre-measurement state
|ψ〉 to the post-measurement state, either |0〉 or |1〉, is often called a collapse or a
reduction of the state.

So it looks like there are two distinct ways for a quantum state to change: on
the one hand we have unitary evolutions, and on the other hand we have an abrupt
change during the measurement process. Surely, the measurement process is not
governed by any different laws of physics?

No, it is not!
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4.3 The projection rule, and incomplete measurements

Quantum collapse.

The subtleties (both mathematical and philosophical) of quantum collapse are
still very much active topics of research, and we could spend an entire book
discussing them. There are a lot of other sources where you can read about
such things — here is a very short list to start:

• T. Norson, Foundations of Quantum Mechanics: An Exploration of the
Physical Meaning of Quantum Theory. Springer, 2017. ISBN: 978-3-319-
65867-4. DOI: 10.1007/978-3-319-65867-4.

• M. Schlosshauer, “Decoherence, the measurement problem, and inter-
pretations of quantum mechanics”. Rev. Mod. Phys. 76 (2004),
pp. 1267–1305. arXiv:quant-ph/0312059.

• F. Giacosa, “On unitary evolution and collapse in Quantum Mechanics”.
Quanta 3 (2014), pp. 156–170. arXiv:1406.2344.

A measurement is a physical process and can be explained without any “collapse”,
but it is usually a complicated process in which one complex system (a measuring
apparatus or an observer) interacts and gets correlated with a physical system being
measured. We will discuss this more later on, but for now let us accept a “collapse” as
a convenient mathematical shortcut, and describe it in terms of projectors rather than
unitary operators.

For our purposes, the idea of “quantum collapse” is simply a way of black box-
ing the irreversible interaction between a quantum system and its surrounding
classical environment.

On a practical level, it means that we describe measurement and observa-
tion with projectors instead of unitary operators.

4.3 The projection rule, and incomplete measurements

So far we have identified measurements with orthonormal bases, or, if you wish, with
a set of orthonormal projectors on the basis vectors.

An orthonormal basis satisfies two conditions:
• Orthonormality: 〈ek|el〉 = δkl

• Completeness:
∑

k |ek〉〈ek| = 1

Given a quantum system in state |ψ〉 such that |ψ〉 =
∑

k αk|ek〉, we can write

|ψ〉 = 1|ψ〉

=
∑

k

(|ek〉〈ek|)|ψ〉

=
∑

k

|ek〉〈ek|ψ〉

=
∑

k

|ek〉αk

=
∑

k

αk|ek〉

which tells us that any vector inH can be expressed as the sum of the orthogonal pro-
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4.4 Example of an incomplete measurement

jections on the |ek〉, whence the name of the “completeness” condition. This says that
the measurement in the basis {|ei〉} gives the outcome labelled by ek with probability

|〈ek|ψ〉|2 = 〈ψ|ek〉〈ek|ψ〉

and leaves the system in state |ek〉. This is a complete measurement, which represents
the best we can do in terms of resolving state vectors in the basis states. But sometimes
we do not want our measurement to distinguish all the elements of an orthonormal
basis.

For example, a complete measurement in a four-dimensional Hilbert space will
have four distinct outcomes: |e1〉, |e2〉, |e3〉, and |e4〉, but we may want to lump
together some of the outcomes and distinguish, say, only between {|e1〉, |e2〉}, and
{|e3〉, |e4〉}. In other words, we might be trying to distinguish one subspace from
another, without separating vectors that lie in the same subspace. Such measurements
(said to be incomplete) are indeed possible, and they can be less disruptive than the
complete measurements.

Intuitively, an incomplete measurement has fewer outcomes and is hence less
informative, but the state after such a measurement is usually less disturbed.

In general, instead of projecting on one dimensional subspaces spanned by vec-
tors from an orthonormal basis, we can decompose our Hilbert space into mutually
orthogonal subspaces of various dimensions and project onto them.

A full system of projectors satisfies two conditions: Conditions on projectors:
• Orthogonality: PkPl = Pkδkl

• Completeness:
∑

k Pk = 1

For any decomposition of the identity into orthogonal projectors Pk (using the
completeness condition), there exists a measurement that takes a quantum system in
state |ψ〉, gives the output labelled k with probability 〈ψ|Pk|ψ〉, and leaves the system
in the state Pk|ψ〉 (multiplied by the normalisation factor, i.e. divided by the length of
Pk|ψ〉):

|ψ〉 7→ Pk|ψ〉√
〈ψ|Pk|ψ〉

.

4.4 Example of an incomplete measurement

Take a three-dimensional Hilbert spaceH with basis {|e1〉, |e2〉, |e3〉}, and consider the
two orthogonal projectors

P = |e1〉〈e1|+ |e2〉〈e2|
Q = |e3〉〈e3|

These form the decomposition of the identity: P + Q = 1. Now suppose that a
physical system is prepared in state |ψ〉 = α1|e1〉+ α2|e2〉+ α3|e3〉. Ideally, we would
like to perform a complete measurement that would resolve the state |ψ〉 into the
three basis states, but suppose our experimental apparatus is not good enough, and
lumps together |e1〉 and |e2〉. In other words, it can only differentiate between the
two subspaces associated with projectors P and Q.
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The apparatus, in this incomplete measurement, may find the system in the sub-
space associated with P . This happens with probability

〈ψ|P |ψ〉 = 〈ψ|e1〉〈e1|ψ〉+ 〈ψ|e2〉〈e2|ψ〉
= |α1|2 + |α2|2,

and the state right after the measurement is the normalised vector P |ψ〉, i.e.

α1|e1〉+ α2|e2〉√
|α1|2 + |α2|2

.

The measurement may also find the system in the subspace associated with Q with
the probability 〈ψ|Q|ψ〉 = |α3|2, resulting in the post-measurement state |e3〉.

|e1⟩
|e2⟩

|e3⟩

|ψ⟩

P |ψ⟩

Q |ψ⟩

4.5 Observables

An observable A is a measurable physical property which has a numerical value, for
example, spin, position, momentum, or energy. The term “observable” also extends
to any basic measurement in which each outcome has an associated numerical value.
If λk is the numerical value associated to the outcome |ek〉, then the observable A is
represented by the operator

A =
∑

k

λk|ek〉〈ek|

=
∑

k

λkPk,

where λk is now the eigenvalue corresponding to the eigenvector |ek〉, or to the pro-
jector Pk.

We have already seen the following types of operators:

normal AA† = A†A
unitary A† = A−1

Hermitian (or self-adjoint) A† = A
positive semi-definite 〈v|A|v〉 ⩾ 0 for all |v〉

The spectral theorem says that an operator A is normal if and only if it is
unitarily diagonalisable: there exists some unitary U and some diagonal D
such that A = U†DU .

Note that unitary, Hermitian, and positive semi-definite operators are all,
in particular, normal.
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4.6 Compatible observables and the uncertainty relation

Since (|a〉〈b|)† = |b〉〈a|, the projectors Pk = |ek〉〈ek| are Hermitian, and thus nor-
mal, which means that A itself is a normal operator.

Conversely, given any normal operator A, we can associate a measurement de-
fined by the eigenvectors of A, which form an orthonormal basis, and use the eigen-
values of A to label the outcomes of this measurement. If we choose the eigenval-
ues to be real numbers then A becomes a Hermitian operator. For example, the
standard measurement on a single qubit is often called the Z-measurement, be-
cause the Pauli Z operator can be diagonalised in the standard basis and written
as Z = (+1)|0〉〈0| + (−1)|1〉〈1|. The two outcomes, |0〉 and |1〉, are now labelled as
+1 and −1, respectively. Using the same association we also have the X- and the
Y -measurements, defined by the Pauli X and Y operators, respectively.

The outcomes can be labelled by any symbols of your choice — it is the decom-
position of the Hilbert space into mutually orthogonal subspaces that defines a
measurement, not the labels.

This said, labelling outcomes with real numbers is very useful. Some textbooks
describe observables in terms of Hermitian operators, claiming that the corresponding
operators have to be Hermitian “because the outcomes are real numbers”. This is
actually a bit backwards. As we say above, the labels can be arbitrary, but, since real
number labels are often useful (as we’re about to justify), we tend to only work with
Hermitian operators.

For example, the expected value 〈A〉 (also known as the mean), which is the
average of the numerical values λk weighted by their probabilities, is a very useful
quantity and can be easily expressed in terms of the operator A and the state of the
system |ψ〉 as follows: 0 It is important to note here

that the notation 〈A〉 is slightly
misleading, as it omits the de-
pendence on the initial state |ψ〉.
Some authors thus write 〈A〉|ψ〉
instead, but many opt (as we do)
for the more succinct notation.

〈A〉 =
∑

k

λk Pr(k)

=
∑

k

λk|〈ek|ψ〉|2

=
∑

k

λk〈ψ|ek〉〈ek|ψ〉

= 〈ψ|
(∑

k

λk|ek〉〈ek|

)
|ψ〉

= 〈ψ|A|ψ〉.

To be clear, this is not a value we expect to see in one particular run of the exper-
iment, but instead a statistical average. Imagine a huge number of quantum objects,
all prepared in the state |ψ〉 and think about the observable A being measured on
each of the objects. Statistically, we expect the average of our measurement results to
be roughly 〈A〉. Note that when A is, in particular, a single projector A = λk|ek〉〈ek|
then 〈ψ|A|ψ〉 is the probability of the outcome associated with A.

4.6 Compatible observables and the uncertainty relation

Now that we have explained how observables correspond to normal operators, we can
try to understand what implications follow from the fact that matrix multiplication
does not generally commute: AB 6= BA. We can start by trying to figure out when
exactly two given operators A and B will or will not commute, ideally in terms of
eigenvectors (since this will let us talk about outcomes and their numerical values,
using the language we have just built up). An important definition is the following: if
a basis {|e1〉, . . . , |en〉} is such that each |ek〉 is an eigenvector of an operator A, then
we call it an eigenbasis of A.
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4.6 Compatible observables and the uncertainty relation

First of all, assume that A and B do commute, so that AB = BA, and let |e〉 be
some eigenvector of A with eigenvalue λ. Then

AB|e〉 = BA|e〉
= Bλ|e〉
= λ(B|e〉)

which says that B|e〉 is also an eigenvector of A, with eigenvalue λ. If λ 6= 0, then
this says that B|e〉 is proportional to |e〉, which is simply saying that |e〉 is also an 0 To make this argument fully for-

mal, and to deal with the case
where λ is degenerate, isn’t too
hard, but we don’t want to get too
involved with the necessary linear
algebra here.

eigenvector of B. This means that any eigenbasis of A is also an eigenbasis of B.
Another way of saying this is that A and B are simultaneously diagonalisable: there
exists a basis in which both A and B are diagonal, namely any common eigenbasis of
the two.

Conversely, say that A and B have some common eigenbasis {|e1〉, . . . , |en〉}, with
A|ek〉 = αk|ek〉 and B|ek〉 = βk|ek〉. To show that AB = BA, it suffices to show
that (AB)|ψ〉 = (BA)|ψ〉 for any state |ψ〉. But we can write any |ψ〉 in the common
eigenbasis as |ψ〉 =

∑
k λk|ek〉 for some λk, and then

(AB)|ψ〉 = AB
∑

k

λk|ek〉

=
∑

k

λkAB|ek〉

=
∑

k

λkAβk|ek〉

=
∑

k

λkβkA|ek〉

=
∑

k

λkβkαk|ek〉

and αk and βk commute, since they are just complex numbers. This means that
running the same calculation for (BA)|ψ〉 would give exactly the same result, and so
AB = BA.

Two operators A and B commute if and only if there exists some common
eigenbasis. In this case, we say that A and B are compatible; if A and B do
not commute then we say that they are incompatible.

We have said that eigenvectors |ek〉 of an operatorA correspond to outcomes of the
observable, where the eigenvalue λk is the associated numerical value. So if we have
two compatible operators A and B, then we have a complete system of measurements
for both observables at once, given by their common eigenbasis, say {|e1〉, . . . , |ek〉}.
What does this mean in terms of measurements? Well, if we measure A on some
system initially in state |ψ〉, then we know that the system will collapse into one of
the states |ek〉. But this is also an eigenvector for B, so measuring B won’t affect the
state at all, and similarly for a subsequent measurement of A.

If, however, A and B are incompatible operators, then things are very different. If
we measure A, then B, and then A again, there is absolutely no guarantee that the
two measurements of A will be the same. In other words, measuring B somehow
makes the system “forget” the result of the first measurement of A. We see this in
the lab if we measure position and momentum of a particle: taking the momentum
measurement “spreads out” the position of the particle throughout space, meaning
that a position measurement taken immediately prior will have no reason to be the
same as a position measurement taken immediately afterwards.

Incompatible operators turn up all over the place, and actually turn out to be very
interesting — sometimes it’s good when things don’t work too simply! One particularly
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4.6 Compatible observables and the uncertainty relation

interesting question we can ask is the following: can we quantify how far away from
being compatible two incompatible operators are? We can make this question more
mathematically concrete by rephrasing it slightly, asking if we can find at least some
states that are close to being common eigenstates.

Imagine preparing a huge number of systems into the same initial state |ψ〉, and
then measuring A on half of them and B on the other half. Doing so we can obtain the
expected values 〈A〉 and 〈B〉, and we can calculate (using classical statistics) the stan-
dard deviation of these variables, σA and σB , respectively. The standard deviation of
a random variable is basically a measurement of “how close to the expected value are
all the resulting values”. The smaller the standard deviation, the more “well defined” 0 For example, if the random vari-

able is normally distributed, then
around 68% of the results will
lie within one standard deviation
from the expected value.

the measurement is. In particular, given any single operator A, we can always make
the standard deviation exactly 0, by just preparing our system in an eigenstate of A.
If A and B are compatible, then we can simultaneously make σA and σB exactly 0 as
well, since we know that A and B have a common eigenbasis.

The really interesting, purely quantum, phenomena, however, comes when A and
B are incompatible: we can prove that the standard deviations cannot both be made
simultaneously arbitrarily small.

The uncertainty principle for operators A and B says that

σAσB ⩾
∣∣∣∣ 1
2i
〈[A,B]〉

∣∣∣∣
where [A,B] = AB −BA is the commutator.

This says that there does not exist any state for which σAσB is less than some
specific value, which is determined entirely by the operators A and B. Of course, if
A and B are compatible, then [A,B] = 0, and so the uncertainty principle doesn’t tell
us anything at all — it simply says that the product of two non-negative numbers is
greater than or equal to 0, which is always the case!

You have maybe heard elsewhere of Heisenberg’s uncertainty principle, which
is indeed a special case of this: one can show that the commutator of the (one-
dimensional) position and momentum operators is exactly iℏ (where ℏ is again the
very small number known as the Planck constant), whence σxσp ⩾ ℏ

2 .

Quantization.

We said that ℏ is very small, and this is fundamental to the relationship be-
tween quantum and classic physics. Most of the things that we deal with in
day-to-day life are on the macroscopic level, and are many, many orders of
magnitude larger than the Planck constant. Indeed, if we wave our hands
quite a lot, then we can say that “we see quantum effects only when deal-
ing with things on the same order of magnitude as the Planck constant”. For
example, a single photon of green light (roughly midway through the visible
spectrum) has energy ≈ 3.5 × 10−19 joules, whereas a mole of such photons
(which is a “reasonable” number to encounter when talking about things that
actually look green in day-to-day life) has energy ≈ 200 × 103 joules, so we
would expect a single photon to exhibit quantum behaviour much more mea-
surably than, for example, the light emitted from a green light bulb.

In a way which we shall not make precise, the fact that ℏ is strictly
greater than zero (albeit very small) is what makes quantum physics inher-
ently discrete, in contrast to classical physics which treats things like en-
ergy continuously. Quite wondrously, it is very often the case that taking a
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4.7 Quantum communication

limit ℏ → 0 in some formula in quantum physics recovers the correspond-
ing formula in classical physics — this is known as the classical limit or
correspondence principle. This isn’t unique to quantum physics: special
relativity reduces to classical mechanics if we take all velocities to be much
smaller than the speed of light; general relativity reduces to the classical the-
ory of gravity if we take all gravitational fields to be weak enough; statistical
mechanics reduces to thermodynamics when we take the number of particles
to be large enough; and so on.

This idea, that classical systems can be recovered from quantum ones
by taking ℏ → 0, poses a question: can we go in the other direction?
That is, given some classical theory that we know agrees with physical ex-
periments, can we formulate some corresponding quantum version which
we might hope to be correct on much smaller scales? Trying to answer
this question has led to some incredibly deep (and very technical) math-
ematics known as quantization theory, with geometric quantization and
deformation quantization being two key areas.

Before moving on, let us consider one more quantum phenomena that arises when
we look at incompatible operators. Suppose that we have three operators, say A, B,
and C, and we wish to let these act on our quantum system sequentially, but throwing
away any results which are not a given outcome. That is, if we start (for simplicity)
with some eigenstate |a〉 of A, then we want to know the probability of measuring
some specific output |c〉. But we know how to calculate this!

First of all, we know the probability of measuring outcome |c〉 given that |a〉 first
evolves into the intermediate state |bk〉: this is the probability of |a〉 evolving under B
into |bk〉 multiplied by the probability of |bk〉 evolving under C into |c〉, i.e.

Pr(c|bk) = |〈c|bk〉|2|〈bk|a〉|2.

Then to obtain the probability of measuring outcome |c〉 we can just sum over all
possible intermediate states:

Pr(c) =
∑

k

|〈c|bk〉|2|〈bk|a〉|2.

But now, if we forget entirely about B then we could calculate Pr(c) in a different
way: it is simply given by

Pr(c) = |〈c|a〉|2.

Using the fact that
∑

k |bk〉〈bk| = 1, we can rewrite this as

Pr(c) =

∣∣∣∣∣∑
k

〈c|bk〉〈bk|a〉

∣∣∣∣∣
2

and this is not generally equal to the previous expression for Pr(c). In fact, you can
show that these two expressions agree if and only if [A,B] = 0 or [B,C] = 0, i.e. if
and only if either A and B or B and C are compatible.

We briefly discuss an explicit scenario of where three evolutions behave in such a
paradoxical way later on in Chapter 6, when we introduce Bell’s theorem, in what is
sometimes known as the quantum Venn diagram paradox.

4.7 Quantum communication

Now is a good moment to introduce Alice and Bob (not their real names): our two
protagonists who always need to communicate with each other, in scenarios of vary-
ing complexity and danger. These two play the major role in many communication
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4.8 Basic quantum coding and decoding

dramas, though they remain rather lacking in character development. In this episode
of their story, Alice is sending quantum states, called carriers, to Bob, and Bob is
trying his best to correctly identify them by choosing appropriate measurements.

Let us start with a simple observation: if the carriers are described by state vectors
in a 2n-dimensional Hilbert space, then they can encode at most n bits of information. 0 This is just like the classical sce-

nario: the space of binary strings
of length n (which encode exactly
n bits of information, by defini-
tion) is of dimension 2n, since we
describe any such string by pick-
ing between 0 and 1 for each digit,
and we have n-many digits.

For example, Alice can choose one of the 2n states from a pre-agreed orthonormal
basis {|ek〉}k=1,...,2n , and Bob will be able to distinguish them reliably by choosing the
same basis for his measurement.

But can Alice and Bob do better than that? Can Alice send more than n bits of
information per carrier by encoding them in states |s1〉, . . . , |sN 〉 where N ⩾ 2n? Can
Bob choose a clever measurement and reliably distinguish between all such states?

The answer is no.

4.8 Basic quantum coding and decoding

Suppose Alice uniformly at random chooses one of the pre-agreed N signal states
|s1〉, . . . |sN 〉 and sends it to Bob, who tries to identify the signal states by performing
a measurement defined by the projectors P1, . . . , PN . Let P be a projector on the sub-
space spanned by the signal states |s1〉, . . . |sN 〉, i.e. P |sk〉 = |sk〉 for all k = 1, . . . , N .
The dimension d of this subspace is given by d = trP . We shall assume, without
any loss of generality, that Bob designed his measurement in such a way that, when-
ever he gets outcome Pk, he concludes that Alice sent state |sk〉. His probability of
successfully identifying which state Alice sent to him is given by

Pr(success) = 1
N

∑
k

〈sk|Pk|sk〉

which is the probability that signal state |sk〉 is selected (here equal to 1/N , since
Alice chose between all N signal states with equal probability) times the probability
that the selected signal state is correctly identified by Bob (which is 〈sk|Pk|sk〉), and
we sum over all possible signal states.

Let us use this as a chance to practice some of the trace identities. In particular, it
is often convenient to write expressions such as 〈ψ|A|ψ〉 in terms of the trace: for any
vector |ψ〉 and operator A we have

〈ψ|A|ψ〉 = tr(A|ψ〉〈ψ|)
= tr(|ψ〉〈ψ|A).

In our case,

Pr(success) = 1
N

∑
k

〈sk|Pk|sk〉

= 1
N

∑
k

〈sk|PPkP |sk〉

= 1
N

∑
k

tr(PPkP |sk〉〈sk|)

where we have also used that P |sk〉 = |sk〉.
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If B is a positive semi-definite operator, and P is a projector, then

trBP ⩽ trB.

To prove this, consider the projector Q = 1− P , and note that

trB = trB(P +Q)
= trBP + trBQ

and that trBQ is non-negative.

We can use this inequality to bound the expression above:∑
k

1
N
〈sk|Pk|sk〉 = 1

N

∑
k

tr(PPkP |sk〉〈sk|)

⩽ 1
N

∑
k

tr(PPkP )

= 1
N

tr

(
P

(∑
k

Pk

)
P

)

= 1
N

tr(P 3)

= 1
N

tr(P )

= d

N
.

So if Alice encodes N equally likely messages as states in a quantum system that,
mathematically speaking, lives in the Hilbert space of dimension d, and if Bob decodes
by performing a measurement and inferring the message from the result, then Bob’s
probability of success is bounded above by d

N . If the number N of possible signals
exceeds the dimension d, then Bob will not be able to reliably distinguish between the
signals by any measurement. In particular: 0There is something called super-

dense coding, where one qubit
can actually store two classical
bits, but this relies on Alice and
Bob both having access to a shared
entangled state right from the very
start of the experiment. We shall
eventually study this in Exercise
5.14.9.

With this setup, one qubit can store at most one bit of information that can
reliably be read by a measurement.

4.9 Distinguishing non-orthogonal states

We have already mentioned (Section 4.3) that non-orthogonal states cannot be re-
liably distinguished, and now we can make this statement more precise. Suppose
Alice sends Bob a message by choosing one of the two non-orthogonal states |s1〉 and
|s2〉, where both are equally likely to be chosen. What is the probability that Bob will
decode the message correctly, and what is the best (i.e. the one that maximises this
probability) choice of measurement? 0 As a general rule, before you

embark on any calculations, check
for symmetries, special cases, and
anything that may help you to vi-
sualise the problem and make in-
telligent guesses about the solu-
tion. One of the most power-
ful research tools is a good guess!
In fact, this is what real research
is about: educated guesses that
guide your calculations. In this
particular case you can use sym-
metry arguments to guess the op-
timal measurement — see Figure
4.2. Once you have guessed the
answer, you might as well do the
calculations.
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|s2⟩

|s1⟩

|d2⟩

|d1⟩

Figure 4.2: The optimal measurement to distinguish between the two equally likely
non-orthogonal signal states |s1〉 and |s2〉 is described by the two orthogonal vectors
|d1〉 and |d2〉 placed symmetrically around the signal states.

Thinking about what we have already seen, we should expect that how well we can
correctly distinguish between |s1〉 and |s2〉 is directly proportional to “how close” they
are to being orthogonal — if they are orthogonal, then we can distinguish perfectly;
if they are identical (i.e. collinear), then we cannot distinguish between them at all.
Hopefully, then, our final answer will depend on the angle between |s1〉 and |s2〉.

So suppose Bob’s measurement is described by projectors P1 and P2, chosen such
that “P1 implies |s1〉, and P2 implies |s2〉”. Then

Pr(success) = 1
2

(〈s1|P1|s1〉+ 〈s2|P2|s2〉)

= 1
2

(trP1|s1〉〈s1|+ trP2|s2〉〈s2|)

= 1
2

(trP1|s1〉〈s1|+ tr(1− P1)|s2〉〈s2|)

= 1
2

(1 + trP1 (|s1〉〈s1| − |s2〉〈s2|)) .

Let us look at the operator D = |s1〉〈s1| − |s2〉〈s2| that appears in the last expression.
This operator acts on the subspace spanned by |s1〉 and |s2〉; it is Hermitian; the sum
of its two (real) eigenvalues is zero (whence trD = 〈s1|s1〉 − 〈s2|s2〉 = 0). Let us
write D as λ(|d+〉〈d+| − |d−〉〈d−|), where |d±〉 are the two orthonormal eigenstates
of D, and ±λ are the corresponding eigenvalues.

Now we write

Pr(success) = 1
2

(1 + λ trP1 (|d+〉〈d+| − |d−〉〈d−|))

⩽ 1
2

(1 + λ〈d+|P1|d+〉)

where we have dropped the non-negative term trP1|d−〉〈d−|. In fact, it is easy to
see that we will maximise the expression above by choosing P1 = |d+〉〈d+| and P2 =
|d−〉〈d−|. The probability of success is then bounded by 1

2 (1 + λ). All we have to do
now is to find the positive eigenvalue λ for the operator D.

We can do this, of course, by solving the characteristic equation for a matrix rep-
resentation of D, but, since we are practising using the trace identities, we can also
notice that trD2 = 2λ2, and then evaluate the trace of D2. We use the trace identities
and obtain

trD2 = tr (|s1〉〈s1| − |s2〉〈s2|) (|s1〉〈s1| − |s2〉〈s2|)
= 2− 2|〈s1|s2〉|2

which gives λ =
√

1− |〈s1|s2〉|2. Bringing it all together we have the final expression:

Pr(success) ⩽ 1
2

(
1 +

√
1− |〈s1|s2〉|2

)
.

We can parametrise |〈s1|s2〉| = cosα, where α is then the angle between |s1〉 and
|s2〉.

95



4.10 Wiesner’s quantum money

|s2⟩

|s1⟩α

This allows us to express our findings in a clearer way: given two equally likely
states, |s1〉 and |s2〉, such that |〈s1|s2〉| = cosα, the probability of correctly identifying
the state by a projective measurement is bounded by 0 Here we use that cos2 α +

sin2 α = 1 for any α.

Pr(success) ⩽ 1
2

(1 + sinα),

and the optimal measurement that achieves this bound is determined by the eigen-
vectors of D = |s1〉〈s1| − |s2〉〈s2| (try to visualise these eigenvectors).

It makes sense, right? If we try just guessing the state, without any measurement,
then we expect Pr(success) = 1

2 . This is our lower bound, and in any attempt to
distinguish the two states we should do better than that. If the two signal states
are very close to each other, then sinα is small and we are slightly better off than
guessing. As we increase α, the two states become more distinguishable, and, as we
can see from the formula, when the two states become orthogonal they also become
completely distinguishable.

We will return to this same problem later on, in Section 12.8, where we will use
a different, less ad-hoc, approach, working in the more general setting of so-called
density operators.

4.10 Wiesner’s quantum money

This section is not yet finished.

4.11 Quantum theory, formally

Even though multiplying and adding probability amplitudes is essentially all there
is to quantum theory, we hardly ever multiply and add amplitudes in a pedestrian
way. Instead, as we have seen, we neatly tabulate the amplitudes into vectors and
matrices and let the matrix multiplication take care of multiplication and addition of
amplitudes corresponding to different alternatives. Thus vectors and matrices appear
naturally as our bookkeeping tools: we use vectors to describe quantum states, and
matrices (operators) to describe quantum evolutions and measurements. This leads to
a convenient mathematical setting for quantum theory: a complex vector space with
an inner product (which is exactly a Hilbert space, since we only work in finite di-
mension). It turns out, somewhat miraculously, that this pure mathematical construct
is exactly what we need to formalise quantum theory. It gives us a precise language
which is appropriate for making empirically testable predictions. At a very instru-
mental level, quantum theory is a set of rules designed to answer questions such as
“given a specific preparation and a subsequent evolution, how can we compute prob-
abilities for the outcomes of such-and-such measurement”. Here is how we represent
preparations, evolutions and measurements in mathematical terms, and how we get
probabilities.

Note that we have already said much of the below, but we are summarising it
again now in a more precise way, formally defining the mathematical framework of
quantum theory that we use.

We also need to point out that a vital part of the formalism of quantum theory is
missing from the following description, namely the idea of tensor products. To talk
about this, we need to introduce the notion of entanglement, and this will be the
subject of the next chapter.
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Axiomatic quantum theory.

It is a very reasonable question to ask why this formalism (Hilbert spaces,
unitary operators, the Born rule) is “the good one”. One answer is that “it just
works” — the calculations that we do in this framework give us answers which
are in agreement with the results of physical experiments — but this can be
rather unsatisfying as an answer.

Quite beautifully, it turns out that if we start from just five axioms, then
we can prove that our choice of formalism is actually the only one that makes
sense. This is the result of L. Hardy’s “Quantum Theory From Five Reasonable
Axioms”, arXiv:quant-ph/0101012. We start by saying that a quantum system
should be characterised by two integers: the number of degrees of freedom K,
and the dimension N . The former is (roughly) the minimum number of real
numbers needed to specify any state; the latter is the maximum number of
states that can be distinguished from one another in one single measurement.
The five axioms are then as follows.

1. Probabilities. Relative frequencies of observed outcomes from measur-
ing an ensemble of n systems tend to a well defined value, called the
probability, when n tends to infinity.

2. Simplicity. The integer K is a function of N , and takes the minimum
possible value consistent with these axioms for each N .

3. Subspaces. If a system is such that its states all lie within an M -
dimensional subspace (for some M < N), then it behaves exactly like a
system of dimension M .

4. Composite systems. Composite systems behave multiplicatively, i.e. if a
system is a composite of two subsystems A and B, then N = NANB and
K = KAKB .

5. Continuity. Given any two pure states (all of the states that we have
been discussing so far are pure states, but we define what this means in
Section 8.1.) of a system, there exists a continuous reversible transfor-
mation of the system that sends one to the other.

What is particularly nice, as a bonus result, is that if we make one tiny
change to these axioms — just dropping the word “continuous” from the fifth
axiom — then the result is exactly classical probability theory.

Quantum states

With any isolated quantum system which can be prepared in n perfectly distinguish-
able states, we can associate a Hilbert space H of dimension n such that each vector
|v〉 ∈ H of unit length (〈v|v〉 = 1) represents a quantum state of the system. The
overall phase of the vector has no physical significance: |v〉 and eiϕ|v〉, for any real ϕ,
describe the same state. The inner product 〈u|v〉 is the probability amplitude that a
quantum system prepared in state |v〉 will be found in state |u〉. States corresponding
to orthogonal vectors, 〈u|v〉 = 0, are perfectly distinguishable, since the system pre-
pared in state |v〉 will never be found in state |u〉, and vice versa. In particular, states
forming orthonormal bases are always perfectly distinguishable from each other.

Quantum evolutions

Any physically admissible evolution of an isolated quantum system is repre-
sented by a unitary operator.
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4.11 Quantum theory, formally

Unitary operators describing evolutions of quantum systems are usually derived
from the Schrödinger equation 0 We briefly discussed this equa-

tion in Section 3.6.
d
dt
|ψ(t)〉 = − i

ℏ
Ĥ|ψ(t)〉

where Ĥ is a Hermitian operator called the Hamiltonian.
This equation contains a complete specification of all interactions both within the

system and between the system and the external potentials. For time-independent
Hamiltonians, the formal solution of the Schrödinger equation reads

|ψ(t)〉 = U(t)|ψ(0)〉

where U(t) = e− i
ℏ Ĥt.

Any unitary matrix can be represented as the exponential of some Hermitian matrix
Ĥ and some real coefficient t:

e−itĤ = 1− itĤ + (−it)2

2
Ĥ2 + (−it)3

2 · 3
Ĥ3 + . . .

=
∞∑

n=0

(−it)n

n!
Ĥn.

The state vector changes smoothly: for t = 0 the time evolution operator is merely the
unit operator 1, and when t is very small U(t) ≈ 1− itĤ is close to the unit operator,
differing from it by something of order t.

Quantum circuits

In this course we will hardly refer to the Schrödinger equation. Instead we will assume
that our clever colleagues — experimental physicists — are able to implement certain
unitary operations, and we will use these unitaries, like lego blocks, to construct other,
more complex, unitaries. We refer to pre-selected elementary quantum operations
as quantum logic gates and we often draw diagrams, called quantum circuits, to
illustrate how they act on qubits. For example, two unitaries, U followed by V , acting
on a single qubit are represented as

U V

This diagram should be read from left to right, and the horizontal line represents
a qubit that is inertly carried from one quantum operation to another (maybe through
space, down a physical wire, but maybe through some other physical implementation
— we don’t particularly mind!)

Measurements

A complete measurement in quantum theory is determined by the choice of an or-
thonormal basis {|e1〉, . . . , |en〉} in H, and every such basis (in principle) represents a
possible measurement. Given a quantum system in state |ψ〉 such that

|ψ〉 =
∑

i

|ei〉〈ei|ψ〉,

the measurement in the basis {|e1〉, . . . , |en〉} gives the outcome labelled by ek with
probability |〈ek|ψ〉|2, and leaves the system in state |ek〉 after measurement. This
is consistent with our interpretation of the inner product 〈ek|ψ〉 as the probability
amplitude that a quantum system prepared in state |ψ〉 will be found in state |ek〉.
State vectors forming orthonormal bases are perfectly distinguishable from each other
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4.12 Remarks and exercises

(〈ei|ej〉 = δij), so there is no ambiguity about the outcome. A complete measurement
is the best we can do in terms of resolving state vectors in the basis states.

In general, for any decomposition of the identity
∑

k Pk = 1 into orthogonal pro-
jectors Pk (i.e. PkPl = Pkδkl), there exists a measurement that takes a quantum
system in state |ψ〉, outputs label k with probability 〈ψ|Pk|ψ〉, and leaves the system
in the state Pk|ψ〉 (multiplied by the normalisation factor i.e. divided by the length of
Pk|ψ〉):

|ψ〉 7→ Pk|ψ〉√
〈ψ|Pk|ψ〉

.

The projector formalism covers both complete and incomplete measurements. The
complete measurements are exactly those defined by rank-one projectors Pk = |ek〉〈ek|,
projecting on vectors from some orthonormal basis {|ek〉}.

4.12 Remarks and exercises

4.12.1 Projector?

Consider two unit vectors |a〉 and |b〉. Is the operator |a〉〈a|+ |b〉〈b| a projector?

4.12.2 Knowing the unknown

Suppose you are given a single qubit in some entirely unknown quantum state |ψ〉 =
α|0〉+ β|1〉.

1. Can you determine |ψ〉, using as many measurements as you want?

2. Say you measure the qubit in the standard basis, and register outcome |0〉. What
does this tell you about the pre-measurement state |ψ〉?

3. How many real parameters do you need to determine |ψ〉? Would you be able
to reconstruct |ψ〉 from 〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, and 〈ψ|Z|ψ〉? 0 Hint: it may help you to visualise

|ψ〉 as a Bloch vector.
4. You are given zillions of qubits, all prepared in the same quantum state |ψ〉.

How would you determine |ψ〉?

4.12.3 Measurement and idempotents

The Z measurement is defined by the projectors

P0 = 1
2

(1 + Z),

P1 = 1
2

(1− Z).

Let’s generalise this.
Consider the measurement associated to any Hermitian operator S that satisfies

S2 = 1. Show that the two outcomes ±1 correspond to the projectors 1
2 (1± S).

4.12.4 Unitary transformations of measurements

In our quantum circuits, unless specified otherwise, all measurements are assumed to
be performed in the standard basis. This is because any measurement can be reduced
to the standard measurement by performing some prior unitary transformation.

1. Show that any two orthonormal bases {|e1〉, . . . , |en〉} and {|d1〉, . . . , |dn〉} are 0 Hint: it suffices to show that∑
k

|dk〉〈ek| is unitary — why?always related by some unitary U .
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4.12 Remarks and exercises

2. Suppose that the projectors Pk define the standard measurement. Show that,
for any unitary U , the projectors UPkU

† also define a measurement.

UPkU
†

|ψ⟩ ≡
Pk

|ψ⟩ U

4.12.5 Optimal measurement

The optimal measurement to distinguish between the two equally likely non-orthogonal
signal states, |s1〉 and |s2〉, is described by the two orthogonal vectors |d1〉 and |d2〉,
placed symmetrically around the signal states, as we saw in Section 4.9. But suppose
the states are not equally likely: say |s1〉 is chosen with probability p1 and |s2〉 with
probability p2. How would you modify the measurement to maximise the probability
of success in this case?

|s2⟩ with prob. p2

|s1⟩ with prob. p1

|d2⟩

|d1⟩

4.12.6 Alice knows what Bob did

Alice prepares a qubit in any state of her choosing and gives it to Bob, who secretly
measures either σx or σy. The outcome of the measurement is seen only by Bob. Alice
has no clue which measurement was chosen by Bob, but right after his measurement
she gets her qubit back and she can measure it as well. Some time later, Bob tells
Alice which of the two measurements was chosen, i.e. whether he measured σx or σy.
Alice then tells him the outcome he obtained in his measurement. Bob is surprised,
since the two measurements have mutually unbiased bases, and yet Alice always gets
it right, no matter how many times they repeat the experiment. How does she do it?

This is a simplified version of a beautiful quantum puzzle proposed in 1987 by Lev
Vaidman, Yakir Aharonov, and David Z. Albert in a paper with the somewhat provocative
title “How to ascertain the values of σx, σy, and σz of a spin- 1

2 particle”. For the original,
see Phys. Rev. Lett. 58 (1987), p. 1385.

4.12.7 The Zeno effect

This section is not yet finished.
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5 Entanglement

About the fundamental tool of quantum computing: entanglement,
via the formalism of tensor products, which was the missing ingredi-
ent from our previous formalism of quantum theory. Also about vari-
ous controlled gates, including the always useful controlled-NOT.

We now know everything we need to know about a single qubit and its quan- 0 For our purposes! Of course,
there is a lot that we could still
ask, but we leave these questions
to quantum physicists, or scientists
working in a lab.

tum behaviour. But if we want to understand quantum computation — a complicated
quantum interference of many interacting qubits — then we will need few more math-
ematical tools. Stepping up from one qubit to two or more is a bigger leap than you
might expect. Already, with just two qubits, we will encounter the remarkable phe-
nomenon of quantum entanglement and have a chance to discuss some of the most
puzzling features of quantum theory that took people decades to understand.

5.1 A very brief history

The notion of quantum entanglement was the subject of many early debates that
focused on the meaning of quantum theory. Back in the 1930s, Albert Einstein, Niels
Bohr, Werner Heisenberg, and Erwin Schrödinger (to mention just the usual suspects)
were trying hard to understand its conceptual consequences. Einstein, the most scep- 0 E. Schrödinger, “Discussion

of probability relations between
separated system”. Mathemati-
cal Proceedings of the Cambridge
Philosophical Society 31 (1935),
pp. 555–563.

tical of them all, claimed that it was pointing toward the fatal flaw in quantum theory,
and referred to it as “spooky action at a distance” (“spukhafte Fernwirkung”). In con-
trast, Schrödinger was much more prepared to accept quantum theory exactly as it
was formulated, along with all its predictions, no matter how weird they might be. In
his 1935 paper, which introduced quantum entanglement, he wrote “I would not call
it one but rather the characteristic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought”.

Today we still talk a lot about quantum entanglement, but more often it is viewed
as a physical resource which enables us to communicate with perfect security, build
very precise atomic clocks, and even teleport small quantum objects! But what exactly
is quantum entanglement?

5.2 From one qubit to two

In classical physics, the transition from a single object to a composite system of many
objects is trivial: in order to describe the state of, say, 42 objects at any given moment
of time, it is sufficient to describe the state of each of the objects separately. Indeed,
the classical state of 42 point-like particles is described by specifying the position and
the momentum of each particle.

In the classical world, “the whole is exactly the sum of its parts”; in the quan-
tum world, Aristotle had it right when he said “the whole is greater than the
sum of its parts”.

Consider, for example, a pair of qubits. Suppose that each one is described by a
state vector: the first one by |a〉, and the second one by |b〉. One might therefore think
that the most general state of the two qubits should be represented by a pair of state
vectors, |a〉|b〉, with one for each qubit. Indeed, such a state is certainly possible, but
there are other states that cannot be expressed in this form. In order to write down
the most general state of two qubits we first focus on the basis states.

For a single qubit we have been using the standard basis {|0〉, |1〉}. For two qubits
we may choose the following as our standard basis states: 0 It looks like we are defining

some sort of “multiplication rule”
for kets here, saying that |a〉|b〉 :=
|ab〉. This is indeed the case, but to
talk about this properly we need to
introduce the idea of tensor prod-
ucts (which we do very soon, in
Section 5.3).
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5.3 Quantum theory, formally (continued)

|00〉 ≡ |0〉|0〉 |01〉 ≡ |0〉|1〉
|10〉 ≡ |1〉|0〉 |11〉 ≡ |1〉|1〉.

Within each ket, the first symbol refers to the first qubit, and the second to the second,
and we have tacitly assumed that we can distinguish the two qubits by their location,
or some other means.

Now, the most general state of the two qubits (a bipartite state) is a normalised
linear combination of these four basis states, i.e. a vector of the form

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉.

Physical interpretation aside, let us count how many real parameters are needed to
specify this state. Six, right? We have four complex numbers (the cij), which gives
eight real parameters; we then restrict by the normalisation condition, along with the
fact that states differing only by a global phase factor are equivalent, which leaves us
with six real parameters. Now, by the same line of argument, we need only two real
parameters to specify the state of a single qubit, and hence need four real parameters
to specify any state of two qubits of the form |a〉|b〉.

But four is less than six! So it cannot be the case that every state of two qubits can
be expressed as a pair of states |a〉|b〉, simply for “dimension reasons”.

For example, compare the two states of two qubits,

1√
2
|00〉+ 1√

2
|01〉 and

1√
2
|00〉+ 1√

2
|11〉.

The first one is separable, i.e. we can view it as a pair of state vectors where each one
pertains to one of the two qubits:

1√
2
|00〉+ 1√

2
|01〉 = 1√

2
|0〉︸︷︷︸

qubit 1

(|0〉+ |1〉)︸ ︷︷ ︸
qubit 2

,

The second state, however, does not admit such a decomposition: there do not exist
any ψ1, ψ2 such that

1√
2
|00〉+ 1√

2
|11〉 = |ψ1〉|ψ2〉

and so we say that it is an entangled state.
Any bipartite state that cannot be viewed as a pair of two states pertaining to the

constituent subsystems is said to be entangled.
We’ll give another, equivalent but more mathematical (and notational), definition

of entanglement once we understand how tensor products work.

5.3 Quantum theory, formally (continued)

In Section 4.11, we said that we were missing a key part in our formalism of quantum
theory — now we can finally fill in this hole. Our mathematical formalism of choice
behind the quantum theory of composite systems is based on the tensor product of
Hilbert spaces.

Tensor products

Let the states of some system A be described by vectors in an n-dimensional Hilbert
space HA, and the states of some system B by vectors in an m-dimensional Hilbert
space HB. The combined system of A and B is then described by vectors in the nm-
dimensional tensor product space HA⊗HB. Given bases {|a1〉, . . . , |an〉} of HA and
{|b1〉, . . . , |bm〉} of HB, we form a basis of the tensor product by taking the ordered
pairs |ai〉 ⊗ |bj〉, for i = 1, . . . , n and j = 1, . . . ,m. For brevity, we sometimes write
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5.3 Quantum theory, formally (continued)

|ai〉⊗|bj〉 as |ai〉|bj〉, or simply |aibj〉. The tensor product spaceHA⊗HB then consists
of all linear combination of such tensor product basis vectors: 0If the bases {|ai〉} and {|bj〉} are

orthonormal then so too is the ten-
sor product basis {|ai〉 ⊗ |bj〉}.|ψ〉 =

∑
i,j

cij |ai〉 ⊗ |bj〉. (‡)

The tensor product operation ⊗ is distributive:

|a〉 ⊗ (β1|b1〉+ β2|b2〉) = β1|a〉 ⊗ |b1〉+ β2|a〉 ⊗ |b2〉
(α1|a1〉+ α2|a2〉)⊗ |b〉 = α1|a1〉 ⊗ |b〉+ α2|a2〉 ⊗ |b〉.

The tensor product of Hilbert spaces is again a Hilbert space: the inner products
onHA andHB give a natural inner product onHA⊗HB, defined for any two product
vectors by

(〈a′| ⊗ 〈b′|) (|a〉 ⊗ |b〉) = 〈a′|a〉〈b′|b〉

and extended by linearity to sums of tensor products of vectors, and, by associativity, 0 Associativity means that (Ha ⊗
Hb) ⊗ Hc = Ha ⊗ (Hb ⊗ Hc).to any number of subsystems. Note that the bra corresponding to the tensor product

state |a〉 ⊗ |b〉 is written as (|a〉 ⊗ |b〉)† = 〈a| ⊗ 〈b|, where the order of the factors on
either side of ⊗ does not change when the dagger operation is applied.

Some joint states ofA and B can be expressed as a single tensor product, say |ψ〉 =
|a〉 ⊗ |b〉, meaning that the subsystem A is in state |a〉, and the subsystem B in state
|b〉. If we expand |a〉 =

∑
i αi|ai〉 and |b〉 =

∑
i βj |bj〉, then |ψ〉 =

∑
i,j αiβj |ai〉 ⊗ |bj〉

and we see that, for all such states, the coefficients cij in Equation (‡) are of a rather
special form:

cij = αiβj .

We call such states separable (or product states). States that are not separable are
said to be entangled.

A useful fact about tensor products is that λa ⊗ b = a ⊗ λb (where a and b are
vectors, and λ is a scalar). This means that we don’t need to worry about where
exactly we put λ, and can write something like λ(a⊗ b).

We will also need the concept of the tensor product of two operators. If A is an
operator on HA and B an operator on HB, then the tensor product operator A⊗B is
an operator on HA ⊗HB defined by its action on product vectors via

(A⊗B)(|a〉 ⊗ |b〉) = (A|a〉)⊗ (B|b〉)

and with its action on all other vectors determined by linearity:

A⊗B

∑
i,j

cij |ai〉 ⊗ |bj〉

 =
∑
i,j

cijA|ai〉 ⊗B|bj〉.

The universal property of the tensor product.

We have described the tensor product in terms of how it acts on bases, and
then extended everything by linearity, distributivity, and associativity. But
there are other, more abstract approaches to defining the tensor product.

For example, given two vector spaces V and W , we can construct their
tensor product V ⊗W as a quotient of the cartesian product V ×W (whose
elements are simply pairs (v, w) of vectors in V and vectors in W ) by the
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5.4 More qubits, and binary representations

subspace spanned by the relations that we want the tensor product to satisfy:

(v1 + v2, w)− (v1, w)− (v2, w),
(v, w1 + w2)− (v, w1)− (v, w2),

(λv,w)− λ(v, w),
(v, λw)− λ(v, w).

But really this is hinting at the so-called universal property that defines
the tensor product without giving a choice of explicit construction: the tensor
product of V and W is defined to be any vector space A along with a bilinear
map ⊗ : V × W → A such that, for any other vector space Z along with a
bilinear map f : V × W → Z, there exists a unique linear map f̃ : A → Z
such that f = f̃ ◦ ⊗. In the language of category theory, the tensor product
is the initial object amongst vector spaces endowed with a bilinear map from
V × W ; any other vector space Z with a bilinear map V × W → Z factors
through the tensor product.

One specific reason to care about giving a definition in terms of universal
property is that this guarantees (by some abstract nonsense) that the resulting
object will be unique (“up to unique isomorphism”) whenever it exists, so you
don’t need to worry about proving this separately.

Tensor products are much more general than just for vector spaces: they
can be defined for modules (which are like vector spaces over an arbitrary
commutative ring, instead of over a field), and abelian groups are, it turns
out, exactly “modules over Z”, so they also have a notion of tensor product.
Going a bit deeper, we can define tensor products for complexes of modules
and sheaves of modules, and these constructions are absolutely fundamental
to modern algebraic geometry.

Going even deeper still (and now far beyond the purview of this book),
tensor products are generalised by the notion of monoidal categories.

As a final note, the universal property of the tensor product can be used to
prove that we do not need to impose the postulate “the Hilbert space of a com-
posite system is the tensor product of the Hilbert spaces of its components”,
but that this actually follows “for free” from the state and the measurement
postulates. This is shown in Carcassi, Maccone, and Aidala’s “The four postu-
lates of quantum mechanics are three”, arXiv:2003.11007.

5.4 More qubits, and binary representations

Let’s see how this formalism works for qubits. The n-fold tensor product of vectors
from the standard basis {|0〉, |1〉} represent binary strings of length n. For example,
for n = 3,

|0〉 ⊗ |1〉 ⊗ |1〉 ≡ |011〉
|1〉 ⊗ |1〉 ⊗ |1〉 ≡ |111〉.

A classical register (that is, a collection of bits) composed of three bits can store only
one of these two binary strings at any time; a quantum register composed of three
qubits can store both of them in a superposition.

Indeed, if we start with the state |011〉 and apply the Hadamard gate to the first
qubit (which is the same as applying H ⊗1⊗1), then, given that linear combinations
distribute over tensor products, we obtain

|011〉 H⊗1⊗17−→ 1√
2
(
|0〉+ |1〉

)
⊗ |1〉 ⊗ |1〉

= 1√
2
(
|011〉+ |111〉

)
.
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5.5 Separable or entangled?

In fact, we can even prepare this register in a superposition of all eight possible
binary strings of length 3 at once: if we apply the tensor product operation H⊗H⊗H
to the state |0〉 ⊗ |0〉 ⊗ |0〉 = |000〉 then we get

|0⟩ H
|0⟩+|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2


=

1

23/2

{
|000⟩+ |001⟩+ |010⟩+ |011⟩

+ |100⟩+ |101⟩+ |110⟩+ |111⟩

}
.

The resulting state is exactly a superposition of all binary string of length 3, and
can also be written as

1√
2
(
|0〉+ |1〉

)
⊗ 1√

2
(
|0〉+ |1〉

)
⊗ 1√

2
(
|0〉+ |1〉

)
.

In general, the tensor product operation H⊗n, which means “apply the Hadamard
gate to each of your n qubits”, is known as the Hadamard transform, and it maps
product states to product states. Like the Hadamard gate in the typical quantum inter-
ference circuit, the Hadamard transform opens (and closes) multi-qubit interference.

One final note is on notation, or maybe more a shift of point-of-view. We have
just explained how applying the Hadamard transform to n qubits gives us the equally
weighted superposition of all binary strings of length n. But rather than writing them
as binary strings, we could consider the decimal number represented by each string.
This means we switch from considering all binary strings of length n to considering
all natural numbers from 0 to N − 1, where N = 2n. For example, with n = 3 qubits,
we could either write

1√
2n

∑
x∈{0,1}n

|x〉

or instead switch to the decimal approach with N = 2n = 8 and write

1√
N

N−1∑
x=0
|x〉

so that we are writing |7〉 to mean |111〉, and |3〉 to mean |011〉, and |0〉 to mean |000〉,
and so on.

5.5 Separable or entangled?

“Most” vectors in Ha ⊗ Hb are entangled: they cannot be written as product
states |a〉 ⊗ |b〉 with |a〉 ∈ Ha and |b〉 ∈ Hb.

In order to see this, let us write any joint state |ψ〉 of A and B in a product basis as

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

i

|ai〉 ⊗

∑
j

cij |bj〉


=
∑

i

|ai〉 ⊗ |φi〉

(‡)
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5.5 Separable or entangled?

where the |φi〉 =
∑

j cij |bj〉 are vectors in HB that need not be normalised.
Now, for any product state, these vectors have a special form. Indeed, if |ψ〉 =

|a〉 ⊗ |b〉 then, after expanding the first state in the |ai〉 basis, we obtain

|ψ〉 =
∑

i

|ai〉 ⊗
(∑

i

αi|b〉
)
.

This expression has the same form as Equation (‡) with |φi〉 = αi|b〉, i.e. each of the
|φi〉 vectors in this expansion is a multiple of the same vector |b〉.

Conversely, if |φi〉 = αi|b〉 for all i in Equation (‡), then |ψ〉 must be a product
state. So if we want to identify which joint states are product states and which are 0 Even though an entangled state

cannot be written as a single ten-
sor product, it can always be writ-
ten as a linear combination of ten-
sor products, since these form a
basis.

not, we simply write the joint state according to Equation (‡) and check if all the
vectors |φi〉 are multiples of a single vector. Needless to say, if we choose the states
|φ〉 randomly, it is very unlikely that this condition is satisfied, and we almost certainly
pick an entangled state. In general, given n qubits, we need 2(2n−1) real parameters
to describe their state vector, but only 2n to describe separable states; as n grows
larger, 2n becomes much much smaller than 2(2n − 1).

The Segre embedding.

The problem of deciding whether or not a given state is separable is, in gen-
eral, a hard problem (i.e. NP-hard). Because of this, it is interesting to try to
understand the notion of separability from different points of view, and it turns
out that algebraic geometry yet again has something interesting to say. The
theory relies on the notion of projective space, which is a non-trivial topic to
try to introduce here, so we do so only briefly, and at a very high speed.

We have repeatedly said that we only really care about state vectors up to
global phase, i.e. that |ψ〉 and |ψ′〉 are “the same” if there exists some θ such
that |ψ〉 = eiθ|ψ′〉. Combining this with our unitality requirement (that we
want |〈ψ|ψ〉|2 = 1), we are led to studying the equivalence relation

v ∼ w ⇐⇒ v = λw for some λ ∈ C \ {0}

on our Hilbert space. Geometrically, this can be understood as the space of
lines through the origin, i.e. of 1-dimensional subspaces, but the geometry of
projective space is a subject that really deserves many many pages to delve
into, and so we won’t talk about this point of view here.

Algebraically, it turns out that we can describe the space of such equiva-
lence classes using homogeneous coordinates. Defining projective n-space
as

Pn := Cn+1/ ∼

(where ∼ is the equivalence relation defined above), it turns out that points
in Pn are described by coordinates

[a0 : a1 : . . . : an]

where ai ∈ C are not all simultaneously zero (i.e. there exists at least one
i ∈ {0, . . . , n} such that ai 6= 0) and where we impose that

[a0 : a1 : . . . : an] = [λa0 : λa1 : . . . : λan]

for any λ ∈ C \ {0}.
Why is this useful? Well, given any pure state α0|0〉+ α1|1〉 of a qubit, we

obtain a unique point in P1, namely [α0 : α1] (since |〈ψ|ψ〉|2 = 1 tells us that at
least one of α0 and α1 is non-zero); conversely, given any point [a0 : a1] ∈ P1,
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5.6 Controlled-NOT

we can multiply by an appropriate λ ∈ C\{0} to assume that |a0|2 + |a1|2 = 1,
and thus obtain a unique (up to global phase) pure state a0|0〉+a1|1〉. That is,
points in the (complex) projective line P1 correspond to pure states of a qubit.

Next, we can always express a pure state of two qubits in the form

β0|00〉+ β1|01〉+ β2|10〉+ β3|11〉

and we similarly find a correspondence with points [z0 : z1 : z2 : z3] in P3

(given, in one direction, by setting zi := βi).
What is of interest to us here is a particular map known as the

Segre embedding:

σ : P1 × P1 −→ P3

([a0 : a1], [b0 : bn]) 7−→ [a0b0 : a0b1 : a1b0 : a1b1].

First of all, one needs to check that this does indeed give a well defined
function (i.e. that the resulting coordinate always has at least one non-zero
component, and that it is invariant under multiplication by a non-zero scalar
λ ∈ C \ {0}). But it turns out that, not only is this a well defined function, but
it is actually a “geometric” function, in that it respects the “geometric struc-
ture” of projective space. We won’t concern ourselves here with what that
means, but we note that it is even more well behaved than this: as its name
suggests, it actually gives an embedding (i.e. a “geometric” injection) of the
2-dimensional space P1 × P1 into the 3-dimensional space P3.

The image of the Segre embedding is called the Segre variety, and you
can check that it is given by the set of points

Σ := Im(σ) =
{

[z0 : z1 : z2 : z3] ∈ P3 | z0z3 − z1z2 = 0
}

(in algebraic-geometry language, it is the zero-locus of a single polynomial).
Now here is the punchline to all this geometric meandering: a state |φ〉

of two qubits is separable if and only if its corresponding point in P3 lies in the
Segre variety Σ.

For more, see e.g. Cirici, Salvadó, and Taron’s “Characterization of quan-
tum entanglement via a hypercube of Segre embeddings”, arXiv:2008.09583).

Quantum entanglement is one of the most fascinating aspects of quantum theory.
We will now explore some of its computational implications.

5.6 Controlled-NOT

How do entangled states arise in real physical situations? The short answer is that
entanglement is the result of interactions. It is easy to see that tensor product operations
U1 ⊗ . . .⊗ Un map product states to product states:

...

|ψ1⟩ U1 |ψ′
1⟩

|ψn⟩ Un |ψ′
n⟩


|ψ′

1⟩ ⊗ . . .⊗ |ψ′
n⟩

and so any collection of separable qubits remains separable. As soon as qubits
start interacting with one another, however, they become entangled, and things start
to get really interesting. We will describe interactions that cannot be written as tensor
products of unitary operations on individual qubits.
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5.7 Bell states

The most popular two-qubit entangling gate is the controlled-NOT (or c-NOT), also
known as the controlled-X gate. The gate acts on two qubits: it flips the second qubit 0 Here, X ≡ σx refers to the Pauli

operator that implements the bit-
flip.

(referred to as the target) if the first qubit (referred to as the control) is |1〉, and does
nothing if the control qubit is |0〉. In the standard basis {|00〉, |01〉, |10〉, |11〉}, it is
represented by the following unitary matrix:

Controlled-NOT:


1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0



We represent the c-NOT gate in circuit notation as shown in Figure 5.1.

|x⟩ |x⟩

|y⟩ |x⊕ y⟩

Figure 5.1: Where x, y ∈ {0, 1}, and ⊕ denotes XOR, or addition modulo 2.

Note that this gate does not admit any tensor-product decomposition, but can be
written as a sum of tensor products: 0 Make sure that you understand

how the Dirac notation is used
here. More generally, think why

|0〉〈0| ⊗A+ |1〉〈1| ⊗B

means “if the first qubit is in state
|0〉 then apply A to the second one,
and if the first qubit is in state |1〉
then apply B to the second one”.
What happens if the first qubit is
in a superposition of |0〉 and |1〉?

c-NOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X

(where X is the Pauli bit-flip operation).
The c-NOT gate lets us do many interesting things, and can act in a rather deceptive

way. Let us now study some of these things.

5.7 Bell states

We start with the generation of entanglement. Here is a simple circuit that demon-
strates the entangling power of c-NOT: 0 John Stewart Bell (1928–1990)

was a Northern Irish physicist.

Circuit. (Generating entanglement).

|0⟩ H
1√
2
(|00⟩+ |11⟩)

|0⟩

In this circuit, the separable input |0〉|0〉 evolves as

|0〉|0〉 H7−→ 1√
2

(|0〉+ |1〉)|0〉

= 1√
2
|0〉|0〉+ 1√

2
|1〉|0〉

c-NOT7−→ 1√
2
|0〉|0〉+ 1√

2
|1〉|1〉

resulting in the entangled output 1√
2 (|00〉 + |11〉). In fact, this circuit implements

the unitary operation which maps the standard computational basis into the four
entangled states, known as the Bell states.
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The Bell states |ψij〉 are those generated by the above circuit:

|00〉 7−→ |ψ00〉 := 1√
2

(|00〉+ |11〉)

|01〉 7−→ |ψ01〉 := 1√
2

(|01〉+ |10〉)

|10〉 7−→ |ψ10〉 := 1√
2

(|00〉 − |11〉)

|11〉 7−→ |ψ11〉 := 1√
2

(|01〉 − |10〉)

The more standard notation for these states, however, is the following:

Φ+ := |ψ00〉
Ψ+ := |ψ01〉
Φ− := |ψ10〉
Ψ− := |ψ11〉

(and this is the notation that we will use from now on).

The Bell states form an orthonormal basis in the Hilbert space H1 ⊗ H2 of two
qubits. We can perform measurements in the Bell basis: the easiest way to do it
in practice is to “rotate” the Bell basis to the standard basis, and then perform the
measurement in the standard basis. Indeed, if we reverse the circuit (running it from 0 For any state |ψ〉 of two qubits,

the amplitude 〈ψij |ψ〉 can be writ-
ten as 〈ij|U†|ψ〉, where U† is such
that |ψij〉 = U |ij〉.

right to left), then we get a circuit which maps the Bell state |ψij〉 to the corresponding
state |ij〉 in the standard basis. This unitary mapping allows us to “implement” the
projections on Bell states by applying the reversed circuit followed by the usual qubit-
by-qubit measurement in the standard basis.

The Bell states are said to be maximally entangled, since their reduced density
operators are maximally mixed (a notion that we will define in Section 8.3). Roughly,
this means that the outcomes of any measurement performed on them are completely
random. This property — having maximal entropy (in some sense) — makes the Bell
states incredibly useful for many applications, and we shall see some of them now.

5.8 Quantum teleportation

A wonderful fact, that sounds more like science fiction than actual science, is the
following: an unknown quantum state can be teleported from one location to another.
Consider the following circuit, which is built from a Bell state generator followed by
an “offset” inverse Bell state generator: 0 Divide et impera, or “divide

and conquer”: a good approach
to solving problems in mathemat-
ics (and in life). Start with
the smaller circuits in the dashed
boxes, which we have just seen in-
troduced above.

Circuit. (Quantum teleportation).

α |0⟩+ β |1⟩ H |x⟩

|0⟩ H |y⟩

|0⟩ |ψ⟩
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5.8 Quantum teleportation

The first input qubit (counting from the top) is in some arbitrary state. After the
action of the part of the circuit in the first dashed box (counting from the left), the
state of the three qubits reads 0We don’t worry about writing the

normalisation factors.(
α|0〉+ β|1〉

)(
|00〉+ |11〉

)
.

By regrouping the terms, but keeping the qubits in the same order, this state can be
written as the sum

(|00〉+ |11〉)⊗ (α|0〉+ β|1〉)
+(|01〉+ |10〉)⊗ (α|1〉+ β|0〉)
+(|00〉 − |11〉)⊗ (α|0〉 − β|1〉)
+(|01〉 − |10〉)⊗ (α|1〉 − β|0〉).

Then the part of the circuit in the second dashed box maps the four Bell states of the
first two qubits to the corresponding states from the computational basis:

|00〉 ⊗ (α|0〉+ β|1〉)
+|01〉 ⊗ (α|1〉+ β|0〉)
+|10〉 ⊗ (α|0〉 − β|1〉)
+|11〉 ⊗ (α|1〉 − β|0〉).

Upon performing the standard measurement and learning the values of x and y, we
choose one of the four following transformations depending on these values:

00 7→ 1 01 7→ X

10 7→ Z 11 7→ ZX
(⊛)

(e.g. if x = 0 and y = 1, then we choose X). We then apply this transformation to the
third qubit, which restores the original state of the first qubit.

If you understand how this circuit works, then you are ready for quantum telepor- 0You can play around with this on
the Quantum Flytrap Virtual Lab.tation. Here is a dramatic version.

Suppose that three qubits, which all look very similar, are initially in
the possession of an absent-minded Oxford student, Alice. The first
qubit is in a precious quantum state and this state is needed urgently
for an experiment in Cambridge. The other two qubits are entangled,
in the Φ+ = |ψ00〉 state. Alice’s colleague, Bob, pops in to collect the
qubit. Once he is gone, Alice realises that, by mistake, she gave him
not the first but the third qubit: the one which is entangled with the
second qubit.

2

1

Alice,
in Oxford

3

Bob,
in Cambridge

Φ+ = 1√
2
(|00⟩+ |11⟩)

The situation seems to be hopeless — Alice does not know the quantum
state of the first qubit, and Bob is now miles away and her commu-
nication with him is limited to few bits. However, Alice and Bob are
both very clever and they both diligently attended their “Introduction
to Quantum Information Science” classes. Can Alice rectify her mis-
take and save Cambridge science?
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5.9 No-cloning, and other no-go theorems

. . .

Of course: Alice can teleport the state of the first qubit! She performs
the Bell measurement on the first two qubits, which gives her two bi-
nary digits, x and y. She then broadcasts x and y to Bob, who chooses
the corresponding transformation, as in Equation (⊛), performs it,
and recovers the original state.

This raises a natural “philosophical” question: what do we really mean by tele-
portation? A key part of this question is understanding what happens to our original
qubit when we teleport it. Note that the actual physical electron (or whatever imple-
mentation of qubits we are using) does not suddenly move through space — what is
teleported is the state of the qubit, but the argument can be made that if two qubits
are entirely indistinguishable from one another by any measurements that we can
make, then they really are “the same” in every way that matters, and so the qubit
which now has the original qubit’s state “is the same as” the original qubit. As it turns
out, this process necessarily destroys the original qubit’s state, as we now explain.

Teleportation experiments and verification.

The first actual teleportation experiment was successfully achieved in 1997
(arXiv:quant-ph/9710013); in 2012 a record distance was set: an entan-
gled photon pair was used to teleport a state 143 kilometres/88 miles
(arXiv:1205.3909); in 2017, successful ground-to-satellite teleportation was
achieved (arXiv:1707.00934). This is not science fiction!

But there is a fundamental question to ask: if the original state is de-
stroyed, then how can we really verify that teleportation has taken place? We
can’t compare the purportedly teleported state to the original one! The an-
swer to this involves certain no-go theorems and statistical methods, where
we can show that classical physics gives some strict upper bound on a certain
fidelity, but which is clearly surpassed by these physical experiments. We will
better explain the ideas behind these sorts of arguments later on, in Chapter
6, when we introduce Bell’s theorem.

5.9 No-cloning, and other no-go theorems

Let us now look at something that the controlled-NOT seems to be doing but, in fact,
isn’t. It is easy to see that the c-NOT can copy the bit value of the first qubit:

|x〉|0〉 c-NOT7−→ |x〉|x〉 (for x = 0, 1)

so one might suppose that this gate could also be used to copy superpositions, such
as |ψ〉 = α|0〉+ β|1〉, so that

|ψ〉|0〉 c-NOT7−→ |ψ〉|ψ〉

for any |ψ〉. But this is not true!
The unitarity of the c-NOT means that it turns superpositions in the control qubit

into entanglement of the control and the target: if the control qubit is in the a super-
position state |ψ〉 = α|0〉+β|1〉 (with α, β 6= 0), and the target is in |0〉, then the c-NOT
gate generates the entangled state(

α|0〉+ β|1〉
)
|0〉 c-NOT7−→ α|00〉+ β|11〉.

In fact, it is impossible to clone an unknown quantum state, and we can prove this!
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5.9 No-cloning, and other no-go theorems

To prove this via contradiction, let us assume that we could build a universal quan-
tum cloner, and then take any two normalised states |ψ〉 and |φ〉 that are non-identical
(i.e. |〈ψ|φ〉| 6= 1) and non-orthogonal (i.e. 〈ψ|φ〉 6= 0). If we then run our hypothetical
cloning machine we get

|ψ〉|0〉|W 〉 7−→ |ψ〉|ψ〉|W ′〉
|φ〉|0〉|W 〉 7−→ |φ〉|φ〉|W ′′〉

where the third system, initially in state |W 〉, represents everything else (say, the
internal state of the cloning machine). For this transformation to be unitary, it must
preserve the inner product, and so we require that

〈ψ|φ〉 = 〈ψ|φ〉2〈W ′|W ′′〉

which can only be satisfied if |〈ψ|φ〉| is equal to 1 or 0, but this contradicts our as-
sumptions!

Thus, states of qubits, unlike states of classical bits, cannot be faithfully cloned.
Note that, in quantum teleportation, the original state must therefore be destroyed,
since otherwise we would be producing a clone of an unknown quantum state. The
no-cloning property of quantum states leads to interesting applications, of which
quantum cryptography is one.

The no-cloning theorem. Universal quantum cloners are impossible.

Approximate quantum cloning.

This section is not yet finished.

The no-cloning theorem is one of many so-called “no-go” theorems in quantum
information. We won’t look at all of them in depth, but it’s worth mentioning them
here and giving a very rough idea of what each one says.

• No-teleportation. An arbitrary quantum state cannot be entirely expressed with
classical information. In other words, the process of converting quantum informa-
tion to classical information cannot be reversed: classical channels cannot transmit
quantum information.

This can be seen as a consequence of no-cloning: if we were able to turn a
quantum state into classical information and then back again, we could simply
clone the classical information and then get a cloned copy of our quantum state.

The name is a bit confusing, because we have just seen that quantum telepor-
tation is possible through the use of entanglement, but it refers to the idea of
classical teleportation of quantum states.

Note that the “converse” to this is possible though: if we start with some classical
information then we can convert it to quantum information and then back again
perfectly fine (for example, using the fact that orthogonal states can be perfectly
distinguished).

• No-broadcasting. Given a single copy of a quantum state, it cannot be shared
with two or more parties.

This is an even more direct consequence of no-cloning: if we can’t copy a state,
then we have no way of sharing it with multiple people. However, the real
technical statement of this theorem involves non-pure states, which require
the language of density operators to talk about — something that we will not
see until Chapter 8.
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One particularly unexpected detail here is that the theorem is no longer true if
we’re provided with more than one copy of the state to start with. For example,
in a process known as superbroadcasting, given four copies of an input state 0 This is shown in D’Ariano,

Macchiavello, and Perinotti’s “Su-
perbroadcasting of mixed states”,
arXiv:quant-ph/0506251.

we can actually broadcast six copies!

• No-deleting. Given two copies of an arbitrary quantum state, it is impossible to
delete one.

You might hear people saying that the fact that we require our quantum opera-
tions to be unitary is to do with reversibility, and so there is a general pattern 0 In fact, we’ll talk a bit about re-

versibility of computation in Sec-
tion 10.1.

in quantum theory where theorems will have time-dual versions, giving by tak-
ing the same theorem but imagining that time goes in the opposite direction.
No-deleting is the time dual of no-cloning, and whereas the latter tells us that
quantum states are pretty delicate, the former tells us that they are also in some
sense rather robust.

We might as well state this theorem a bit more precisely, because we have seen
almost all of the necessary definitions already: given a qubit in an unknown
state |ψ〉, there is no isometry V (Section 9.3) such that

V : |ψ〉|ψ〉|W 〉 7−→ |ψ〉|0〉|W ′〉

with |W ′〉 being independent of |ψ〉. Just as for no-cloning, we can of course
delete some qubits (for example those in orthogonal states, since these behave a
lot like classical bits), but there is no V that works universally, for any arbitrary
state |ψ〉.

• No-communication. An entangled state cannot be used to transmit information
by measurement of a subsystem.

We talk about this theorem in the context of a worked example in Exercise
5.14.3, and we delve into the details when we talk about Bell tests in Chapter
6, but it is basically the answer to Einstein’s worry about “spooky action at
a distance” that we mentioned back in Section 5.1: the seemingly infinitely
fast sending of information between entangled qubits cannot actually send any
meaningful information, but only purely random bits.

This theorem is actually stronger than no-cloning, in that we can prove no-
cloning from no-communication.

Yet again we see another example of how the quantum whole is much greater
than the sum of its parts: no-teleportation says that classical channels alone
cannot send quantum information; no-communication says that entanglement
and measurement alone cannot send quantum information; the quantum tele-
portation protocol of Section 5.8 says that you can send quantum information if
you combine both methods together.

• No-hiding. Quantum information cannot be lost, even through decoherence.

This theorem is related to no-deletion, in that it shows the robustness of quan-
tum states. In Chapter 13 we will study the notion of decoherence, which is
sort of like “quantum noise”, and is one of the main problems faced when ac-
tually trying to design and build quantum computers in reality. The no-hiding
theorem says that, when quantum information is “lost” through decoherence, it
actually merely moves into the subspace corresponding to the environment —
we might have lost it, but nature hasn’t. 0 This theorem is of particular

interest to physicists studying
black holes, since it leads to the
black hole information paradox.5.10 Controlled-phase and controlled-U

Needless to say, not everything is about the controlled-NOT gate. Another common
two-qubit gate is the controlled-phase gate, denoted c-Pϕ.
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5.10 Controlled-phase and controlled-U

Controlled-phase:


1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 eiϕ



We can also represent the c-Pϕ gate using the circuit notation, as in Figure 5.2.

|x⟩
eixyφ |x⟩ |y⟩

|y⟩

Figure 5.2: Where x, y ∈ {0, 1}.

Again, the matrix is written in the computational basis {|00〉, |01〉, |10〉, |11〉}. If we
do not specify the phase then we usually assume that ϕ = π, in which case we call
this operation the controlled-Z gate, which acts as |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z. Here Z
refers again to the Pauli phase-flip σz ≡ Z operation.

In order to see the entangling power of the controlled-phase shift gate, consider
the following circuit.

Circuit. (Generating entanglement, again).

|0⟩ H

|0⟩ H

In this circuit, first the two Hadamard gates prepare the equally-weighted super-
position of all states from the computational basis

|0⟩ H
1
2

(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
|0⟩ H

and then the controlled-Z operation flips the sign in front of |11〉

|0⟩ H
1
2

(
|00⟩+ |01⟩+ |10⟩ − |11⟩

)
|0⟩ H

which results in an entangled state.
In fact, both c-NOT and c-Pϕ are specific examples of the more general construc-

tion of a controlled-U gate:

c-U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U

where U is an arbitrary single-qubit unitary transformation U .
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5.11 Universality, revisited

Controlled-U :


1 0
0 1

0 0
0 0

0 0
0 0 U



We can also represent the c-U gate using the circuit notation, as in Figure 5.3.

|x⟩

|y⟩ U

Figure 5.3: The controlled-U gate, where x, y ∈ {0, 1}.

We can go even further and consider a more general unitary operation: the two-
qubit x-controlled-U gate:∑

x

|x〉〈x| ⊗ Ux ≡ |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1

where each Ux is a unitary transformation that is applied to the second qubit only
if the first one is in state |x〉. In general, an x-controlled-U gate can be defined on
two registers of arbitrary size n and m, with x ∈ {0, 1}n and the Ux being (2m × 2m)
unitary matrices acting on the second register.

5.11 Universality, revisited

We will come across few more gates in this course, but at this stage you already
know all the elementary unitary operations that are needed to construct any unitary
operation on any number of qubits:

• the Hadamard gate,
• all phase gates, and
• the c-NOT

These gates form a universal set of gates: with O(4nn) of these gates, we can
construct any n-qubit unitary operation. We should mention that there are many 0Recall the big-O asymptotic nota-

tion introduced in Exercise 1.11.7:
given a positive function f(n), we
write O(f(n)) to mean “bounded
above by c f(n) for some constant
c > 0 (for sufficiently large n)”.
For example, 15n2 + 4n + 7 is
O(n2).

different universal sets of gates. In fact, almost any gate that can entangle two qubits
can be used as a universal gate.

We are particularly interested in any finite universal set of gates that can approx-

0 One particular example that we
will see again is the Hadamard,
c-NOT, and T = Pπ/4.

imate any unitary operation on n qubits with arbitrary precision. The price to pay is
the number of gates — better precision requires more gates.

5.12 Phase kick-back

Before moving on, we first describe a simple yet omnipresent “trick” — an unusual
way of introducing phase shifts that will be essential for our analysis of quantum
algorithms. Consider the following circuit.
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5.12 Phase kick-back

Circuit. (Controlled-U interference).

|0⟩ H H cos φ
2 |0⟩ − i sin φ

2 |1⟩

|u⟩ U |u⟩

where |u〉 is an eigenstate of U , so that U |u〉 = eiϕ|u〉 for some ϕ.

This should look familiar: it is the usual interference circuit, but with the phase
gate replaced by a controlled-U gate, which will mimic the phase gate, as we shall
soon see. Note that the second qubit is prepared in state |u〉, which is required to be
an eigenstate of U . The circuit effects the following sequence of transformations: 0 Omitting, as per usual, the nor-

malisation factors.

|0〉|u〉 H7−→ (|0〉+ |1〉)|u〉
= |0〉|u〉+ |1〉|u〉

c-U7−→ |0〉|u〉+ |1〉U |u〉
= |0〉|u〉+ eiϕ|1〉|u〉
= (|0〉+ eiϕ|1〉)|u〉

H7−→
(

cos ϕ
2
|0〉 − i sin ϕ

2
|1〉
)
|u〉.

Note that the second qubit does not get entangled with the first one: it remains in
its original state |u〉. However, the interaction between the two qubits introduces a
phase shift on the first qubit. This may look like an unnecessarily complicated way of
introducing phase shifts, but, as we shall soon see, this is how quantum computers do
it. Here is a preview of things to come.

Consider the following x-controlled-U operation:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 X

 =

|00〉〈00| ⊗ 1
+ |01〉〈01| ⊗ 1
+ |10〉〈10| ⊗ 1
+ |11〉〈11| ⊗X.

The first register is of size 2 (corresponding to the top-left 2×2 block, which is simply
the identity matrix), and the second register is of size 1 (corresponding to the two
bottom-right 1 × 1 blocks, namely an identity matrix and X). If the first register is
prepared in state |11〉, then the qubit in the second register is flipped (by the Pauli
bit-flip X); otherwise, nothing happens.

This unitary operation is a quantum version of the Boolean function evaluation: it
corresponds to the Boolean function

f : {0, 1}2 −→ {0, 1}
00 7−→ 0
01 7−→ 0
10 7−→ 0
11 7−→ 1.

If f(x) = 1, then we flip the bit value in the second register (with operation X); if
f(x) = 0, then we do nothing.

Now, prepare the qubit in the second register in state |0〉 − |1〉, which is an eigen-
state of X with eigenvalue eπi = −1. So whenever X is applied to the second reg-
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ister, the phase factor −1 appears in front of the corresponding term in the first reg-
ister. If we prepare the first register in the superposition |00〉 + |01〉 + |10〉 + |11〉
then the result of applying the above x-controlled-U operation is the entangled state
|00〉+ |01〉+ |10〉 − |11〉. That is, the phase kick-back mechanism introduces a relative
phase in the equally-weighted superposition of all binary strings of length two.

Phase kick-back is how we control quantum interference in quantum compu-
tation.

We will return to this topic later on in Section 10.2, when we discuss quantum
evaluation of Boolean functions and quantum algorithms.

5.13 Density operators, and other things to come

The existence of entangled states leads to an obvious question: if we cannot attribute
a state vector to an individual qubit, then how can we describe its quantum state?
In the next few chapters we will see that, when we limit our attentions to a part
of a larger system, states are not represented by vectors, measurements are not de-
scribed by orthogonal projections, and evolution is not unitary. As a spoiler, here is a
dictionary of some of the new concepts that will soon be introduced:

state vectors ⇝ density operators
orthogonal projectors ⇝ positive

operator-valued
measures

unitary evolutions ⇝ completely-positive
trace-preserving maps

5.14 Remarks and exercises

5.14.1 Why qubits, subsystems, and entanglement?

One question that is rather natural to ask at this point is the following:

If entanglement is so fragile and difficult to control, then why bother?
Why not perform your computations in one singly physical system that
has as many quantum states as we normally have labels for the states
of qubits? Then we could label these quantum states in the same
way as we normally label the qubits, and give them computational
meaning.

This suggestion, although possible, gives a very inefficient way of representing
data, known as the unary encoding. For serious computations, we need subsystems.
Here is why.

Suppose you have n physical objects, and each object has k distinguishable states.
If you can access each object separately and put it into any of the k states, then,
with only n operations, you can prepare any of the kn different configurations of the
combined systems. Without any loss of generality, let us take k = 2 and refer to each
object of this type as a physical bit. We label the two states of a physical bit as 0 and
1. So any collection of n physical bits can be prepared in 2n different configurations,
which can be used to store up to 2n numbers (or binary strings, or messages, or
however you want to interpret these things). In order to represent numbers from 0 to
N − 1 we just have to choose n such that 2n ⩾ N .
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Suppose the two states in the physical bit are separated by the energy difference
∆E > 0, i.e. that it costs ∆E units of energy to switch a physical bit from one state to
the other. Then a preparation of any particular configuration will cost no more than
E = n∆E = (log2 N)∆E units of energy. 0 For simplicity here, we’re assum-

ing that N = 2n.In contrast, if we choose to encode N configurations into one chunk of matter,
say, into the first N energy states of a single harmonic oscillator with the same energy
separation ∆E between states, then, in the worst case (i.e. going from the ground
state 0 to the most excited state N) one has to use E = N∆E units of energy. For
large N this gives an exponential gap in the energy expenditure between the binary
encoding using physical bits, and the unary encoding using energy levels of harmonic
oscillators: (log2 N)∆E vs N∆E .

Of course, you might try to switch to a different choice of realisation for the unary
encoding, such as a quantum system that has a finite spread in the energy spectrum.
For example, by operating on the energy states of the hydrogen atom, you can encode
any number from 0 to N − 1, and we are guaranteed not to spend more than Emax =
13.6 eV (otherwise the atom is ionised). The snag is that, in this case, some of the
electronic states will be separated by an energy difference to the order of Emax/N ,
and to drive the system selectively from one state to another one has to tune into
the frequency Emax/ℏN , which requires a sufficiently long wave packet in order for
the frequency to be well defined, and consequently the interaction time is of order
N(ℏ/Emax).

That is, we spend less energy, but the trade off is that we have to spend more time.
It turns out that whichever way we try to represent the number N in the unary en-

coding (i.e. using N different states of a single chunk of matter), we end up depleting
our physical resources (such as energy or time, or even space) at a much greater rate
than in the case when we use subsystems. This plausibility argument indicates that,
for efficient processing of information, the system must be divided into subsystems —
for example, into physical bits.

5.14.2 Entangled or not?

Let a joint state of A and B be written in a product basis as

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉.

Assume that HA and HB are of equal dimension.

1. Show that, if |ψ〉 is a product state, then det(cij) = 0.

2. Show that the converse (det(cij) = 0 =⇒ |ψ〉 = |a〉|b〉) holds only for qubits.
Explain why.

3. Deduce that the state

1
2
(
|00〉+ |01〉+ |10〉+ (−1)k|11〉

)
is entangled for odd values of k and unentangled for even values of k. Express
the latter case explicitly as a product state.

5.14.3 Instantaneous communication

There is a lot of interesting physics behind the innocuous-looking mathematical state-
ment of Exercise 5.14.2. For example, think again about the state (|00〉 + |11〉)/

√
2.

What happens if you measure just the first qubit? It is equally likely that you get |0〉
or |1〉, right? But after your measurement the two qubits are either in state |00〉 or
in |11〉, i.e. they show the same bit value. Now, why might that be disturbing? Well,
imagine the second qubit to be light-years away from the first one. It seems that the
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measurement of the first qubit affects the second qubit right away, which seems to
imply faster-than-light communication! This is what Einstein called “spooky action as
a distance” in his 1947 letter to Max Born.

But can you actually use this effect to send a message faster than light? What
would happen if you tried?

Hopefully you can see that it would not work, since the result of the measurement
is random: you cannot choose the bit value you want to send. We shall return to this,
and other related phenomena, later on — it is not at all a lost cause!

5.14.4 SWAP circuit

Show that, for any states |ψ1〉 and |ψ2〉 of two qubits, the circuit below implements
the SWAP operation |ψ1〉|ψ2〉 7→ |ψ2〉|ψ1〉.

Circuit. (Swapping).

|ψ1⟩ |ψ2⟩

|ψ2⟩ |ψ1⟩

5.14.5 Controlled-NOT circuit

Show that the circuit below gives another implementation of the controlled-NOT gate.

Circuit. (Controlled-NOT, again).

H H

5.14.6 Measuring with controlled-NOT

The controlled-NOT gate can act as a measurement gate: if you prepare the target in
state |0〉 then the gate acts as |x〉|0〉 7→ |x〉|x〉, and so the target learns the bit value of
the control qubit. If you wish, you can think about a subsequent measurement of the
target qubit in the computational basis as an observer learning about the bit value of
the control qubit.

Take a look at the circuit below, where M stands for measurement in the standard
basis.

Circuit. (?).

M

|ψ⟩

|0⟩
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Now assume that the top two qubits are in the state

|ψ〉 = 1√
3
(
|01〉 − |10〉+ i|11〉

)
.

The measurementM gives two possible outcomes: 0 and 1. What are the probabilities
of each outcome, and what is the post-measurement state in each case?

What is this circuit actually measuring?

5.14.7 Arbitrary controlled-U on two qubits

Recall Section 3.5: any unitary operation U on a single qubit can be expressed as

U = B†XBA†XA

for some unitaries A and B, where X ≡ σx is the Pauli bit-flip operator.
Suppose that you can implement any single-qubit gate, and that you have a bunch

of controlled-NOT gates at your disposal. How would you implement any controlled-U
operation on two qubits?

5.14.8 Entangled qubits

Two entangled qubits in the state 1√
2 (|00〉 + |11〉) are generated by some source S.

One qubit is sent to Alice, and one to Bob, who then both perform measurements in
the computational basis.

1. What is the probability that Alice and Bob will register identical results? Can
any correlations they observe be used for instantaneous communication?

2. Prior to the measurements in the computational basis, Alice and Bob apply uni-
tary operations Rα and Rβ (respectively), for some fixed values α, β ∈ R, to
their respective qubits:

S

Alice

Bob

Rα

Rβ

where the gate Rθ is defined by its action on the basis states:

|0〉 7−→ cos θ|0〉+ sin θ|1〉
|1〉 7−→ − sin θ|0〉+ cos θ|1〉.

Show that the state of the two qubits prior to the measurements is

1√
2

cos(α− β)
(
|00〉+ |11〉

)
− 1√

2
sin(α− β)

(
|01〉 − |10〉

)
.

3. What is the probability that Alice and Bob’s outcomes are identical?

4. What is the geometric interpretation of the operator Rθ?

5.14.9 Quantum dense coding

This section is not yet finished.
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5.14.10 Playing with conditional unitaries

The swap gate SWAP on two qubits is defined first on product vectors by SWAP : |a〉|b〉 7→
|b〉|a〉 and then extended to sums of product vectors by linearity (see Exercise 5.14.4).

1. Show that the four Bell states 1√
2 (|00〉±|11〉) and 1√

2 (|01〉±|10〉) are eigenvectors
of SWAP that form an orthonormal basis in the Hilbert space associated to two
qubits. Which Bell states span the symmetric subspace (i.e. the space spanned by
all eigenvectors with eigenvalue 1), and which the antisymmetric one (i.e. that
spanned by eigenvectors with eigenvalue −1)? Can SWAP have any eigenvalues
apart from ±1?

2. Show that P± = 1
2 (1 ± SWAP) are two orthogonal projectors which form the

decomposition of the identity and project onto the symmetric and antisymmetric
subspaces. Decompose the state vector |a〉|b〉 of two qubits into symmetric and
antisymmetric components.

3. Consider the quantum circuit below, composed of two Hadamard gates, one
controlled-SWAP operation (also known as the controlled-swap, or Fredkin
gate), and the measurement M in the computational basis. Suppose that the
state vectors |a〉 and |b〉 are normalised but not orthogonal to one another. Step
through the execution of this network, writing down the quantum states of the
three qubits after each of the four computational steps. What are the probabili-
ties of observing 0 or 1 when the measurement M is finally performed?

Circuit. (Symmetric and antisymmetric projection).

M|0⟩ H H

|a⟩
SWAP

|b⟩

4. Explain why this quantum network implements projections on the symmetric
and antisymmetric subspaces of the two qubits.

5. Two qubits are transmitted through a quantum channel which applies the same
randomly chosen unitary operation U to each of them, i.e. U ⊗ U . Show that
the symmetric and antisymmetric subspaces are invariant under this operation.

6. Polarised photons are transmitted through an optical fibre. Due to the variation
of the refractive index along the fibre, the polarisation of each photon is rotated
by the same unknown angle. This makes communication based on polarisation
encoding unreliable. However, if you are able to prepare any polarisation state
of the two photons then you can still use the channel to communicate without
any errors — how?

5.14.11 Tensor products in components

In our discussion of tensor products we have so far taken a rather abstract approach.
There are, however, situations in which we have to put numbers in, and write tensor
products of vectors and matrices explicitly. For example, here is the standard basis of
two qubits written explicitly as column vectors: 0 We always use the lexicographic

order 00 < 01 < 10 < 11.
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|00〉 ≡ |0〉 ⊗ |0〉 =
[
1
0

]
⊗
[
1
0

]
=


1
0
0
0



|01〉 ≡ |0〉 ⊗ |1〉 =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0



|10〉 ≡ |1〉 ⊗ |0〉 =
[
0
1

]
⊗
[
1
0

]
=


0
0
1
0



|11〉 ≡ |1〉 ⊗ |1〉 =
[
0
1

]
⊗
[
0
1

]
=


0
0
0
1


Given |a〉 = α0|0〉+ α1|1〉 and |b〉 = β0|0〉+ β1|1〉, we write |a〉 ⊗ |b〉 as

|a〉 ⊗ |b〉 =
[
α0
α1

]
⊗
[
β0
β1

]

=

α0

[
β0
β1

]
α1

[
β0
β1

]


=


α0β0
α0β1
α1β0
α1β1

 .
Note that each element of the first vector multiplies the entire second vector. This is
often the easiest way to get the tensor products in practice.

The matrix elements of the tensor product operation A⊗B

A

B

are given by

(A⊗B)ik,jl = AijBkl

where ik ∈ {00, 01, 10, 11} labels the rows, and kl ∈ {00, 01, 10, 11} labels columns,
when forming the block matrix:

A⊗B =
[
A00 A01
A10 A11

]
⊗
[
B00 B01
B10 B11

]
=
[
A00B A01B
A10B A11B

]

=


A00B00 A00B01
A00B10 A00B11

A01B00 A01B01
A01B10 A01B11

A10B00 A10B01
A10B10 A10B11

A11B00 A11B01
A11B10 A11B11
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The Kronecker product.

This product A⊗B also known as the Kronecker product of matrices, which
generalises the outer product of two vectors that we saw in Section 0.8.

The tensor product induces a natural partition of matrices into blocks. Multipli-
cation of block matrices works pretty much the same as regular matrix multiplication
(assuming the dimensions of the sub-matrices are appropriate), except that the entries
are now matrices rather than numbers, and so may not commute.

1. Evaluate the following matrix product of (4× 4) block matrices:[
1 X
Y Z

] [
1 Y
X Z

]
(where X, Y , and Z are the Pauli matrices).

2. Using the block matrix form of A ⊗ B expressed in terms of Aij and Bij (as
described above), explain how the following operations are performed on the
block matrix:

• transposition (A⊗B)T ;
• partial transpositions AT ⊗B and A⊗BT ;
• trace tr(A⊗B);
• partial traces (trA)⊗B and A⊗ (trB).

5.14.12 Hadamard transforms in components

Consider the Hadamard transform H ⊗H ⊗H on three qubits, which is described by
a (23 × 23) matrix. We know that

H = 1√
2

[
1 1
1 −1

]
and so we can calculate that

H ⊗H = 1
2


1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1


and thus that

H ⊗H ⊗H =
√

1
23



1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

1 1
1 −1

−1 −1
−1 1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

−1 −1
−1 1

1 1
1 −1

−1 −1
−1 1

−1 −1
−1 1

1 1
1 −1


.

The rows and columns of H⊗H⊗H are labelled by the triples 000, 001, . . . , 111. Now,
suppose we apply H ⊗H ⊗H to the state |110〉:

|1⟩ H
|0⟩−|1⟩√

2

|1⟩ H
|0⟩−|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2


=

1

23/2

(
|000⟩+ |001⟩ − |010⟩ − |011⟩

− |100⟩ − |101⟩+ |110⟩+ |111⟩

)
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1. The output state is a superposition of all binary strings:
∑

x∈{0,1}3 cx|x〉. Where
in the H⊗3 matrix will you find the coefficients cx?

Do you want to write downH⊗H⊗H⊗H? Probably not! This is an exponentially
growing monster and you may soon run out of space if you actually do try to write it
down. Instead, let us try to spot the pattern of the entries ±1 in these matrices.

Consider again the single-qubit Hadamard gate matrix H = (Hab), where a, b =
0, 1 are the labels for the rows and the columns. Observe that Hab = (−1)ab/

√
2.

(This may look like a needlessly fancy way of writing the entries of the Hadamard
matrix, but it will pay off in a moment).

2. Using the fact that (A ⊗ B)ik,jl = AijBkl, or any other method, analyse the
pattern of the ±1 in the tensor product of Hadamard matrices. What is the
entry H⊗4

0101,1110?

3. For any two binary strings a = (a1, . . . , an) and b = (b1, . . . , bn) of the same
length we can define their “scalar” product as a · b = (a1b1 ⊕ . . .⊕ anbn). Show
that, up to the constant (1/

√
2)n, the entry H⊗n

a,b is (−1)a·b for any n and for any
binary strings a and b of length n.

4. Show that H⊗n acts as

|a〉 7−→
(

1√
2

)n ∑
b∈{0,1}n

(−1)a·b|b〉

5. A quantum register of 10 qubits holds the binary string 0110101001. The Hadamard
Transform is then applied to this register yielding a superposition of all binary
strings of length 10. What is the sign in front of the |0101010101〉 term?

5.14.13 The Schmidt decomposition

An arbitrary vector in the Hilbert space HA ⊗HB can be expanded in a product basis
as

|ψ〉 =
∑
i,j

cij |ai〉|bj〉.

Moreover, for any given joint state |ψ〉, we can find orthonormal bases, {|ãi〉} in HA
and {|b̃j〉} in HB, such that |ψ〉 can be expressed as

|ψ〉 =
∑

i

di|ãi〉|b̃i〉,

where the coefficients di are non-negative numbers. This is known as the Schmidt
decomposition of |ψ〉.

Any bipartite state can be expressed in this form, but remember that the bases used
depend on the state being expanded. Indeed, given two bipartite states |ψ〉 and |φ〉, we
usually cannot perform the Schmidt decomposition using the same orthonormal bases
in HA and HB. The number of terms in the Schmidt decomposition is, at most, the
minimum of dimHA and dimHB.

The Schmidt decomposition follows from the singular value decomposition (of-
ten abbreviated to SVD): any (n×m) matrix C can be written as

C = UDV

where U and V are (respectively) (n × n) and (m × m) unitary matrices, and D is
an (n × m) diagonal matrix with real, non-negative elements in descending order
d1 ⩾ d2 ⩾ . . . ⩾ dmin{n,m} (and with the rest of the matrix is filled with zeros). The
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elements dk are called the singular values of C. We will return to the SVD in more
detail later on, in Section 12.11.1.

You can visualize the SVD by thinking of C as representing a linear transformation
from m-dimensional to n-dimensional Euclidean space: it maps the unit ball in the m-
dimensional space to an ellipsoid in the n-dimensional space; the singular values are
the lengths of the semi-axes of that ellipsoid; the matrices U and V carry information
about the locations of those axes and the vectors in the first space which map into
them. Thus SVD tells us that the transformation C consists of rotating the unit ball
(the transformation V ), stretching the k-th axis by a factor of dk (the transformation
D), and then rotating the resulting ellipsoid (the transformation U).

Using the index notation Cij =
∑

k UikdkVkj , we can thus apply SVD to cij:

|ψ〉 =
∑
i,j

cij |aibj〉

=
∑
i,j

∑
k

UikdkVkj |aibj〉

=
∑

k

dk

(∑
i

Uik|ai〉

)
⊗

∑
j

Vkj |bj〉

 .

The Schmidt decomposition of a separable state of the form |a〉⊗|b〉 is trivially just this
state. The Bell states Ψ+ and Φ+ are already written in their Schmidt form, whereas
Ψ− and Φ− can be easily expressed in the Schmidt form. For example, for |Ψ−〉 we
have d1 = d2 = 1√

2 , and the Schmidt basis is

|ã1〉 = |0〉
|ã2〉 = |1〉
|b̃1〉 = |1〉
|b̃2〉 = −|0〉.

The number of non-zero singular values of cij is called the rank of cij , or the rank of
the corresponding quantum state, or sometimes, the Schmidt number. You should
be able to see that all bipartite states of rank-one are separable.

The Schmidt decomposition is almost unique. The ambiguity arises when we have
two or more identical singular values, as, for example, in the case of the Bell states.
Then any unitary transformation of the basis vectors corresponding to a degenerate
singular value, both in Ha and in Hb, generates another set of basis vectors.
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6 Bell’s theorem

About quantum correlations, which are stronger than any correla-
tions allowed by classical physics, and about the CHSH inequality
(used to prove a variant of Bell’s theorem) which demonstrates this
fact.

Every now and then, it is nice to put down your lecture notes and go and see how
things actually work in the real world. What is particularly wonderful (and maybe
surprising) about quantum theory is that it turns up in many places where we might
not expect it to. One such example is in the polarisation of light, where we stumble
across an intriguing paradox.

The (much-simplified) one sentence introduction to light polarisation is this: light
is made of transverse waves, and transverse waves have a “direction”, which we
call polarisation; a polarising filter only allows waves of a certain polarisation to
pass through. If we take two polarising filters, and place them on top of each other
with their polarisations oriented at 90◦ to one another, then basically no light will
pass through, since the only light that can pass through the first filter is orthogonally
polarised with respect to the second filter, and is thus blocked from passing through.
But then, if we take a third filter, and place it in between the other two, at an angle
in the middle of both (i.e. at 45◦), then somehow more light is let through than if the
middle filter weren’t there at all. 0 For the more visually inclined,

there is a video on YouTube by
minutephysics about this experi-
ment, or you can play with a
virtual version on the Quantum
Flytrap Virtual Lab.

This is intrinsically linked to Bell’s theorem, which proves the technical sounding
statement that “any local real hidden variable theory must satisfy certain statistical
properties”, which is not satisfied in reality, as many quantum mechanical experiments
(such as the above) show!

6.1 Hidden variables

The story of “hidden variables” dates back to 1935 and grew out of Einstein’s worries
about the completeness of quantum theory. Consider, for example, a single qubit. Re-
calling our previous discussion on compatible operators (Section 4.6), we know that
no quantum state of a qubit can be a simultaneous eigenstate of two non-commuting
operators, such as σx and σz. Physically, this means that if the qubit has a definite
value of σx then its value of σz must be indeterminate, and vice versa. If we take
quantum theory to be a complete description of the world, then we must accept that
it is impossible for both σx and σz to have definite values for the same qubit at the
same time. Einstein felt very uncomfortable about all this: he argued that quantum 0Here it’s important that we’re re-

ally talking about so-called local
hidden variable theories. We dis-
cuss the technical details in 6.7.

theory is incomplete, and that observables σx and σz may both have simultaneous
definite values, although we only have knowledge of one of them at a time. This is
the hypothesis of hidden variables.

In this view, the indeterminacy found in quantum theory is merely due to our ig-
norance of these “hidden variables” that are present in nature but not accounted for
in the theory. Einstein came up with a number of pretty good arguments for the ex-
istence of “hidden variables”, perhaps the most compelling of which was described in
his 1935 paper (known as “the EPR paper”), co-authored with his younger colleagues,
Boris Podolsky and Nathan Rosen. It stood for almost three decades as the most sig-
nificant challenge to the completeness of quantum theory. Then, in 1964, John Bell
showed that the local hidden variable hypothesis can be tested and refuted. 0 This key word “local” is very im-

portant for those who care about
the subtle technical details, but we
won’t explain it here.
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6.2 Quantum correlations

Any theory can make predictions, but just because the predictions turn out to
be correct, this does not make the theory true — there may be other, maybe
equivalent, explanations. The key to the scientific method is falsifiability:
make one prediction incorrectly, and you have proven your theory is not true.

Hidden-variable no-go theorems.

We already saw some no-go theorems in Section 5.9 that set limits on what we
can do with quantum states. In this chapter we’re going to see one no-go the-
orem relating to the foundations of quantum theory, in particular concerning
these local “hidden variables”. Again, there are many related no-go theorems,
and again they fall beyond the scope of this book, but it’s worth mention-
ing them by name at least. They all state that a certain type of (realistic, in
some technical sense of the word) hidden-variable theory is inconsistent with
reality:

• Bell’s theorem (which we will see in Section 6.4) is for local hidden-
variable theories.

• The Kochen–Specker theorem is for non-contextual hidden-variable
theories.

• The Pusey–Barret–Rudolph theorem (often simply called the PBR the-
orem) is for preparation independent hidden-variable theories.

All together, these three theorems say that, if some hidden-variable theory
does exist, then it has to be non-local, contextual, and preparation dependent.
But what do these words mean?

Preparation independence is the assumption that, if we independently pre-
pare two quantum states, then their hidden variables are also independent.
Locality is the idea that things can only be directly affected by their surround-
ings, i.e. the exact opposite of “spooky action at a distance”. Contextuality
is a bit more subtle, and can actually be seen as a direct generalisation of
non-locality (by Fine’s theorem), but it talks about how results of measure-
ments depend on the commutator of the observable being measured, i.e. on
its “context”.

A particularly useful way of formally defining non-locality and contextual-
ity is by using the language of sheaf theory, which is an inherently topological
and category-theoretic notion. This approach was cemented by Abramsky and
Bradenburger’s “The Sheaf-Theoretic Structure Of Non-Locality and Contextu-
ality”, arXiv:1102.0264.

6.2 Quantum correlations

Consider two entangled qubits in the singlet state 0 We say that a system is singlet
if all the qubits involved are en-
tangled. For example, the Bell
states (Section 5.7) are all (max-
imally entangled) singlet states.
This is related to the notion of
singlet states in quantum me-
chanics, which are those with zero
net angular momentum.

|ψ〉 = 1√
2

(|01〉 − |10〉)

and note that the projector |ψ〉〈ψ| can be written as

|ψ〉〈ψ| = 1
4

(1⊗ 1− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)

where σx, σy, and σz are our old friends the Pauli matrices.
Also recall that any single-qubit observable with values ±1 can be represented by 0 We say “observable” and “value”

instead of “Hermitian operator”
and “eigenvalue” because it’s use-
ful to be able to switch between
speaking like a mathematician and
like a physicist!

the operator

~a · ~σ = axσx + ayσy + azσz,
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6.3 The CHSH inequality

where ~a is a unit vector in the three-dimensional Euclidean space.
So if Alice and Bob both choose observables, then we can characterise their choice 0For example, if the two qubits are

spin-half particles, they may mea-
sure the spin components along
the directions ~a and ~b.

by vectors ~a and ~b, respectively. If Alice measures the first qubit in our singlet state
|ψ〉, and Bob the second, then the corresponding observable is described by the tensor
product

A⊗B = (~a · ~σ)⊗ (~b · ~σ).

The eigenvalues of A⊗B are the products of eigenvalues of A and B. Thus A⊗B has
two eigenvalues: +1, corresponding to the instances when Alice and Bob registered
identical outcomes, i.e. (+1,+1) or (−1,−1); and −1, corresponding to the instances
when Alice and Bob registered different outcomes, i.e. (+1,−1) or (−1,+1).

This means that the expected value of A ⊗ B, in any state, has a simple interpre- 0 Recall Section 4.5: the expected
value of an operator E in the state
|φ〉 is equal to 〈φ|E|φ〉.

tation:

〈A⊗B〉 = Pr(outcomes are the same)− Pr(outcomes are different).

This expression can take any real value in the interval [−1, 1], where −1 means we
have perfect anti-correlations, 0 means no correlations, and +1 means perfect
correlations.

We can evaluate the expectation value in the singlet state:

〈ψ|A⊗B|ψ〉 = tr
[
(~a · ~σ)⊗ (~b · ~σ)|ψ〉〈ψ|

]
= −1

4
tr
[
(~a · ~σ)σx ⊗ (~b · ~σ)σx + (~a · ~σ)σy ⊗ (~b · ~σ)σy + (~a · ~σ)σz ⊗ (~b · ~σ)σz

]
= −1

4
tr
[
4(axbx + ayby + azbz)1⊗ 1

]
= −~a ·~b

where we have used the fact that tr(~a · ~σ)σk = 2ak (for k = x, y, z). So if Alice and
Bob choose the same observable ~a = ~b, then the expected value 〈A⊗B〉 will be equal
to −1, and their outcomes will always be opposite: whenever Alice registers +1 (resp.
−1) Bob is bound to register −1 (resp. +1).

6.3 The CHSH inequality

An upper bound on classical correlations.

We will describe the most popular version of Bell’s argument, introduced in 1969
by John Clauser, Michael Horne, Abner Shimony, and Richard Holt (whence the name
“CHSH”).

Let us start by making this assumption that the results of any measurement on any
individual system are predetermined — any probabilities we may use to describe the
system merely reflect our ignorance of these hidden variables.

Imagine the following scenario. Alice and Bob, our two characters with a predilec-
tion for wacky experiments, are equipped with appropriate measuring devices and
sent to two distant locations. Assume that Alice and Bob each have a choice of two
observables that they can measure, each with well defined values +1 and −1. Let’s 0 The phrase “well defined” cor-

responds to our “hidden variable”
assumption, i.e. that the observ-
ables always have definite values.

say that Alice can choose between observables A1 and A2, and Bob between B1 and
B2. Now, somewhere in between them there is a source that emits pairs of qubits
that fly apart, one towards Alice and one towards Bob. For each incoming qubit, Al-
ice and Bob choose randomly, and independently from each other, which particular
observable will be measured. This means we can think of the observables as random
variables Ak, Bk (for k = 1, 2) that take values ±1. Using these, we can define a new
random variable: the CHSH quantity

S = A1(B1 −B2) +A2(B1 +B2).
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6.4 Bell’s theorem via CHSH

By a case-by-case analysis of the four possible outcomes for the pair (B1, B2), we
see that one of the terms B1±B2 must be equal to zero and the other to ±2 (basically
depending on if B1 = B2 or not), and so (looking at the four possible outcomes for
the pair (A1, A2)) we see that S = ±2. But the average value of S must lie in between
these two possible outcomes, i.e.

−2 ⩽ 〈S〉 ⩽ 2.

That’s it! Such a simple and yet profound mathematical statement about correlations,
which we refer simply to as the CHSH inequality.

There is absolutely no quantum theory involved in the CHSH inequality

−2 ⩽ 〈S〉 ⩽ 2

because the CHSH inequality is not specific to quantum theory: it does not
really matter what kind of physical process is behind the appearance of binary
values of A1, A2, B1, and B2; it is merely a statement about correlations, and
for all classical correlations we must have

|〈A1B1〉 − 〈A1B2〉+ 〈A2B1〉+ 〈A2B2〉| ⩽ 2

(which is just another way of phrasing the CHSH inequality).

There are essentially two (very important) assumptions here:

1. Hidden variables. Observables have definite values.
2. Locality. Alice’s choice of measurements (choosing between A1 and A2) does

not affect the outcomes of Bob’s measurement, and vice versa.

We will not discuss the locality assumption right now in detail (see Section 6.7),
but let us just give one brief comment. In the hidden variable world a, statement
such as “if Bob were to measure B1 then he would register +1” must be either true or
false (and not “undecidable” or some other such thing!) prior to Bob’s measurement.
Without the locality hypothesis, such a statement is ambiguous, since the value of
B1 could depend on whether A1 or A2 will be chosen by Alice. We do not want this
since it implies instantaneous communication — it means that, say, Alice by making
a choice between A1 and A2 affects Bob’s results: Bob can immediately “see” what
Alice “does”.

Now let’s see how quantum theory fundamentally disagrees with the CHSH in-
equality.

6.4 Bell’s theorem via CHSH

Continuing this story of Alice and Bob with their observables and pairs of qubits, let us
first rephrase things in the formalism of quantum mechanics that we’ve been building
up. The observables A1, A2, B1, B2 become (2×2) Hermitian matrices, each with the
two eigenvalues ±1, and 〈S〉 becomes the expected value of the (4× 4) CHSH matrix

S = A1 ⊗ (B1 −B2) +A2 ⊗ (B1 +B2).

We can now evaluate 〈S〉 using quantum theory.

Actually performing these measurements described by S on a pair of qubits is
known as a CHSH test, or Bell test.
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6.5 Tsirelson’s inequality

If the two qubits are in the singlet state

|ψ〉 = 1√
2

(|01〉 − |10〉)

then we have already seen (Section 6.2) that

〈A⊗B〉 = −~a ·~b.

So if we choose vectors ~a1, ~a2,~b1, and~b2 as shown in Figure 6.1, then the correspond-
ing matrices satisfy 0That is, A1 = ~a1 · ~σ, and so on.

〈A1 ⊗B1〉 = 〈A2 ⊗B1〉 = 〈A2 ⊗B2〉 = 1√
2

〈A1 ⊗B2〉 = − 1√
2
.

b1

b2

a1

a2

Figure 6.1: The relative angle between the two perpendicular pairs is 45◦.

Plugging these values in, we get that

〈A1B1〉 − 〈A1B2〉+ 〈A2B1〉+ 〈A2B2〉 = −2
√

2,

which obviously violates CHSH inequality: −2
√

2 is strictly less than −2!
But here is the really important part of this discussion: this violation of the CHSH

has been observed in a number of painstakingly careful experiments — this is not just
theoretical! The early efforts in these experiments were truly heroic, with many many
layers of complexity; today, however, such experiments are routine.

Bell’s theorem. The behaviour of entangled quantum systems cannot be ex-
plained by local hidden variables. In other words, outcomes in quantum me-
chanics really are random, and it’s not simply our lack of knowledge about
some background process.

If we can enforce locality in an experimental setup (for example, by ensuring that
Alice and Bob are sufficiently far apart so that there is not enough time between
Alice making a measurement and Bob receiving his measurement result) then an
experimental verification of the CHSH test proves to us that the system is behaving
in an inherently non-classical and, importantly, unpredictable manner. This means
that this is a good test to see if our devices are performing as they are supposed to,
and are untampered by any potential eavesdroppers. In other words, the CHSH test 0 If an eavesdropper has observed

our system to the extent that they
can predict out outcomes, then
that very predictability means that
there is a hidden-variable descrip-
tion of the system, and the CHSH
inequality is not violated.

is key for securing quantum protocols, as we will explain in Section 6.6.

6.5 Tsirelson’s inequality

An upper bound on quantum correlations.
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6.6 Quantum randomness

One may ask if |〈S〉| = 2
√

2 is the maximal violation of the CHSH inequality, and
the answer is “yes, it is”: quantum correlations always satisfy the bound |〈S〉| ⩽ 2

√
2.

This is because, no matter which state |ψ〉 we pick, the expected value 〈S〉 = 〈ψ|S|ψ〉
cannot exceed the largest eigenvalue of S, and we can put an upper bound on the
largest eigenvalues of S. To start with, taking the largest eigenvalue (in absolute
value) of a Hermitian matrix M , which we denote by ‖M‖, gives a matrix norm,
i.e. it has the following properties:

‖M ⊗N‖ = ‖M‖‖N‖
‖MN‖ ⩽ ‖M‖‖N‖

‖M +N‖ ⩽ ‖M‖+ ‖N‖

Given that ‖Ak‖ = ‖Bk‖ = 1 (for k = 1, 2), it is easy to use these properties to
show that ‖S‖ ⩽ 4, but this is a much weaker bound than we want. However, one
can show that 0Exercise 6.8.6.

S2 = 4(1⊗ 1) + [A1, A2]⊗ [B1, B2].

Now, the norms of the commutators ‖[A1, A2]‖ and ‖[B1, B2]‖ are bounded by 2, 0Exercise 6.8.6.

and ‖S2‖ = ‖S‖2. All together, this gives

‖S2‖ ⩽ 8

=⇒ ‖S‖ ⩽ 2
√

2

=⇒ |〈S〉| ⩽ 2
√

2

This result is known as the Tsirelson inequality.

In classical probability theory, the (absolute value of the) average value of the
CHSH quantity

S = A1(B1 −B2) +A2(B1 +B2)

is bounded by 2, and this bound can be attained.
In quantum theory, the same value is bounded by 2

√
2, and this bound can

also be attained.

6.6 Quantum randomness

The experimental violations of the CHSH inequality have shown us that there are
situations in which the measurement outcomes are truly unknown the instant before
the measurement is made, and so the answer must be “chosen” randomly. We can
make use of this randomness in a number of different ways, the most obvious example
of which being a random number generator. Indeed, we have already met one suitable
implementation:

|0⟩ H

The state before measurement is (|0〉 + |1〉)/
√

2, so the two possible outcomes
occur with equal probability. This is a truly random number generator, not like the
pseudorandom one that is used if you ask your computer for some random data.

This randomness generator works well as long as we know how it’s been built,
i.e. that it really is just a Hadamard gate, that the input qubit really has been prepared
in the state |0〉, and that the measurement device is accurate and honest. However,
we don’t all have a Hadamard gate and a supply of prepared qubits lying around at
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6.6 Quantum randomness

home, so it seems likely that at some point we might have to buy or borrow such a
device from a third party. But then how can we know that it really is doing what it
promises, and not just supplying some pseudorandom numbers that might, for exam-
ple, already be known to the manufacturer? This would render the device useless for
cryptographic purposes! But not only do we want to know that this isn’t the case, we
would also like the average user to be able to verify this for themselves, without hav-
ing to know about the internal details. In other words, can we find a way of verifying
the device via some analysis of just inputs and outputs? This is the question of device
independence.

A protocol is device independent if its security doesn’t depend on trusting
the devices on which it is implemented. In other words, it has no reliance on
trusting the third party who supply you with the devices.

We can rule out one thing from the start, namely deterministic behaviour. If we
behave deterministically then we have no hope, since the third party can take this into
account and potentially find a way to always fool us. But there is another approach
that we can try: rather than directly trying to verify the veracity of any given device,
we can try to use it to turn a small amount of true randomness into a larger amount.
This is the idea of randomness expansion.

Starting from an initial seed of private randomness (completely unknown to
any other party), randomness expansion is the process of extending this to a
larger amount of randomness that remains completely private.

Let’s consider a different device: one that produces pairs of qubits in singlet states
and gives one of its qubits to Alice and one to Bob. If Alice then measures her qubit
in the X basis, and Bob measures his in the Z basis (each keeping their outcomes
private), they each obtain random bits that are independent of one another. How-
ever, this is only really true if the device truly is giving them singlet states, and not
predetermined unentangled states. How can they test for this?

Using the idea of randomness expansion, let’s assume that they start with some
shared random private seed: somem-bit string that only they know. They start by gen- 0Note that we’re pushing the prob-

lem somewhere else: how can
they come up with this shared pri-
vate seed in the first place? This is
the problem of key distribution,
and we’ll return to this again later.

erating n of these putative singlet states, and publicly decide on some value 0 < p < 1.
With this, they randomly select dpne of the pairs to perform a CHSH test on. Each test
requires two random bits (to determine Alice and Bob’s choice of measurement), so
in total we will need the length m of their shared random private seed be roughly

m ≈ 2pn− pn log2 p− n(1− p) log2(1− p)

where the log terms are approximately how many bits are required to randomly
choose the subset of pairs to test.

Why does this help? Well, if somebody has manipulated the device that produces
the pairs, then they need to be sure that they haven’t altered the pairs that Alice and
Bob are testing on. But they cannot know in advance which pairs that will be, and so
they cannot risk manipulating anything. 0 One can be much more quan-

titative about this by using Cher-
noff bounds for a simple strategy
of “choose at random which pairs
to manipulate”, but a full proof
of security is much more involved
than we would like to be here.

In the fraction p of pairs where a CHSH test is performed, we get at least 1 bit
of randomness out: Alice’s measurement result is always chosen at random. In fact,
Bob’s result will be partially correlated to Alice’s, so we should be able to extract
some more randomness from this as well, but we ignore this possibility for the sake
of simplicity. Thus in the end we create (2− p)n bits of randomness.
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6.7 Loopholes in Bell tests

When we introduced the idea of hidden variable theories in Section 6.1, we made
some assumptions to simplify the exposition, but these have a big impact on the
practical reality of violating Bell tests. Any test that does not satisfy one or more of
these assumptions is said to have a loophole. For verifying fundamental physics, we
are not so worried about these loopholes — it feels very unlikely that the putative
classicality of the experiment is hiding in whatever loophole might be available in a
given system. But for cryptographic purposes, an adversary will use and loophole at
their disposal to try to trick you!

There are three types of key assumptions that we will talk about here, and for each
one we provide some exercises to work through in order to explore them further:

• detector efficiency (Exercise 6.8.7)
• locality (Exercise 6.8.8)
• free will (Exercise 6.8.9).

Let’s start with the first, which gives rise to the detector loophole. When we make
a measurement with a real-life device, in practice it doesn’t always work — maybe
it just fails to notice a photon flying past. Each detector has a parameter η known
as its efficiency: η is the probability that the measurement succeeds. For testing
fundamental physics, it seems reasonable to assume that the successful measurements
are a fair sample of what’s really going on. But if there’s an adversary, they might
substitute our detectors for completely perfect one, and then deliberately choose to
fake a failure whenever their eavesdropping attempts fail.

The next crucial assumption in the CHSH test is that Alice and Bob are separated
by a “large enough” distance in space and time. More precisely, if they are physical
at distance L from each other, then their random choices of measurement setting,
followed by their corresponding carrying out of the measurement, and receipt of the
answers, should all be accomplished within a time approximately L/c of each other, 0 We say “approximately” here be-

cause we are avoiding being spe-
cific about how we actually define
distance.

where c is the speed of light. If Alice and Bob are not far enough away from each
other, then they are said to be within each other’s locality, and so this is known as
the locality loophole.

The final important assumption that we will mention here involves the availability
of true randomness, and emphasises the importance of randomness expansion. It as-
serts that Alice and Bob must be able to choose their measurement settings randomly.
This freedom to make their own choices is glibly referred to as them having “free
will”, and so this is known as the free-will loophole. Resolving the locality loophole
puts extremely tight constraints on how quickly choices must be made, to the extent 0 If we say that Alice and Bob are

L = 30 km apart from each other,
then we’re talking of timescales on
the order of 10−4 s, which is not
very long!

that Alice and Bob cannot make those choices manually — they need to use random
number generators. But then they need to able to trust that these generators are in-
deed random, not merely pseudorandom, otherwise somebody else could know the
origin of the “random” numbers and use that information to their advantage.

6.8 Remarks and exercises

6.8.1 XOR games

The setup of the CHSH inequality that we have described can instead be imagined as
a two-player all-or-nothing game between Alice and Bob, so let’s study this type of
game more generally.

• Alice and Bob each start with an integer prompt a and b (respectively), with 1 ⩽
a, b ⩽ n. This integer can come from anywhere: they could pick it themselves,
or it could be given to them. Having seen this integer, a round of the game
consists of them returning an answer, x and y (respectively), of length m bits
to an oracle. Both the prompt and the answer are kept secret, so that only the
corresponding player knows them.
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• They win if the winning condition computed by the oracle is 1, and lose if it is
0. The winning condition is given by{

1 if gA(x, a, b) = gB(y, a, b)
0 if gA(x, a, b) 6= gB(y, a, b)

where gA and gB are deterministic one-bit-valued functions whose output values
are equally likely to be 0 or 1 (i.e. they return the value 0 for exactly half of the
possible input triples).

• There exists a quantum strategy that always wins. It uses sets of m measure-
ments on a maximally entangled state, and the measurement operators for all
possible settings either commute or anticommute with one another. The mea-
surements are specified by observables that are traceless (i.e. their trace is equal
to 0) and square to the identity.

• The best possible classical strategy fails f of the time, for some fraction f .

6.8.2 XOR games for quantum key distribution

We can use the setup from Exercise 6.8.1 as the basis for a quantum key distribution
scheme: a process that allows two people to produce a shared random string known
only to them.

For the i-th round of the game, Alice and Bob randomly (and privately) select their
prompts ai and bi, which they then use to play one round of the game, giving answers
xi and yi. They keep a note of all their prompts and answers, as well as the result
of the winning condition for each round. After many rounds, Alice and Bob publicly
announce all their prompts {a1, . . . , an} and {b1, . . . , bn}.

This means that Alice, for example, now knows the following: 0Bob knows the same, but instead
of Alice’s answers {x1, . . . , xn} he
knows his own {y1, . . . , yn}.• both sets of prompts {a1, . . . , an} and {b1, . . . , bn}

• her answers {x1, . . . , xn}
• the values of i ∈ {1, . . . , n} for which gA(xi, ai, bi) = gB(yi, ai, bi), i.e. the num-

bers i1, . . . , ik of the rounds that they won.

This is enough information (given that we have run enough rounds) for Alice to
determine gA and Bob to determine gB . The two of them can then each compute the
k-bit string

gA(xi1 , ai1 , bi1) . . . gA(xik
, aik

, bik
) = gB(xi1 , ai1 , bi1) . . . gB(xik

, aik
, bik

)

which gives their shared key. Now they just need to deal with eavesdropping.
By publicly selecting a random selection of rounds and announcing the results of

their putative gA and gB for these rounds, they can check whether or not their values
are coherent with the result of the winning conditions determined by the oracle. 0 For example, if they know that

they lost round i, then it should
be the case that gA(xi, ai, bi) 6=
gB(yi, ai, bi).

• If everything is coherent with the results, then they can be sure (if they have
played enough rounds and compared enough results) that there was no eaves-
dropping.

• If the fraction of tests that are coherent with the results is less than f , then they
must assume that somebody has been eavesdropping, and they should cease
communication.

• Anywhere in between these two cases, they can quantify how much an eaves-
dropper might know, and then run some method of privacy amplification to
further exclude the eavesdropper (at the cost of shortening the key).

6.8.3 XOR games for randomness expansion

Consider again the scenario of Exercise 6.8.1. Explain how Alice by herself can treat
this as a single-player game and use it as the basis for a randomness expansion
scheme. 0 Hint: unlike in Exercise 6.8.2,

Alice no longer needs to choose a
random subset of rounds to check
the winning condition for: she can
check all of them.
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6.8.4 Prescribed binary randomness

Find a quantum circuit that can act as a random source that outputs 0 with probability 0Hint: what is cos2(π/4)?
(2 +

√
2)/4 and 1 with probability (2−

√
2)/4.

6.8.5 Unbiasing bias

Suppose you have a source that produces random bits, but operates with a bias: it
outputs 0 with probability p and 1 with probability 1− p, for some fixed 0 < p < 1.

Find a method such that, given two outputs from this source, you successfully
obtain a single unbiased random bit (i.e. as if the source had p = 1/2) with probability
2p(1− p).

6.8.6 Proving Tsirelson’s inequality

Let Ai, Bi, and ‖ − ‖ be as in Section 6.5.

1. Prove that

(A1 ⊗ (B1 −B2) +A2 ⊗ (B1 +B2))2 = 4(1⊗ 1) + [A1, A2]⊗ [B1, B2].

2. Prove that

‖[A1, A2]‖ ⩽ 2

(and the same argument should also apply to ‖[B1, B2]‖).

6.8.7 Detector loophole

Say we have a detector with efficiency η, and an otherwise perfect CHSH test with
〈S〉 = 2

√
2.

1. With what probability do both detections succeed? With what probability does
exactly one detection fail? With what probability do both detectors fail?

2. Imagine that one detector successfully measures a qubit of a Bell state, while
the other detector fails and notifies us of this fact. If we replace the reading of
the failed detector by +1, what is the average value of the outcome?

3. Now imagine that both detections fail, and both readings are replaced by +1.
What is the average value of the outcome?

4. Using the above, show that the critical detector efficiency for being able to rely
on the outcome of the CHSH test is given by 0 Hint: if both detections succeed,

then we can achieve 〈S〉 = 2
√

2;
the previous questions calculate 〈S〉
in the other possible cases; so what
is the sum of these values, weighted
by their probabilities of occurring?

η = 2(
√

2− 1).

6.8.8 Locality loophole

1. Imagine that Alice and Bob are not very far from each other, and that they are
going to perform a CHSH test using devices given to them by Eve, who has
tampered with the devices and knows both of the measurement settings. How
can Eve make Alice and Bob believe that they are sharing Bell pairs when, in
reality, they are not?

To really get into the details of locality, we need to use some tools from special relativity:
the theory of how non-accelerating observers measure times and distances. The main
assertion of special relativity is that nothing can travel faster than the speed of light.
These next exercises will be much easier if you have already seen things such as
Minkowski diagrams before, but do not worry if you haven’t.
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2. We are going to plot a Minkowski diagram of the CHSH test scenario. This is
a plot of physical position along the horizontal axis against time on the vertical 0 To make things easy, we assume

that space is one-dimensional: Al-
ice and Bob live on a line.

axis. We place one event — let’s pick Alice choosing her measurement setting
and getting a measurement result — at the origin. Include on this diagram all
the “places” (a pair consisting of a space coordinate and a time coordinate) that
can receive a message about what measurement setting Alice chose, appealing
to the main assertion of special relativity. This set of places is called the future
of the event.

3. Add to the Minkowski diagram all the places that can send a message that could
influence Alice’s outcomes. This set of places is called the past of the event.

4. If an event (such as Bob choosing a measurement setting and getting a result)
occurs in a region that is in neither the future nor the past of the event at the ori-
gin, what influence can these two events have over one another? If Bob’s event
is at a distance L along the x-axis from the origin, then what is the maximal
permissible time difference between the two events? 0 Hint: we already said in Section

6.7 that the maximal permissible
time difference should be L/c, so
prove this.

5. If we wish to be really careful, then we should separate out the four events:

a. Alice chooses a measurement setting
b. Alice gets a measurement result
c. Bob chooses a measurement setting
d. Bob gets a measurement result.

Draw a Minkowski diagram that includes all four events. Assuming that Alice
and Bob are stationary, use this diagram to more explicitly describe the timing
constraints of when each event should happen relative to one another if we wish
to avoid the locality loophole.

6.8.9 Free-will loophole

1. Assume that Eve, the manufacturer of the devices performing the CHSH test,
knows what settings Alice and Bob are going to use. Explain how Eve can
have faked the outputs, making the predetermined, while still seeming to be
producing results consistent with quantum violation of the CHSH inequality. 0Depending on how you answered

Exercise 6.8.8, you might be able
to use exactly the same idea here.2. Say that Eve only knows a fraction p of the random outcomes (separately for

both Alice and Bob). What is the maximum value of p that still allows 〈S〉 =
2
√

2? What about merely allowing 〈S〉 > 2? (Assume that, whenever at least
one random number is known, both devices know that value, and also know
that they don’t know the other value, but that one device will learn it when
Alice or Bob chooses the measurement setting).

3. Imagine that Alice has a string of length k of (apparently) randomly chosen bits.
She believes that Eve knows a fraction p of these bits. In an attempt to thwart
Eve’s attempts at eavesdropping, Alice computes the addition modulo 2 of all
k bits, resulting in a single bit. What is the probability that Eve can know this
final value?
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7 Stabilisers

About the structure of the Pauli group, which is the group generated
by tensor products of the Pauli matrices, including the identity. It
has nice algebraic properties which are useful in many areas of quan-
tum information science, in particular quantum error correction and
classical simulations of some types of quantum computation. We will
discuss how certain subgroups of the Pauli group, and in particular
stabilisers and normalisers of these subgroups, slice the Pauli group
into interesting cosets that have a group structure of their own. We
will also look at the Clifford group, which is a set of unitary opera-
tors that preserve the Pauli group under conjugation and describes the
“easy” part of quantum computation.

N.B. This section is sort of an odd-one-out, since we won’t need any of this formalism
until Sections 13 and 14. However, if you’re reading this book in order, then you might
find this a nice detour halfway through, and it gives a taste of things to come.

We have already seen the (single-qubit) Pauli matrices, along with a brief look into
their algebraic structure, in Section 3.3.

1 =
[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Recall that these matrices span the entire space of (2×2) complex matrices, square

to the identity (and thus can only have eigenvalues in the set {+1,−1}), and are both
Hermitian and unitary. As such, they can represent both observables and unitary
evolutions. Any two given Pauli matrices either commute or anticommute.

As one final reminder, we often refer to the Pauli matrices as “matrices”, but they
are defined as operators by the commutations relations, without reference to any
particular basis. That is, the Pauli operators X, Y , and Z are defined exactly by the
relations

X2 = Y 2 = Z2 = 1
XY = iZ Y Z = iX ZX = iY

Y X = −iZ ZY = −iX XZ = −iY.

7.1 Pauli groups

When we multiply the four Pauli matrices with one another we get Pauli matrices
in return, but with possible phase factors ±1 and ±i (e.g. XY = iZ). Once we
include these phase factors, ensuring that we have a set that is closed under matrix
multiplication, we obtain the single qubit Pauli group, which we denote by P1.

In order to characterise a group, we can simply list all its elements and define
the group operation on each possible pair, but it is usually more efficient to use the
notion of group generators. Given a group G, these are elements g1, . . . , gn of the 0 Note how similar this is to the

definition of a basis for a vector
space.

group that are independent (we cannot write any one of them as a product of some of
the others) and such that every element of G can be written as a product of (possibly
repeated) elements of {g1, . . . , gn}. If G is generated by g1, . . . , gn, then we write
G = 〈g1, . . . , gn〉.
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7.1 Pauli groups

The single-qubit Pauli group P1 is defined by

P1 := 〈X,Y, Z〉
= {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}.

The n-qubit Pauli group Pn is defined to consist of all n-fold tensor prod-
ucts of Pauli matrices, with possible global phase factors ±1 and ±i, i.e.

Pn := {P1 ⊗ . . .⊗ Pn | P1, . . . , Pn ∈ P1}.

This group has 4n+1 elements: 4 × 4n, since we have to account for the pos-
sible global phase factors (which usually aren’t very important for practical
applications, but are necessary in order to have a well defined group).

As a small mathematical aside, we could use some group theory here: Pn has
two trivial (multiplicative) subgroups, namely Z2 = {±1} and Z4 = {±1,±i}; the
quotient group Pn/Z4 is exactly the n-qubit Pauli group but with the phases ignored.

Some researchers prefer to think of the (single-qubit) Pauli group as the group
generated only by X and Z (leaving out Y ), which then only has 8 elements: ±1,
±X, ±Z, and ±iY . We do not follow this convention.

Central products.

One abstract way of defining the Pauli group, without having to make any
reference to matrices (and thus to bases), or even to operators, is using the
notion of a central product. This is a way of combining two smaller group
into one large group, but “respecting” the commutative parts of each, which
means that it arises as a quotient of the direct product (which is somehow
the most blunt way of combining together two groups).

The cyclic group of order 4 is the abstract manifestation of something
maybe more familiar: the additive group of integers modulo 4. That is, the
numbers 0, 1, 2, and 3 form a group under addition, but where we take the
addition to be “remainder 4”, so that e.g. 3 + 2 = 1. In abstract algebra, this
group is denoted by C4.

The dihedral group of order 8 (sometimes, very confusingly, also referred
to as being of order 4) arises as the symmetry group of a square: we can rotate
a square by 90◦, or reflect it along either of the axis joining any two diagonally
opposite corners, or reflect it along either of the axis joining the midpoints of
any two opposite sides — doing any of these actions leaves the square looking
exactly how it started. But some of these actions describe the same thing! For
example, reflecting through the vertical axis and then the horizontal axis is
the same as rotating by 180◦ (try visualising this by flipping and rotating your
hand!), which is a specific example of the more general fact (which we briefly
touched upon in Section 2.12) that the composition of two reflections is the
same as a rotation through twice the angle between the two axes. In abstract
algebra, this group is denoted by D8 (though in geometry it is often written
as D4 instead).

The relevance to the Pauli group is this: the central product of C4 and D8
is exactly P1.

If it is clear that we are working with tensor products of Pauli matrices, then we
often (as per usual) omit the tensor product symbol, writing e.g. XY 1Z instead of
X ⊗ Y ⊗ 1⊗ Z when talking about P4. Note however that we only do this when it is
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7.2 Pauli stabilisers

obvious what we mean: this is very different from the product XY 1Z = i1 inside P1!
Let’s now talk a little bit about the algebraic structure of Pn. Multiplying to-

gether elements is fairly simple: since they are tensor products, we multiply them
component-wise, but just remembering to pay attention to the global phase. For ex-
ample, we can multiply ZXX1 and XXY Y in P4 as follows:

(ZXX1) · (XXY Y ) = (ZX)(XX)(XY )(1Y )
= (iY )(1)(iZ)(Y )
= −Y 1ZY.

Next, any pair of elements in Pn either commute or anticommute: given P = P1 . . . Pn

and Q = Q1 . . . Qn, we notice that they commute exactly whenever the number
of anticommuting components (indices j such that PjQj = −QjPj) is even, since
then the minus signs cancel out. In other words, PQ = (−1)JQP , where J =
|{j such that PjQj = −QjPj}|. For example, if we consider two elements of P9 and
write ✓ to mean that two components commute, and ! to mean that they don’t, we
can then just count to see if there are an odd or even number of ! overall, like so:

Z X Y X Y Z X X Y
Z X 1 Z Z X 1 Y Z
✓ ✓ ✓ ! ! ! ✓ ! !

and since there are 5 anticommuting components, we see that ZXYXY ZXXY and
ZX1ZZX1Y Z anticommute.

Finally, the square of any element in Pn is±1. Indeed, all the elements in the Pauli
group are unitary, and each one is either Hermitian (overall phase ±1 and squares to
1) or anti-Hermitian (overall phase ±i and squares to −1). As per usual, we are only
really interested in working with the Hermitian elements, and we refer to these as the
Pauli operators.

An n-qubit Pauli operator is a Hermitian element of the n-qubit Pauli group
Pn.

Not only do n-qubit Pauli operators have eigenvalues equal to ±1, these eigen-
values must be of the same degeneracy, and the eigenspaces corresponding to each
eigenvalue are of the same dimension, as we can see by taking the trace:

tr(P1 ⊗ P2 ⊗ . . .⊗ Pn) = (trP1)(trP2) . . . (trPn)

which is zero, except in the trivial case where P1 = P2 = . . . = Pn = 1. Last but not
least, the n-qubit Pauli group spans the space of (2n × 2n) complex matrices.

7.2 Pauli stabilisers

The stabiliser (or stabilizer, if you like) formalism is an elegant technique that is often
used to describe vectors and subspaces. Suppose you want to specify a particular vec-
tor in a Hilbert space. The most conventional way to do this would be to pick a basis
and then list the coordinate components of the vector. But we could instead list a set
of operators that leave this vector invariant. More generally, we can define a vector
subspace (rather than just a single vector, which corresponds to a 1-dimensional sub-
space: its span) by giving a list of operators that fix this subspace. Such operators are
called stabilisers.
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7.2 Pauli stabilisers

We say that an operator S stabilises a (non-zero) state |ψ〉 if S|ψ〉 = |ψ〉, and
we then call |ψ〉 a stabiliser state. We say that S stabilises a subspace V if S
stabilises every state in V , and we call the largest subspace VS that is stabilised
by S the stabiliser subspace.

In other words, an operator S stabilises a state |ψ〉 (or the state is fixed by the
operator) if |ψ〉 is an eigenstate of S with eigenvalue 1. It is very important to note
that here we have to pay attention to the global phase factor: if S|ψ〉 = −|ψ〉 then we
do not say that S stabilises |ψ〉, even though |ψ〉 and −|ψ〉 describe the same quantum
state.

For example, we can look at states stabilised by the Pauli operators with factors
±1:

Z stabilises |0〉 − Z stabilises |1〉
Y stabilises |i〉 − Y stabilises | − i〉
X stabilises |+〉 −X stabilises |−〉

where | ± i〉 = 1√
2 (|0〉 ± i|1〉) and |±〉 = 1√

2 (|0〉 ± |1〉).
On the Bloch sphere, these single-qubit stabiliser states lie at the intersection of

the three axes with the surface of the sphere.

|0⟩

|1⟩

|+ i⟩| − i⟩

|−⟩

|+⟩

We can also say something about the remaining two elements of the single-qubit
Pauli group: 1 stabilises everything, and −1 stabilises nothing (except for the zero
state, which we explicitly ignore). More generally, if S stabilises something then −S
cannot stabilise the same thing.

The set of all stabilisers of a given state or given subspace form a group: if S|ψ〉 =
|ψ〉, then multiplying both sides by S−1 shows that the inverse of a stabiliser is again
a stabiliser; the composition of two stabilisers is again a stabiliser, since (ST )|ψ〉 =
S(T |ψ〉) = S|ψ〉 = |ψ〉; and as we have just said, the identity is always a stabiliser.
This group is called the stabiliser group S of the given state or subspace.

Using this language, we can rephrase the previous example by saying that the
stabiliser group of the state |0〉 is {1, Z} = 〈Z〉, the stabiliser group of the state |1〉
is {1,−Z} = 〈−Z〉, the stabiliser group of the state |+〉 is {1, X} = 〈X〉, and so
on. If we take the tensor product of a two states, with stabiliser groups A and B
(respectively), then the resulting tensor product state has stabiliser group given by
the cartesian product A× B. For example, the state |1〉|+〉 is stabilised by the group

{1, Z} × {1, X} = {11,1X,Z1, ZX}
= 〈Z1,1X〉.

As for the state |0〉⊗n, this is stabilised by the group generated by the n elements
Z11 . . .1, 1Z1 . . .1, . . . , 11 . . . , Z, so we often simply stack the generators and write
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7.2 Pauli stabilisers

such generating sets as (n×n) matrices, labelling the left-hand side with the relevant
signs:

|0000〉 ←→

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
+ 1 1 1 Z

and we can see that the signs determine the bit value in the computational basis state,
if we look at the generators of the stabiliser groups for some other states:

|0001〉 ←→

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

|0101〉 ←→

+ Z 1 1 1
− 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

For our purposes, we are only really interested in stabilisers that are also elements
of the n-qubit Pauli group Pn, and we shall soon see that these form an abelian group.
It turns out that such stabilisers can describe highly entangled states. In particular,
the four Bell states (which we first talked about in Section 5.7) can be defined rather
succinctly by their stabiliser groups:

Bell state Stabiliser group

Φ+ = |00〉+ |11〉 〈XX,ZZ〉
Ψ+ = |01〉+ |10〉 〈XX,−ZZ〉
Φ− = |00〉 − |11〉 〈−XX,ZZ〉
Ψ− = |01〉 − |10〉 〈−XX,−ZZ〉

Not only this, but some vector spaces are also rather easily defined: the subspace
of the three-qubit state space spanned by |000〉 and |111〉 is stabilised by

{111, ZZ1, Z1Z,1ZZ} = 〈ZZ1,1ZZ〉.

Right now, it might seem more complicated to use stabilisers to define vectors or
subspaces, but when we start looking at states with a larger and larger number of
components we will see how this approach ends up being very tidy indeed! It is not
be true that the stabiliser description of states and subspaces will always be the most
concise, but it is true in a lot of cases that are of interest to us.

Returning to our claim that stabiliser groups that are subgroups of Pn are abelian,
let us start with a definition, and then justify it afterwards.

An n-qubit Pauli stabiliser group is any subgroup of Pn that is abelian and
does not contain −1. Its elements are called Pauli stabilisers.

Recall that, in order for the subspace VS stabilised by some group S to be non-
trivial, we need −1 6∈ S. Given that all Pauli operators square to the identity, and all
pairs of Pauli operators either commute or anticommute, this implies that if we want
some Pauli operators to stabilise anything then they must commute. Indeed, if S1 and
S2 are two Pauli operators that anticommute, and |ψ〉 is any vector stabilised by both
of them, then

|ψ〉 = S1S2|ψ〉
= −S2S1|ψ〉
= −|ψ〉
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7.2 Pauli stabilisers

which means that |ψ〉 = 0. But saying that we are looking at a stabiliser group
consisting of Pauli stabilisers that all commute with one another (as opposed to anti-
commuting) is exactly saying that we have an abelian subgroup of Pn; if we want it to
be non-trivial, then we need it to not contain −1. Conversely, if we pick any abelian
subgroup of Pn that does not contain −1, this stabilises some subspace VS .

The size of any Pauli stabiliser S is |S| = 2r, where r is some positive integer, since
we can always find some choice of generators G1, . . . , Gr, and then any operator
S ∈ S can be written as 0 An interesting small exercise

here is to explain why the product
of any independent Pauli stabilisers
cannot be equal to the identity.

S = Gε1
1 G

ε2
2 . . . Gεr

r

where ri ∈ {0, 1}. But given any stabiliser group, we can always express its elements
using many different sets of generators; a specific choice of r independent generators
of a Pauli stabiliser S of size 2r is called a presentation. In order to choose a pre-
sentation from the set of elements of S, we have to start by picking any non-identity
element, of which there are 2r − 1. Inductively then, we pick the next generator by
picking any element which is not in the subgroup generated by the previously selected
generators, which means that there are

(2r − 1)(2r − 2)(2r − 22) . . . (2r − 2r−1)

possible generating sets of S. But these are ordered sets (i.e. we are keeping track
of the order in which we pick the elements, so G1, G2, . . . is a “different” choice than
G2, G1, . . .), so if we want to know the number of presentations then we can simply
divide the expression above by r!.

For example, the Bell state Φ+ = |00〉+|11〉 is stabilised by the group {11, XX,−Y Y, ZZ}.
This stabiliser group has (22 − 1)(22 − 2)/2! = 3 presentations, namely 〈XX,ZZ〉,
〈−Y Y,XX〉, and 〈ZZ,−Y Y 〉.

So now we know the size of a Pauli stabiliser, but what can we say about the
dimension of the subspace that it stabilises? If |S| = 2r then the corresponding sta-
biliser subspace VS has dimension 2n−r (where n is the number of qubits, i.e. such
that S ⊆ Pn). To see this, we can look at the projector PS onto VS , since once we
have a projector onto any subspace we know that the dimension of that subspace is
exactly the trace of the projector (we can prove this by thinking about the matrix of
the projector in the diagonal form). In our case (using the result of Exercise 7.8.5)
we calculate that

trPS = tr 1
2r

(S1 + S2 + . . .+ S2r )

= 1
2r

(tr 1)

= 2n−r

since any non-identity element of the stabiliser group has trace equal to zero, and
tr 1⊗n = 2n, whence dimVs = 2n−r. If r = n then the stabilised subspace is 1-
dimensional, and so we have stabiliser states.

There is a more geometric way of understanding why powers of 2 keep on turn-
ing up in these calculations. Given independent Pauli generators, it is convenient to
think about the state or subspace that they stabilise as being the result of repeatedly
bisecting the Hilbert space. Let G1, . . . , Gr be a presentation of a Pauli stabiliser S.
For each operator Gi, half its eigenvalues are +1 and another half are −1, so each
Gi bisects the 2n-dimensional Hilbert space of n qubits into two eigenspaces of equal
size. SoG1 gives two 2n−1-dimensional subspaces: one for the +1 eigenvalue and one
for the −1 eigenvalue. Forgetting about the −1 part and just focusing on the +1 part,
G2 then splits this 2n−1-dimensional subspace into two 2n−2-dimensional subspaces,
since it is independent from G1 (as we justify in Exercise 7.8.5). Repeating this proce-
dure, forgetting about the −1 subspace each time, leads us to consider the simultane-
ous +1-eigenspace of G1, . . . , Gr, where each time we pass from {G1, G2, . . . , Gi} to
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7.3 Single stabiliser states

{G1, G2, . . . , Gi, Gi+1} we bisect the subspace into two equal parts once more, even-
tually ending with the 2n−2-dimensional subspace VS , as above. We can show this
pictorially, as in Figure 7.1.

++ −+

−−+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩

Figure 7.1: The stabiliser group S = 〈ZZ1,1ZZ〉 bisects the Hilbert space of three
qubits into four equal parts, and gives the stabilised subspace VS which is spanned
by |000〉 and |111〉. Think of the labels ZZ1 and 1ZZ as the x- and y-axes, and
the sign labels on each square as (x, y)-coordinates. So the two squares on the left
together make the +1-eigenspace of 1ZZ, and the two squares on the top make the
+1-eigenspace of ZZ1.

This diagram will make a reappearance in Sections 13 and 14.

7.3 Single stabiliser states

Given n independent generators of a stabiliser group S on a Hilbert space of n-qubits,
we end up specifying a 1-dimensional subspace, meaning it is spanned by a single
basis vector, namely the stabiliser state. We have already talked about the single-
qubit stabiliser states determined by all possible stabilisers in P1, namely |0〉 and
|1〉 for 〈±Z〉, |±〉 for 〈±X〉, and | ± i〉 for 〈±Y 〉. We have also mentioned some
of the two-qubit stabilisers states, some of which are highly entangled, such as the
Bell states, and some of which are separable, such as the computational basis states
(whose stabilisers groups we described by block matrices with Z on the diagonal, 1
everywhere else, and signs labelling each row depending on the binary description of
the state).

Here’s another two-qubit example: that of the maximally entangled state |00〉 +
|11〉. This is stabilised by 〈XX,ZZ〉, but let’s explain how we can see this. If we
look first at the operator XX, we see that it splits the 4-dimensional Hilbert space
into two 2-dimensional subspaces, corresponding to eigenvalues ±1; by definition, it
stabilises the one corresponding to eigenvalue +1, which is spanned by |00〉+ |11〉 and
|01〉+ |10〉. Now the operator ZZ also splits the 4-dimensional Hilbert space into two
2-dimensional subspaces, again corresponding to eigenvalues ±1; it stabilises the one
corresponding to eigenvalue +1, which is spanned by |00〉+ |11〉 and |00〉− |11〉. Note
that |01〉+ |10〉 is in the −1-eigenspace of ZZ, even though it is in the +1-eigenspace
of XX (and vice versa for |00〉 − |11〉). So the simultaneous +1-eigenspace of XX
and ZZ is exactly the state |00〉+ |11〉.

|00〉+ |11〉 ←→ + X X
+ Z Z

|00〉 − |11〉 ←→ − X X
+ Z Z

|01〉+ |10〉 ←→ + X X
− Z Z

|01〉 − |10〉 ←→ − X X
− Z Z

As we have already mentioned when discussing presentations of a stabiliser group,
there can be multiple different generating sets, which corresponds to the fact that
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7.4 Measuring Pauli stabilisers

there are multiple different ways of bisecting the Hilbert space. For example, the
stabiliser state |00〉 + |11〉 is completely specified by 〈XX,ZZ〉, as shown above, but
also by 〈XX,−Y Y 〉 or 〈−Y Y, ZZ〉. But, as we should expect, these three generating
sets all generate the same group, namely S = {11, XX,−Y Y, ZZ}.

How many n-qubit stabiliser states do we have? The answer is

2n
n−1∏
k=0

(2n−k + 1)

as we can show with a counting argument: we will count the number of generating
sets with n generators (since this is exactly the right number of generators to specify a
1-dimensional stabiliser subspace) and then divide by the number of presentations for
any given stabiliser. There are 4n−1 choices for the first generatorG1 (ignoring overall 0 This is a common technique

in combinatorial arguments: first
overcount, and then fix your an-
swer by accounting for this.

sign), since it can be any n-fold tensor product of the four Pauli matrices, excluding
the identity 1111. For the second generator G2, we have (4n/2) − 2 possibilities,
since it must commute with the first generator (and we know that exactly half of the
operators commute with any given operator, as shown in Exercise 7.8.3, whence 4n/2)
and it cannot be 1111 or G1 (whence −2). Similarly, G3 must commute with both
G1 and G2, but it cannot be in the group generated by them, so there are (4n/4) − 4
possible choices, and so on. This means that we have

2n(4n − 1)
(

4n

2
− 2
)(

4n

4
− 4
)
. . .

(
4n

2n−1 − 2n−1
)

possible generating sets in total. Now we need to divide by the number of presenta-
tions, but we have already calculated this in Section 7.2: it’s exactly

(2n − 1)(2n − 2)(2n − 22) . . . (2n − 2n−1).

It is a fun algebra exercise to show that this division indeed gives the number we
claimed.

As we will see, stabiliser states are ubiquitous in quantum information theory due
to their versatility and relative simplicity. They play a crucial role in areas such as
quantum error correction, measurement-based quantum computation, and entangle-
ment classification.

7.4 Measuring Pauli stabilisers

How do we bisect Hilbert spaces in practice? By measuring stabilisers.
Let’s start by measuring any single-qubit observable that squares to the identity.

The corresponding operator P with eigenvalues ±1 is both Hermitian and unitary,
and can thus represent both an observable and a quantum gate. If we prepare a qubit
in some state |ψ〉 and then wish to perform a measurement that will give us a result
of ±1 and leave the qubit in a post-measurement state, namely the corresponding
eigenvector, then we can use the following circuit (where ∝ denotes that two states
are multiples of one another).

|0⟩ H H

|ψ⟩ P ∝ 1± P |ψ⟩

This construction requires an auxiliary qubit (in the top register), two Hadamard
gates, and the tacit assumption that we can construct a controlled-P operator. Step-
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7.4 Measuring Pauli stabilisers

ping through the execution of this circuit, we get

|0〉|ψ〉 H⊗17−→ 1√
2

(|0〉+ |1〉)|ψ〉

c-P7−→ 1√
2
|0〉|ψ〉+ 1√

2
|1〉P |ψ〉

H⊗17−→ |0〉1
2

(1 + P )|ψ〉+ |1〉1
2

(1− P )|ψ〉.

The final state of the two qubits indicates that, when the auxiliary (top) qubit is
found in state |0〉 then we projected the state |ψ〉 onto the +1-eigenspace of P (via
the projector 1

2 (1 + P )), and when it is found in state |1〉 then we projected |ψ〉
onto the −1-eigenspace (via the projector 1

2 (1 − P )). In particular, the X, Y , and
Z observables can be measured using controlled-X, controlled-Y , and controlled-Z
gates (respectively). This pattern can easily be extended to an n-qubit Pauli operator.
For example, for n = 3, a generic circuit that implements a projective measurement
onto the ±1-eigenspaces of S = P1 ⊗ P2 ⊗ P3 has the form

|0⟩ H H

|ψ⟩
P1

P2

P3

and is usually drawn more compactly as

|0⟩ H H

|ψ⟩

P1

P2

P3

In this way, we can measure stabilisers and project onto the subspaces that they
stabilise. For example, take the stabiliser group S = 〈XX,ZZ〉, and consider the
circuit below:

|0⟩ H H

|0⟩ H H

|ψ⟩
X Z

X Z

The registered bit values from the first and second (counting from the top) aux-
iliary qubits tell us how we bisect the Hilbert space with XX and ZZ (respectively),
recalling that a bit value of 0 corresponds to the +1 Pauli eigenvalue, and a bit value
of 1 to the −1 eigenvalue. The first measurement can apply one of two projectors to
|ψ〉:
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a. 1
2 (1 +XX), in which case the first auxiliary qubit will show 0, corresponding to
the eigenvalue +1, and the subspace spanned by |00〉+ |11〉 and |01〉+ |10〉

b. 1
2 (1−XX), in which case the first auxiliary qubit will show 1, corresponding to
the eigenvalue −1, and the subspace spanned by |00〉 − |11〉 and |01〉 − |10〉.

The second measurement can further project the resulting post-measurement state
of the two qubits in one of two ways:

a. 1
2 (1 +ZZ), in which case the second auxiliary qubit will show 0, corresponding
to the eigenvalue +1, and the subspace spanned by |00〉+ |11〉 and |00〉 − |11〉

b. 1
2 (1−ZZ), in which case the second auxiliary qubit will show 1, corresponding
to the eigenvalue −1, and the subspace spanned by |01〉+ |10〉 and |01〉 − |10〉.

So if both auxiliary qubits show bit value outcome 0 (corresponding to the Pauli
outcome (+1,+1) of eigenvalues), then we have successfully projected onto the state
stabilised by XX and ZZ, which is exactly |00〉 + |11〉. More generally, in Pauli
notation, the outcome (±1,±1) corresponds to the projection onto the stabiliser state
stabilised by 〈±XX,±ZZ〉.

Needless to say, we do not have any control over the actual outcomes of the mea-
surement, but we do now know which post-measurement state we have generated.
This means that we can use the circuit to prepare a desired state by applying an ap-
propriate unitary operation to the final state. For example, if we want to generate
the state |00〉 + |11〉 but actually end up with the state |00〉 − |11〉, then we can sim-
ply apply the Z operation to any of the two qubits to get the desired result. This
generic method is not the only way of constructing projective measurements of Pauli
observables, however — see Exercise 7.8.7

7.5 Normal subgroups

Before continuing our exploration of Pauli stabilisers, we need a bit more abstract
mathematics.

LetH be a subgroup ofG, writtenH ⩽ G. We say thatH is a normal subgroup
of G, and write H / G, if H is invariant under conjugation by all elements of
G, i.e. ghg−1 ∈ H for all g ∈ G and all h ∈ H.

Note that we only require that ghg−1 be some arbitrary element in H, not that
ghg−1 = h.

If H ⩽ G is an arbitrary (not necessarily normal) subgroup, then we can use it
to “slice up” G into subsets of equal size called cosets, one of which is H itself. We
define a (left) coset to be a set of the form

gH = {gh | h ∈ H}

for any fixed g ∈ G. Any two cosets (i.e. any two choices of g ∈ G) are either entirely
equal or completely disjoint. The relevance of normality here is that if H is normal,
then there is no need to distinguish between left (gH) and right (Hg) cosets, and
in this case we can construct the quotient group G/H consisting of cosets with the
operation defined by gH · g′H = (gg′)H. Here is one way to visualise a partition into
cosets:

cnH = cn cnh1 . . . cnhk

...
...

...
. . .

...
c2H = c2 c2h1 . . . c2hk

c1H = c1 c1h1 . . . c1hk

H = 1 h1 . . . hk
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The bottom row represents the subgroup H, and each row above represents a
coset, i.e. a set of elements generated by picking an element ck of G that does not
belong to H nor to any of the previously generated cosets, and then multiplying this
element by all elements in H, one at a time. This picture above shows that, for any
finite group G and any subgroup H ⩽ G,

|G| = |G : H| · |H|

where |G : H| is the number of cosets of G given by H. This fact is known as La-
grange’s theorem (although Joseph-Louis Lagrange was a rather prolific mathemati-
cian, working in many areas, so this is only one of the theorems to bear his name).

It seems like it was Évariste Galois who recognised that normal subgroups were
worthy of special attention. Given an arbitrary subgroup H ⩽ G, we can construct a
larger subgroup K ⩽ G in which H is normal, i.e. such that H / K ⩽ G. The largest
such subgroup K is called the normaliser of H in G, denoted by NG(H), and we can 0 When the ambient group G is

evident, we often simply denote
the normaliser by N(H). But the
choice of the groupG still matters!

construct it explicitly:

NG(H) = {g ∈ G | ghg−1 ∈ H for all h ∈ H}.

In words, the normaliser consists of the set of elements of G that conjugate all ele-
ments of H to elements of H. This suggests a very subtle question: is every subgroup
of a normal subgroup normal? The answer is most definitely no: if H / K and K / G
then it is not necessarily the case that H / G, merely that H ⩽ G.

As we shall soon see, Pauli stabilisers are not normal subgroups of Pn, and we will
instead want to study their normalisers.

7.6 Pauli normalisers

There are two subgroups that pop up once we choose a stabiliser S. The subgroup
of Pn consisting of all elements that commute which every element of S is called the
centraliser of S, denoted by 0 The letter Z stands for the Ger-

man Zentrum, which means centre.

Z(S) = {g ∈ Pn | gsg−1 = s for all s ∈ S}

and the other is the one that we have already seen: the normaliser

N(S) = {g ∈ Pn | gsg−1 ∈ S for all s ∈ S}.

These two are, in general, distinct but related: for the normaliser we ask that gsg−1 =
s′ for some arbitrary s′ ∈ S, and for the centraliser we additionally ask that s′ = s.
However, in the case of Pauli groups, these two subgroups coincide, because gsg−1 =
s′ if and only if sg = gs′, but since any two elements of the Pauli group either commute
or anticommute, this implies that s′ = s or s′ = −s; but we have already seen (and
proven, in Exercise 7.8.4) that if s is in a stabiliser then −s cannot be, and so it must
be the case that s′ = s.

In summary, given a stabiliser, we get a corresponding normaliser, and given the
normaliser (which, in our case, is the same thing as the centraliser), we get two
interesting quotient groups to study. By the definition of the normaliser, S is normal
in N(S). What is less obvious is that N(S) itself is normal in Pn. To prove this, let
g ∈ Pn and consider gng−1, for some n ∈ N(S). We need to show that gng−1 ∈ N(S).
For any s ∈ S,

(gng−1)s = s(gng−1)

because either s commutes with both g and g−1, or it anticommutes with both g and
g−1, in which case the two minus signs cancel out. Either way, s commutes with
gng−1, and so, by definition, gng−1 ∈ N(S). So S in normal in N(S) by definition,
and N(S) is normal in Pn by the above; but recall that this does not imply that S is
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7.6 Pauli normalisers

normal in Pn. Indeed, pick any element g ∈ Pn that anticommutes with some s ∈ S,
so that gsg−1 = −s; but we already know that if s ∈ S then −s 6∈ S.

With these normal subgroups S / N(S) / Pn we can form two quotient groups,
arranging things into cosets: N(S)/S and Pn/N(S). This is visualised in Figure 7.2.
Note that we can also form cosets of S in Pn, but since this is not a normal sub-
group the left cosets will be different from the right cosets, and we cannot construct
a quotient group Pn/S.

stabiliser S

cosets of S in N(S)normaliser N(S)

cosets of N(S) in Pn

Figure 7.2: Any Pauli stabiliser S ⩽ Pn (shown in red) slices its normaliser N(S)
(shown in blue) into cosets, and the normaliser in turn slices Pn into cosets. There
are four “sheets” in the diagram to remind us that there are four possible global
phases, so we obtain the three sheets behind the first one by multiplying by −1, i, and
−i. We give a more concrete worked example in Exercise 7.8.2.

This resulting structure — any Pauli stabiliser slicing its normaliser into cosets,
and this normaliser in turn slicing the Pauli group into cosets — will be very useful
when we discuss quantum error correction and fault tolerance in Sections 13 and 14,
and we can explain a bit how this will work now. The stabiliser will partition the
Hilbert space of n qubits into subspaces, and the one that is fixed by the stabiliser
will be chosen as a codespace. All operators in the normaliser will then become
logical operators on the codespace, and the cosets of the normaliser in Pn will group
together operators that describe errors of a similar type (those with the same error
syndrome). It will be a useful fact to know that Pn/N(S) is abelian — we show this
in Exercise 7.8.6.

Finally, let’s count some elements. We have already seen that |Pn| = 4 ·4n = 4n+1,
and that if S has r generators then |S| = 2r. But what about N(S)? By definition, the
normaliser consists of all the operators that commute with all the generators of the
stabiliser. There are 4 ·(4n/2) that commute with the first generator, half of which also
commute with the second generator, a further half of which also commute with the
third generator, and so on. So we have that |N(S)| = 4 · (4n/2r). Finally we have the
two quotient groups: N(S)/S has 4 · (4n/4r) = 4n−r+1 elements and is isomorphic to
Pn−r; and Pn/N(S) has (4 · 4n)/(4 · (4n/2r)) = 2r elements.
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7.7 Clifford walks on stabiliser states

7.7 Clifford walks on stabiliser states

There are essentially two ways to define stabiliser states of n qubits. We have already
seen how we can describe them as simultaneous +1 eigenstates of n generators of
some stabiliser group S ⩽ Pn, but it turns out that we could also define them as the
states that are reachable from the |0〉⊗n state using only the c-NOT gate, the Hadamard
H, and the phase gate S = ( 1 0

0 i ). If you start playing around with these three gates,
you’ll soon notice that you tend to reach certain discrete states, and never anything
in between them. For example, in the single qubit case (so with just the H and S
gates), you’ll be able to go between |0〉, |1〉, |±〉, and | ± i〉, but never anything like,

say,
√

1
3 |0〉 +

√
2
3 |1〉. When you have two or more qubits, you might also notice that

whenever you create an n-qubit superposition that assigns non-zero amplitudes to
strings in some set A ⊂ {0, 1}n, it’s always an equal superposition over A (though
possibly with ±1 or ±i phases), and |A| is always some power of 2. For example,
you can generate states such as 1√

2 (|000〉 + |111〉)|010〉 or 1
2 (|000〉 + i|100〉 + |011〉 −

i|111〉)|010〉, but never states such as 1√
3 (|001〉+ |010〉+ |100〉)|010〉.

Circuits composed of only c-NOT, H, and S = Pπ/2 are special: they effect
unitaries that map stabiliser states to stabiliser states.

The n-qubit Clifford group Cn is the group generated by these three uni-
taries, and it happens to be exactly the normaliser of of the n-qubit Pauli group
inside the group of all (2n × 2n) unitary matrices:

Cn = {U ∈ U(2n) | UPU† ∈ Pn for all P ∈ Pn} =: NU(2n)(Pn).

It’s a confusing (but immutable) matter of terminology that Clifford gates (i.e. gates
made from only unitaries in the Clifford group) are sometimes called stabiliser gates,
and Clifford circuits (i.e. circuits made from only Clifford gates) are sometimes called
stabiliser circuits, but stabiliser states are never called “Clifford states”.

So if we have an n-qubit stabiliser state, described by n Pauli generators, then any
unitary in the Clifford group Cn will map each of the n Pauli generators to another
Pauli generator, and the set of these n new generators will define a new stabiliser
state. Indeed, suppose we have some vector space V stabilised by the group S, and
we apply some unitary operation U . If |ψ〉 is an arbitrary element of V , then, for any
element S of S,

U |ψ〉 = US|ψ〉
= US(U†U)|ψ〉
= (USU†)U |ψ〉

and so the state U |ψ〉 is stabilised by USU†, from which we deduce that the vector
space

UV := {U |ψ〉 | |ψ〉 ∈ V }

is stabilised by the group

USU† := {USU† | S ∈ S}.

Furthermore, if G1, . . . , Gr generate S, then UG1U
†, . . . , UGrU

† generate USU†, so
to compute the change in the stabiliser we need only compute how it affects the
generators of the stabiliser.

Since the Clifford group is generated by only three elements, we can easily work
out how each of these gates acts by conjugation on the Pauli group. For instance, we
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7.7 Clifford walks on stabiliser states

have previously seen that the Hadamard gate performs the following transformation:

X 7−→ HXH = Z

Z 7−→ HZH = X.

Given that Y = iXZ, there is no need to specify the action of H on Y , since we can
calculate that

Y 7−→ i(HXH)(HZH)
= iZX

= − Y.

All the basic rules for updating stabilisers with Clifford gates can be conveniently
tabulated:

Gate Input/Output

H

 X 7−→ Z
Y 7−→ −Y
Z 7−→ X


S

 X 7−→ Y
Y 7−→ −X
Z 7−→ Z



c-NOT



1X 7−→ 1X
X1 7−→ XX
1Y 7−→ ZY
Y 1 7−→ Y X
1Z 7−→ ZZ
Z1 7−→ Z1


and these rules can be expressed as circuit identities, such as

X
=

X

X

X

=
X

Z
= Z

Z

=
Z

Z

Let’s work through an example to see how these rules work in practice. Here’s a
simple stabiliser circuit:
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|0⟩ H

|0⟩ S

As we step through this circuit we embark on our Clifford walk between two-qubit
stabiliser states:

|00〉 H⊗17−→ 1√
2

(|0〉+ |1〉)|0〉

c-NOT7−→ 1√
2

(|00〉+ |11〉)

1⊗S7−→ 1√
2

(|00〉+ i|11〉).

This walk could also be described in terms of stabiliser generators:∣∣∣∣Z 1
1 Z

∣∣∣∣ H⊗17−→
∣∣∣∣X 1
1 Z

∣∣∣∣ c-NOT7−→
∣∣∣∣X X
Z Z

∣∣∣∣ 1⊗S7−→
∣∣∣∣X Y
Z Z

∣∣∣∣ .
Here the first column corresponds to the first qubit, and the second column to the
second qubit. So the first Hadamard gate flips Z1 to X1, then the c-NOT (which acts
on both qubits together, and so acts on entire rows) turns X1 into XX and 1Z into
ZZ, then finally the S gate on the second qubit (thus the second column) turns XZ
into Y Z.

Despite the fact that the Clifford circuits can generate huge entangled n-qubit
superpositions starting from the single state |0〉⊗n, such circuits are easy to simulate
classically because we can efficiently update the list of stabilisers following the simple
rules. Daniel Gottesman and Emanuel Knill showed that there is a polynomial-time 0 This is now known as the

Gottesman–Knill theorem.classical algorithm to simulate any stabiliser circuit that acts on a stabiliser state. We
can also efficiently compute the expectation values of any physical observables by
examining the updated list of stabilisers. Note that computing a list of amplitudes
would not be efficient, since there are exponentially many of them.

Because they can be efficiently classically simulated, stabiliser circuits necessarily
do not capture the full power of quantum computation. Fully universal quantum
computation requires as least one non-Clifford gate, such as the T =

( 1 0
0 e−iπ/4

)
gate.

Once we include this gate, we can create circuits that will take us from any initial
state, such as |0〉⊗n, to arbitrarily close to any other state in the n-qubit Hilbert space.
Despite this limitation of stabiliser computation, however, it has become a central
part of quantum computing, mostly because of its role in quantum error correction
and fault-tolerant computation. Almost all of the quantum error correcting codes are
stabiliser codes, and are presented using the stabiliser formalism.

7.8 Remarks and exercises

7.8.1 Measuring parity

Suppose you have a two-qubit stabiliser ZZ. This is an observable that has two eigen-
values and two corresponding eigenspaces, namely the +1-eigenspace spanned by
{|00〉, |11〉} and the −1-eigenspace spanned by {|01〉, |10〉}. This tells us something
about the parity of the two qubits: the +1 outcome means that the bit values are the
same, and the −1 outcome means that they are different. However, it is critical that
we do not measure the bit values Z1 and 1Z separately and then multiply the results,
since this could cause the state to “collapse” to one of the basis states in revealing the
exact bit values. We don’t want this! We simply want to know the mutual parity of
the bit values, not what values they actually are.
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Mathematically speaking, the parity measurement ZZ involves two orthogonal
projectors

1
2

(11 + ZZ) = |00〉〈00|+ |11〉〈11|

1
2

(11− ZZ) = |01〉〈01|+ |10〉〈10|

whereas the bit-value measurements Z1 and 1Z are characterised by the four projec-
tors

1
2

(11 + Z1) = |0〉〈0| ⊗ 1

1
2

(11 + 1Z) = 1⊗ |0〉〈0|

1
2

(11− Z1) = |1〉〈1| ⊗ 1

1
2

(11− 1Z) = 1⊗ |1〉〈1|.

In terms of circuits, if we want to measure the parity of two qubits prepared in
some state |ψ〉, then we can use the circuit

|ψ⟩

|0⟩

which is different from the circuit which effects the measurement of the individual
bit values of the two qubits, namely

|ψ⟩

|0⟩

|0⟩

When dealing with stabilisers, we prefer to think of the controlled-NOT gate as a
controlled-X instead. We then draw the parity-measurement circuit as

|ψ⟩

|0⟩ X X

But this is a bit confusing, since we are measuring the Z observable using controlled-
X gates. Thankfully, we can use some circuit/Pauli identities to rephrase things in
terms of controlled-Z gates instead:

|0⟩ H H

|ψ⟩ Z

Z
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This is a quantum version of the two-bit parity measurement. When the auxil-
iary qubit (now in the top register) is found in state |0〉 then we projected onto the
+1-eigenspace of ZZ, which is spanned by the vectors |00〉 and |11〉; otherwise, we
projected onto the −1-eigenspace of ZZ, which is spanned by the vectors |01〉 and
|10〉. The circuit above is more commonly drawn simply as

|0⟩ H H

|ψ⟩
Z

Z

This scheme can be generalised and used to implement any sequence of Pauli
measurements. For example, the circuit below shows to consecutive measurements:
X1Z followed by 1Y Z.

|0⟩ H H

|0⟩ H H

|ψ⟩

X

Y

Z Z

7.8.2 The Pauli group of three qubits

Consider the three-qubit Pauli group P3, which has 4·43 = 256 elements. One example
of a stabiliser group is

S = {111, ZZ1,1ZZ,Z1Z}
= 〈ZZ1,1ZZ〉.

since it is an abelian subgroup of P3 that does not contain −111. You can check that
it fixes the subspace spanned by |000〉 and |111〉 (and note that you only need to check
this on the generators of S, not for all elements of S). We have already seen in Figure
7.1 how these two generators bisect the Hilbert space of three qubits, so now let’s try
to understand Figure 7.2 for this specific example.

The elements of P3 that commute with the stabiliser S form the normaliser N(S).
Since the stabiliser is abelian, it itself is contained inside the normaliser, but there are
also elements in the normalised that are not in the stabiliser. All together, there are
4 · 16 = 64 elements in the normaliser, and they can be neatly sliced into cosets of S
in N(S), as shown in Figure 7.3.
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−iZZZ −i11Z −iZ11 −i1Z1

iY Y Y −iXXY −iY XX −iXY X

−iXXX iY Y X iXY Y iY XY

−i111 −iZZ1 −i1ZZ −iZ1Z

iZZZ i11Z iZ11 i1Z1

−iY Y Y iXXY iY XX iXY X

iXXX −iY Y X −iXY Y −iY X

i111 iZZ1 i1ZZ iZ1Z

−ZZZ −11Z −Z11 −1Z1

Y Y Y −XXY −Y XX −XYX

−XXX Y Y X XY Y Y XY

−111 −ZZ1 −1ZZ −Z1Z

ZZZ 11Z Z11 1Z1

−Y Y Y XXY Y XX XYX

XXX −Y Y X −XY Y −Y XY

111 ZZ1 1ZZ Z1Z

Figure 7.3: Here we have arranged the elements of the normaliser of S so that each
row represents a coset of S in N(S). The quotient group N(S)/S is isomorphic to
the Pauli group P1, and you can see this by considering the first column (which is the
representative for that row/coset) of the frontmost page: the four operators 111,
XXX, −Y Y Y , and ZZZ behave, algebraically, exactly the same as 1, X, Y , and Z
(in that they satisfy the same commutation relations). Note that it is indeed −Y Y Y
that behaves like Y , not +Y Y Y .

Having pictured the cosets of S inside N(S), we can now look at the cosets of
N(S) inside P3, as in Figure 7.4. A “filled in” version of this diagram (where every
element is listed, as in Figure 7.3) will be given in Figure 14.8.
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S

N(S)

(X11) ·N(S)

(1X1) ·N(S)

(11X) ·N(S)

Figure 7.4: Here the cosets of the normaliser N(S) inside P3 are given by the repre-
sentatives 111, X11, 1X1, and 11X. Each of the four cosets representing an element
of P3/N(S) is composed of 16 rows (four in each sheet). These rows represent cosets
of S in P3 but we have to be careful: within the normaliser N(S), these are well de-
fined, but outside of the normaliser there is a difference between left and right cosets,
since S is not normal in P3. The blue and red rows are exactly a copy of those from
Figure 7.3.

7.8.3 Half commuting

Any Pauli matrix that is not the identity commutes with exactly half of all the Pauli
matrices: namely, with the identity and with itself. For example, X commutes with 1
and X, and anticommutes with Y and Z.

Extend this observation to any non-identity element in Pn. In other words, show
that, for any P ∈ Pn \ {1⊗n}, exactly half of the elements in Pn commute with P .

7.8.4 One out of four stabilisers

Explain why, if S is an element of some stabiliser group, then none of −S, iS, or −iS
are in the same stabiliser group.

7.8.5 Stabilisers and projectors

Let S be a Pauli stabiliser group, with generators G1, . . . , Gr.

1. Show that 1
2 (1 ± Gj) is the projector onto the ±1-eigenspace of Gj for any

j = 1, . . . , r.
2. Show that the projector

P = 1
2

(1 +G1)1
2

(1 +G2) . . . 1
2

(1 +Gr)

onto the simultaneous +1-eigenspace of the generators G1, . . . , Gr can be writ-
ten as

P = 1
2r

(S1 + S2 + . . .+ S2r )

where the sum contains all elements Si of S.
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3. The fact that independent generators consecutively bisect the total Hilbert space
relies on the fact that, if G1 and G2 are independent generators, then G2 re-
stricted to the +1-eigenspace of G1 bisects it into two subspaces of equal di-
mension. Explain how this fact follows from

tr
[

1
2

(1 +G1)G2
1
2

(1 +G1)
]

= 0

and prove that this trace is indeed zero. Why do the two generators G1 and G2
have to be independent?

7.8.6 Abelian Pauli quotients

Given any group G, we define the commutator [−,−] by

[−,−] : G×G −→ G

(g1, g2) 7−→ g−1
1 g−1

2 g1g2

Now let H / G be a normal subgroup, and consider the following theorem.

Theorem. The quotient G/H is abelian if and only if [g1, g2] ∈ H for all
g1, g2 ∈ G.

Using this theorem (or otherwise),

1. Prove that Pn/N(S) is abelian for any Pauli stabiliser S ⩽ Pn.
2. Prove that Pn/C4 is abelian, where C4 ∼= Z/4Z is given by the global phase.

7.8.7 Equivalent projective measurements

In Section 7.4 we described a generic method for constructing projective measure-
ments of Pauli observables. However, sometimes it may be easier to use equivalent,
simpler constructions. For example, the following two circuit identities are often used:

|0⟩ H H

|ψ⟩ X

=
|0⟩

|ψ⟩ H H

|0⟩ H H

|ψ⟩ Z

=
|0⟩

|ψ⟩

These both follows from the fact that HZH = X, and that the control and the tar-
get of a controlled-Z gate can be chosen arbitrarily, since the gate itself is symmetric
with respect to this choice: the phase-flip only happens when both qubits are in state
|1〉.
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8 Density matrices

About density matrices, and how they help to solve the problem in-
troduced by entangled states, as well as how they let us talk about
mixtures and subsystems. Also a first look at the partial trace.

We cannot always assign a definite state vector to a quantum system. It may
be that the system is part of a composite system that is in an entangled state, or it
may be that our knowledge of the preparation of a particular system is insufficient
to determine its state — for example, someone may prepare a particle in one of the
states |ψ1〉, |ψ2〉, . . . , |ψn〉, with (respective) probabilities p1, p2, . . . , pn, and then give
it to us without telling us which state |ψk〉 it’s actually in. Nevertheless, in either
case we are able to make statistical predictions about the outcomes of measurements
performed on the system using a more general description of quantum states.

We have already mentioned that the existence of entangled states leads to an
obvious question: if we cannot attribute a state vectors to an individual quantum
system, then how should we describe its quantum state? In this chapter we will
introduce an alternate description of quantum states that can be applied both to a
composite system and to any of its subsystems. Our new mathematical tool is called
a density operator. We will start with the density operator as a description of the 0 If we choose a particular ba-

sis, operators become matrices.
Throughout this book we use both
terms (density operators and den-
sity matrices) pretty interchange-
ably.

mixture of quantum states, and will then discuss the partial trace, which is a unique
operation that takes care of the reduction of a density operator of a composite system
to density operators of its components.

8.1 Definitions

If you are an impatient, more mathematically minded person, who feels most com-
fortable when things are properly defined right from the beginning, here is your def-
inition. Recall that a Hermitian matrix M is said to be non-negative, or positive
semi-definite, if 〈v|M |v〉 ⩾ 0 for any vector |v〉, or if all of its eigenvalues are non-
negative, or if there exists another matrix A such that M = A†A. 0(This is called a Cholesky factor-

ization.)

A density operator ρ on a Hilbert space H is a non-negative Hermitian oper-
ator with trace equal to one:

• Hermitian: ρ† = ρ
• Non-negative: 〈v|ρ|v〉 ⩾ 0 for all |v〉
• Trace one: tr ρ = 1.

It follows that any density operator ρ can always be diagonalised, and that the
eigenvalues are all real, non-negative, and sum to 1. Moreover, given two density 0Note that these properties are ex-

actly saying that we can interpret
the eigenvalues as probabilities.

operators ρ1 and ρ2, we can always construct another density operator as a convex
sum of the two:

ρ = p1ρ1 + p2ρ2

where p1, p2 ⩾ 0 are such that p1 + p2 = 1. You should check that the resulting ρ has
all the defining properties of a density matrix, i.e. that it is Hermitian, non-negative,
and that its trace is 1. This means that density operators form a convex set: a subset
of a vector space is said to be convex if, for any two points in the subset, the straight
line segment joining them is also entirely contained inside the subset.

An important example of a density operator is a rank-one projector: any quantum 0 Recall that the rank of a ma-
trix is equal to the number of its
non-zero eigenvalues, or (equiva-
lently) the dimension of its image.

state that can be described by the state vector |ψ〉 can be also described by the density
operator ρ = |ψ〉〈ψ|; such states are called pure states. Pure states are the extremal
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points in the convex set of density operators: they cannot be expressed as a non-trivial
convex sum of other elements in the set. In contrast, all other states, called mixed
states, can be always written as the convex sum of pure states:

∑
i pi|ψi〉〈ψi| for some

pi ⩾ 0 with
∑

i pi = 1.

Convex spaces.

Convex spaces show up in many areas of mathematics: combinatorists and dis-
crete geometers are often interested in convex polytopes, and the special case
of simplices is even more fundamental, turning in up in algebraic topology,
higher algebraic geometry, and, more generally, higher category theory. Closer
to what we are studying, the notion of entropy in (classical) information the-
ory is somehow inherently convex — see e.g. Baez, Fritz, and Leinster’s “A
Characterization of Entropy in Terms of Information Loss”, arXiv:1106.1791.

The specific type of convex polytope that we are interested in turns out to
be a convex hull, and these are also found all throughout mathematics.

Now that we have settled the mathematical essentials, we will turn to physical
applications.

8.2 Statistical mixtures

Let us start with probability distributions over state vectors. Suppose Alice prepares 0 For brevity, we often sim-
ply say “probability distribution”
to mean “a finite set of non-
negative real numbers pk such
that

∑
k
pk = 1”.

a quantum system and hands it over to Bob, who subsequently measures observable
M . If Alice’s preparation is described by a state vector |ψ〉, then, quantum theory
declares, the average value of any observable M is given by 〈ψ|M |ψ〉, which we have
previously also written as 0IfM is one of the orthogonal pro-

jectors Pk describing the measure-
ment, then the average 〈Pk〉 is the
probability of the outcome k asso-
ciated with this projector.

〈M〉 = 〈ψ|M |ψ〉 = trM |ψ〉〈ψ|.

This way of expressing the average value makes a clear separation between the
contributions from the state preparation and from the choice of the measurement.
We have two operators inside the trace: |ψ〉〈ψ| describes the state preparation, and
M describes the measurement.

Now, suppose Alice prepares the quantum system in one of the (normalised, but
not necessarily orthogonal) states |ψ1〉, . . . , |ψm〉, choosing state |ψi〉 with probability
pi. She then hands the system to Bob without telling him which state she chose. We
call this situation a (statistical) mixture of the states |ψi〉, or a mixed state for short. 0A pure state can be seen as a spe-

cial case of a mixed state, where
all but one the probabilities pi
equal zero. So by talking about
mixed states, we’re still able to
talk about everything that we’ve
already seen up to this point.

It is important to note that a mixture of states is very different from a superpo-
sition of states: a superposition always yields a definite state vector, whereas
a mixture does not, and so must be described by a density operator.

Let’s be extra clear about this distinction between superpositions and statistical
mixtures. If Alice had prepared the system in the superposition

∑
i pi|ψi〉, then both

her and Bob would describe it by the state vector
∑

i pi|ψi〉. If she instead follows
the above random procedure, then she knows that it is simply described by the state
vector |ψi〉, but the best “description” available to Bob is

∑
i pi|ψi〉〈ψi|, as we will now 0 This description is not one that

we have seen before — it’s not a
linear combination of kets, but in-
stead a linear combination of pro-
jectors!

justify.
What Bob does know is the ensemble of states |ψ1〉, . . . , |ψm〉 as well as the cor-

responding probability distribution p1, . . . , pm. Using this, he can calculate 〈M〉 as
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follows:

〈M〉 =
∑

i

pi (trM |ψi〉〈ψi|)

= trM

(∑
i

pi|ψi〉〈ψi|

)
= trMρ

where we have simply defined ρ =
∑

i pi|ψi〉〈ψi|. As before, we have two operators
under the trace: ρ =

∑
i pi|ψi〉〈ψi|, which pertains to the state preparation, and M ,

which describes the measurement. We shall call the operator

ρ =
∑

i

pi|ψi〉〈ψi|

the associated density operator, since it has all the defining properties of a density
operator (it is a convex sum of rank-one projectors). It depends on the constituent
states |ψi〉 and their probabilities, and it describes our ignorance about the state prepa-
ration. Conversely, given a density operator ρ, then we call a set {(pi, |ψi〉〈ψi|)} a
convex decomposition if it expresses ρ as a convex sum of rank-one projectors, i.e. if
ρ =

∑
i pi|ψi〉〈ψi|.

Once we have ρ we can make statistical predictions: we have just shown that, for
any observable M , its expected value is given by

〈M〉 = trMρ.

So the exact composition of the mixture does not enter this formula: for computing
the statistics associated with any observable property of a system, all that matters is
the density operator itself, but not its decomposition into the mixture of states. This
is important because any given density operator, with the remarkable exception of
a pure state, can arise from many different mixtures of pure states. Consider, for
example, the following three scenarios:

1. Alice flips a fair coin. If the result is heads then she prepares the qubit in the
state |0〉, and if the result is tails then she prepares the qubit in the state |1〉. She
gives Bob the qubit without revealing the result of the coin-flip. Bob’s knowledge
of the qubit is described by the density matrix

1
2
|0〉〈0|+ 1

2
|1〉〈1| =

[ 1
2 0
0 1

2

]
.

2. Alice flips a fair coin. If the result is heads then she prepares the qubit in the
state |+〉 := 1√

2 (|0〉+ |1〉), and if the result is tails then she prepares the qubit in
the state |−〉 := 1√

2 (|0〉 − |1〉). Bob’s knowledge of the qubit is now described by
the density matrix

1
2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2

[ 1
2

1
21

2
1
2

]
+ 1

2

[ 1
2 − 1

2
− 1

2
1
2

]
=
[ 1

2 0
0 1

2

]
.

3. Alice flips a fair coin, having already picked an arbitrary pair of orthonormal
states |u1〉 and |u2〉. If the result is heads then she prepares the qubit in the
state |u1〉, and if the result is tails then she prepares the qubit in the state |u2〉.
Since any two orthonormal states of a qubit form a complete basis, the mixture
1
2 |u1〉〈u1|+ 1

2 |u2〉〈u2| gives 1
2 1.
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As you can see, these three different preparations yield precisely the same density
matrix and are thus statistically indistinguishable. In general, two different mixtures
can be distinguished (in a statistical, experimental sense) if and only if they yield
different density matrices. In fact, the optimal way of distinguishing quantum states
with different density operators is still an active area of research.

8.3 Instructive examples

The density matrix corresponding to the state vector |ψ〉 is the rank-one pro-
jector |ψ〉〈ψ|.

This correspondence is well defined: each |ψ〉 gives rise to a distinct density ma-
trix, and the fact that we ignore global phases for state vectors doesn’t introduce any
ambiguity for the density matrices, since |ψ〉 and eiφ|ψ〉 give the same density matrix.

Let’s consider two examples, seeing again how superpositions differ from statisti-
cal mixtures.

1. If Alice prepares a qubit in the superposition state |ψ〉 = α|0〉 + β|1〉 then the
corresponding density matrix is the projector

|ψ〉〈ψ| =
[
|α|2 αβ?

α?β |β|2
]
.

2. You are given a qubit and you are told that it was prepared either in state |0〉
with probability |α|2 or in state |1〉 with probability |β|2. In this case all you can
say is that your qubit is in a mixed state described by the density matrix

|α|2|0〉〈0|+ |β|2|1〉〈1| =
[
|α|2 0

0 |β|2
]
.

The density matrix corresponding to a statistical mixture of states
|ψ1〉, . . . , |ψn〉 with probability distribution p1, . . . , pn is the convex combina-
tion

∑
i pi|ψi〉〈ψi|. If the constituent states are orthogonal, then the density

matrix is diagonal.

Suppose you want to distinguish between preparations described by the den-
sity matrices in the above two examples. Assume that you are given sufficiently
many qubits, all identically prepared, i.e. either all described by the density matrix[

|α|2 αβ?

α?β |β|2

]
, or all described by the density matrix

[
|α|2 0

0 |β|2

]
. Which of the two mea-

surements would you choose: the measurement in the standard basis {|0〉, |1〉}, or the
measurement in the basis {|ψ〉, |ψ⊥〉} where |ψ⊥〉 is orthonormal to |ψ〉? 0 In fact, one of these two mea-

surements is completely useless.
Exercise. Which one, and why?

In general, the diagonal entries of a density matrix describe the probability distri-
butions on the set of basis vectors. They must add up to one, which is why the trace of
any density matrix is one. The off-diagonal elements, often called coherences, signal
departure from the classical probability distribution and quantify the degree to which
a quantum system can witness interference (we will discuss this in detail later on).
The process in which off-diagonal entries go to zero is called decoherence.[

|α|2 αβ?

α?β |β|2
]
7−→

[
|α|2 ε
ε? |β|2

]
7−→

[
|α|2 0

0 |β|2
]

For ε = αβ? we have a pure quantum state (“full interference capability”) and for ε =
0 we have a classical probability distribution over the standard basis (“no interference
capability”).
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3. Suppose that your qubit was prepared either in state α|0〉 + β|1〉 or in state
α|0〉 − β|1〉, with equal probability. This means that your qubit is in a mixed
state described by the density matrix

1
2

[
|α|2 αβ?

α?β |β|2
]

+ 1
2

[
|α|2 −αβ?

−α?β |β|2
]

=
[
|α|2 0

0 |β|2
]
.

There is no way to tell the difference between the equally weighted mixture
of α|0〉 ± β|1〉 and a mixture of |0〉 and |1〉 with (respective) probabilities |α|2
and |β|2.

4. For any density matrix ρ, the most natural mixture that yields ρ is its spectral
decomposition: ρ =

∑
i pi|ui〉〈ui|, with eigenvectors |ui〉 and eigenvalues pi.

5. If the states |u1〉, . . . , |un〉 form an orthonormal basis, and each occurs with equal
probability 1/n, then the resulting density matrix is proportional to the identity:

1
n

n∑
i=1
|ψi〉〈ψi| =

1
n

1.

This is a maximally mixed state. For qubits, any pair of orthogonal states taken
with equal probabilities gives the maximally mixed state 1

2 1.

A state is said to be maximally mixed if the outcomes of any measurement
are completely random.

It is often convenient to write density operators in terms of projectors on states
which are not normalised, incorporating the probabilities into the length of the state
vector:

ρ =
∑

i

|ψ̃i〉〈ψ̃i|

where |ψ̃i〉 = √pi|ψi〉, i.e. pi = 〈ψ̃i|ψ̃i〉. This form is more compact, but you have to
remember that the state vectors are not normalised. We tend to mark such states with
the tilde, e.g. |ψ̃〉, but you may have your own way to remember.

8.4 The Bloch ball

We have already talked in some depth about the Bloch sphere, but now that we are
considering density operators (which are strictly more general than state vectors), we
are actually interested in the Bloch ball, i.e. not just the sphere of vectors of magnitude 0 Physicists often still refer to the

Bloch ball as the Bloch sphere,
even though it really is a ball now,
not a sphere.

1, but instead the ball of vectors of magnitude less than or equal to 1.
An arbitrary (2 × 2) Hermitian matrix has four real parameters and can be ex-

panded in the basis {1, σx, σy, σz} consisting of the identity and the three Pauli matri-
ces. Since the Pauli matrices are traceless (i.e. their trace is equal to 0), the coefficient
of 1 in the expansion of a density matrix ρ must be 1

2 , in order to have tr ρ = 1. Thus
ρ may be expressed as

ρ = 1
2

(1 + ~s · ~σ)

= 1
2

[
1 + sz sx − isy

sx + isy 1− sz

]
.
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8.4 The Bloch ball

where ~s = (sx, sy, sz) and ~σ = (σx, σy, σz). The vector ~s is called the Bloch vector for
the density operator ρ. Any real Bloch vector ~s defines a Hermitian operator ρ with
tr ρ = 1, but in order for ρ to be a density operator it must also be non-negative. Which
Bloch vectors yield legitimate density operators? That is, what does the non-negative
condition on ρ translate to in terms of the Bloch vector ~s?

To answer this, let us compute the eigenvalues of ρ. The trace of a matrix is
equal to the sum of its eigenvalues, and the determinant is equal to the product of its
eigenvalues. We know that tr ρ = 1, and we can calculate det ρ from the matrix form
above:

det ρ = 1
4

(1− s2)

= 1
2

(1 + s)1
2

(1− s)

where s = |~s| =
√
|sx|2 + |sy|2 + |sz|2. It follows that the two eigenvalues of ρ are

1
2 (1 ± s). For ρ to be non-negative, its eigenvalues have to be non-negative, and so s
(the length of the Bloch vector) cannot exceed 1.

We can now visualise the convex set of (2 × 2) density matrices as a unit ball in
three-dimensional Euclidean space: the extremal points, which represent pure states,
are the points on the boundary (~s such that s = 1), i.e. the surface of the ball (the
Bloch sphere, which we have already seen!); the maximally mixed state 1/2 corre-
sponds to s = 0, i.e. the centre of the ball. In general, the length of the Bloch vector
s can be thought of as the “purity” of a state.

One might hope that there is an equally simple visualisation of the density oper-
ators in higher dimensions. Unfortunately, there is not: things become much more
complicated, very quickly.

Bloch ball for qutrits.

Qubits are 2-dimensional and give rise to the Bloch ball, which is a 3-
dimensional object. In general, n-dimensional quantum systems give rise to
(n2 − 1)-dimensional state spaces, often denoted Qn; for n = 3, where we
study qutrits, we would need to study an 8-dimensional object Q3.

It turns out, quite surprisingly, that there exists a 3-dimensional object that
has many (but not all) of the properties that we would want from Q3. For ex-
ample, the rank-1 pure states form a connected set on the surface, which lies a
maximum distance of

√
2 from the maximally mixed state 1

3 1; the other points
on the surface correspond to rank-1 and rank-2 operators; the points strictly
inside correspond to rank-3 (i.e. full rank) operators. However, since it is only
3-dimensional, it can never satisfy all the properties that we would like, since
Q3 has to be 8-dimensional. Nevertheless, the construction is both interesting
and useful (and very recent!) — see C Eltschka, M Huber, S Morelli, and J
Siewert, “The shape of higher-dimensional state space: Bloch-ball analog for
a qutrit”, Quantum 5 (2021), DOI: 10.22331/q-2021-06-29-485.

One has to be careful when trying to use the Bloch ball to talk about multiple
qubits, precisely for the reason that “most” states are not separable states, but instead
have some amount of entanglement. If we have n qubits, then we can describe the
corresponding product state in terms of n vectors in the Bloch ball, but this method
only lets us describe product states of the n qubits — we saw in Section 5.5 that, as n
grows larger, “most” states are not separable!

For example, say that we have a system with two qubits, and we wish to under-
stand how they move around the Bloch sphere under some unitary evolution. If our
qubits are initially in state |a〉|b〉, then evolve to the state U |a〉|b〉. Simple! But now
say that, before applying our unitary U , we first rotated the Bloch ball so that our
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8.5 Subsystems of entangled systems

qubits were in some other state |a′〉|b′〉, and then applied our unitary U to this rotated
state. A natural question to ask is if there exists some rotation that takes the first
result U |a〉|b〉 to the second result U |a′〉|b′〉. In other words, if we denote our rotation
by R, then does there exist a rotation S such that U ◦R = S ◦ U?

The answer is most definitely no, as shown by a reasonably simple example: con-
sider the controlled-NOT gate acting on two qubits initially in some state |0〉|ψ〉, and
where the rotation R takes |0〉|ψ〉 to |ψ′〉|0〉. Then (U ◦ R)|a〉|b〉 = |ψ′〉|ψ′〉, and
U |a〉|b〉 = |0〉|ψ〉. But we cannot transform the latter into the former by a simple
rotation of the sphere, since the latter has two distinct Bloch vectors, whereas the for-
mer has a single repeated one, and rotations never “collapse” two distinct vectors into
one. The key point here is that the angles between the Bloch vectors can change upon
applying unitary operations, and the amount by which they change can depend on
the Bloch vectors themselves, whereas rotations keep these relative angles constant.

8.5 Subsystems of entangled systems

Earlier, we claimed that one of the most important features of the density operator
formalism is its ability to describe the quantum state of a subsystem of a composite
system. Let us now show you how this works.

Given a quantum state of the composite system AB described by some density
operator ρAB, we obtain reduced density operators ρA and ρB of the subsystems A
and B (respectively) by the partial trace:

ρAB 7−→ ρA = trB ρAB︸ ︷︷ ︸
partial trace over B

ρAB 7−→ ρB = trA ρAB︸ ︷︷ ︸
partial trace over A

We will revisit the notion of partial trace quite a few times, but for now we simply
define the partial trace over B (or A) first on a tensor product of two operators A⊗B
as

trB(A⊗B) = A(trB)
trA(A⊗B) = (trA)B,

and then extend to any operator on HA ⊗HB by linearity.
Here is a simple example. Suppose a composite system AB is in a pure entangled

state |ψAB〉. We can always write this as

|ψAB〉 =
∑

i

ci|ai〉 ⊗ |bi〉,

where |ai〉 and |bj〉 are two orthonormal bases (e.g. the Schmidt bases, from Exercise
5.14.13), and where

∑
i |ci|2 = 1 (due to the normalisation). The corresponding

density operator of the composite system is the projector ρAB = |ψAB〉〈ψAB|, which
we can write as

ρAB = |ψAB〉〈ψAB| =
∑
i,j

cic
?
j |ai〉〈aj | ⊗ |bi〉〈bj |

Let us compute the reduced density operator ρA by taking the partial trace over
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B:

ρA = trB ρAB

= trB |ψAB〉〈ψAB|

= trB
∑
i,j

cic
?
j |ai〉〈aj | ⊗ |bi〉〈bj |

=
∑
i,j

cic
?
j |ai〉〈aj |(tr |bi〉〈bj |)

=
∑
i,j

cic
?
j |ai〉〈aj | 〈bi|bj〉︸ ︷︷ ︸

δij

=
∑

i

|ci|2|ai〉〈ai|.

So, in the |ai〉 basis, the reduced density matrix ρA is diagonal, with entries pi = |ci|2.
Similarly, if we take the partial trace over A, then we get ρB =

∑
i |ci|2|bi〉〈bi|.

In particular, if dimHA = dimHB = d, then the maximally mixed state

|ψAB〉 = 1√
d

d∑
i

|ai〉|bi〉,

in the (d×d)-dimensional Hilbert spaceHA⊗HB is such that the reduced density op-
erators ρA and ρB are also the maximally mixed states of their respective subsystems:
ρA = ρB = 1

d 1. It follows that the quantum states of individual qubits in any of the
Bell states are maximally mixed: their density matrix is 1

2 1.
A bipartite state such as

1√
2

(|00〉+ |11〉)

guarantees perfect correlations when each qubit is measured in the standard basis: the
two outcomes are “0 and 0” or “1 and 1” (which are equally likely), and we will never
observe e.g. “0 and 1”, but the outcome of either single-qubit subsystem is completely
random.

8.6 Mixtures and subsystems

So far we have used density operators to describe two distinct situations: the statis-
tical properties of mixtures of states, and the statistical properties of subsystems of
composite systems. In order to see the relationship between the two, consider a joint
state of a bipartite system AB, written in a product basis of HA ⊗HB as

|ψAB〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

j

|ψ̃j〉|bj〉 =
∑

j

√
pj |ψj〉|bj〉

where |ψ̃j〉 =
∑

i cij |ai〉, which we can also write as √pj |ψj〉 where the |ψj〉 are the
normalised versions of the |ψ̃j〉, and pj = 〈ψ̃j |ψ̃j〉.
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Then the partial trace over B gives the reduced density operator of subsystem A:

ρA = trB

∑
i,j

|ψ̃i〉〈ψ̃j | ⊗ |bi〉〈bj |


=
∑
i,j

|ψ̃i〉〈ψ̃j |(tr |bi〉〈bj |)

=
∑
i,j

|ψ̃i〉〈ψ̃j |〈bj |bi〉

=
∑

i

|ψ̃i〉〈ψ̃i| =
∑

i

pi|ψi〉〈ψi|.

Now let us see how ρA can be understood in terms of mixtures. Imagine we place
subsystems A and B in two separate labs, run by Alice and Bob, respectively. Say
Bob measures the B part in the |bj〉 basis and obtains result k, which happens with
probability pk. In doing so, he inevitably prepares subsystem A in the state |ψk〉:∑

i=1

√
pj |ψi〉|bi〉

outcome k7−→ |ψk〉|bk〉.

Bob does not communicate the outcome of his measurement. Thus, from Alice’s
perspective, Bob prepares a mixture of |ψ1〉, . . . , |ψm〉, with probabilities p1, . . . , pm,
which means that Alice, who knows the joint state but not the outcomes of Bob’s
measurement, may associate density matrix ρA =

∑
i pi|ψi〉〈ψi| with her subsystem

A. This is the same ρA that we obtained before by taking the partial trace.
But suppose Bob chooses to measure his subsystem in some other basis. Will it

have any impact on Alice’s statistical predictions? Measurement in the new basis will
result in a different mixture, but Alice’s density operator will not change.

Say Bob chooses some basis |di〉 for his measurement. Any two orthonormal bases
are connected by some unitary transformation, and so we can write |bi〉 = U |di〉 for
some unitary U . The joint state can now be expressed as 0 In terms of components, |bi〉 =∑

j
Uij |dj〉

|ψAB〉 =
∑

i

|ψ̃i〉|bi〉

=
∑

i

|ψ̃i〉

∑
j

Uij |dj〉


=
∑

j

(∑
i

Uij |ψ̃i〉

)
︸ ︷︷ ︸

|φ̃j〉

|dj〉

=
∑

j

|φ̃j〉|dj〉.

If Bob measures in the |di〉 basis then he generates a new mixture of states |φ1〉, . . . |φm〉,
which are the normalised versions of |φ̃1〉, . . . |φ̃m〉, with each |φk〉 occurring with
probability pk = 〈φ̃k|φ̃k〉. But this new mixture has exactly the same density operator
as the previous one:∑

j

|φ̃j〉〈φ̃j | =
∑
i,j,l

Uij |ψ̃i〉〈ψ̃l|U?
lj

=
∑
i,l

∑
j

UijU
?
lj


︸ ︷︷ ︸

δil

|ψ̃i〉〈ψ̃l|

=
∑

i

|ψ̃j〉〈ψ̃j |
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where we use the fact that the Uij are the entries of a unitary matrix, and so
∑

k UikU
?
jk =

δij . But this is exactly ρA! So does it really matter whether Bob actually performs the
measurement or not?

No — it does not.
After all, Alice and Bob may be many many miles away from each other, and if any

of Bob’s actions were to result in something that is physically detectable at Alice’s lab,
then this would amount to instantaneous communication between the two of them.

From the operational point of view it does not really matter whether the density
operator represents our ignorance of the actual state (mixtures) or provides the only
description we can have after discarding one part of an entangled state (partial trace). 0 The two interpretations of den-

sity operators have filled volumes
of academic journals. The terms
proper mixtures and improper
mixtures are used, mostly by
philosophers, to describe the sta-
tistical mixture and the partial
trace approach, respectively.

In the former case, the system is in some definite pure state but we do not know
which. In contrast, when the density operator arises from tracing out irrelevant, or
unavailable, degrees of freedom, the individual system cannot be thought to be in
some definite state of which we are ignorant. Philosophy aside, the fact that the
two interpretations give exactly the same predictions is useful: switching back and
forth between the two pictures often offers additional insights and may even simplify
lengthy calculations.

8.7 Partial trace, revisited

You can calculate the trace of a matrix by summing its diagonal entries. Can you
do something similar to calculate the partial trace of a density matrix? Suppose
someone writes down for you a density matrix of two qubits in the standard basis,
{|00〉, |01〉, |10〉, |11〉}, and asks you to find the reduced density matrices of the indi-
vidual qubits. The tensor product structure of this (4× 4) matrix means that it is has
a block form:

ρAB =
[
P Q
R S

]
where P,Q,R, S are (2× 2) sized sub-matrices.

The two partial traces can then be evaluated as 0 Take any of the Bell states, write
its (4×4)-density matrix explicitly,
and then trace over each qubit. In
each case you should get the max-
imally mixed state.

ρA = trB ρAB =
[

trP trQ
trR trS

]
ρB = trA ρAB = P + S.

In general, for any matrix ρ in HA ⊗HB that is written in the tensor product basis,
the partial trace over A is the sum of the diagonal block matrices, and the partial
trace over B is the matrix in which the block sub-matrices are replaced by their traces
— see Figure 8.1. 

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·


trA ρ


· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·


trB ρ

Figure 8.1: Visualising the two partial traces of a matrix written in the tensor product
basis.

To better understand the partial trace, it helps to give a more abstract definition.
It turns out that the partial trace over B can be defined as the unique map ρAB 7→ ρA
such that 0 One can repeat the same argu-

ment for the partial trace over A:
it is the unique map ρAB 7→ ρB
such that ρB satisfies tr[Y ρB] =
tr[(1⊗Y )ρAB] for any observable
Y on B.

167



8.7 Partial trace, revisited

tr[XρA] = tr[(X ⊗ 1)ρAB] (⊛)

holds for any observable X acting on A, where 1 is the identity operator acting on
B. This condition ensures the consistency of statistical predictions: any observable
X on A can be viewed as an observable X ⊗ 1 on the composite system AB; when
constructing ρA, we had better make sure that for any observableX the average value
of X in the state ρA is the same as the average value of X ⊗ 1 in the state ρAB. This
is exactly what the condition in (⊛) guarantees.

To show that our more ad-hoc definition of the partial trace agrees with this
slightly more abstract one, consider again some state |ψAB〉 written in the form

|ψAB〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

j

|ψ̃j〉|bj〉 =
∑

j

√
pj |ψj〉|bj〉.

Now assume that Alice measures some observable X on her part of the system. Such
an observable can be thought of as X ⊗ 1, acting on the entire system. The expected
value of this observable in the state |ψAB〉 is, by definition, tr(X ⊗1)|ψAB〉〈ψAB|, and

tr[(X ⊗ 1)ρAB] = tr

(X ⊗ 1)

∑
i,j

|ψ̃i〉〈ψ̃j | ⊗ |bi〉〈bj |


=
∑
i,j

[
tr
(
X|ψ̃i〉〈ψ̃j |

)]
[tr (|bi〉〈bj |)]︸ ︷︷ ︸

δij

=
∑

i

tr
[
X|ψ̃i〉〈ψ̃i|

]

= tr

X
∑

i

pi|ψi〉〈ψi|︸ ︷︷ ︸
ρA=trB ρAB


= tr[XρA]

as required.
We can also quickly prove why the partial trace is the unique map satisfying the

condition (⊛). Suppose that we had some arbitrary map T satisfying this condition,
i.e. such that

tr[XT (ρAB)] = tr[(X ⊗ 1)ρAB]

for all density matrices ρAB and for all observables X acting on A. Now, take some
orthonormal (with respect to the Hilbert–Schmidt inner product (A|B) = 1

2 trA†B)
basis {Mi} of the space of Hermitian matrices. Since the Mi are Hermitian, the inner
product (Mi|T (ρAB)) is just tr[MiT (ρAB)]. 0 We ignore the normalisation fac-

tor of 1
2 in the Hilbert–Schmidt in-

ner product here.
So when we expand T (ρAB) in this basis we get

0 Expanding an operator in a ba-
sis might seem confusing at first,
but this is really just the fact
that (avoiding bra-ket notation for
clarity) any vector v in an in-
ner product space with orthonor-
mal basis {ei} can be expanded
as v =

∑
i
〈ei, v〉ei, just ap-

plied to the specific case of a vec-
tor space of matrices, with the
Hilbert–Schmidt inner product.

T (ρAB) =
∑

i

(Mi|T (ρAB))Mi

=
∑

i

tr[MiT (ρAB)]Mi.

But now we can substitute in the condition that T satisfies, giving

T (ρAB) =
∑

i

tr[(Mi ⊗ 1)ρAB]Mi.

And we’re done! Indeed, if we had started with some other such map T ′ then we
would have arrived at the same expression, which is independent of our choice of T
or T ′, whence T = T ′.
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8.8 Remarks and exercises

8.8.1 Some density operator calculations

Consider two qubits in the state

|ψ〉 = 1√
2

(
|0〉 ⊗

(√
2
3
|0〉 −

√
1
3
|1〉

)
+ |1〉 ⊗

(√
2
3
|0〉+

√
1
3
|1〉

))
.

1. What is the density operator ρ of the two qubits corresponding to the state |ψ〉?
Write it in Dirac notation, and then explicitly as a matrix in the computational
basis {|00〉, |01〉, |10〉, |11〉}.

2. Find the reduced density operators ρ1 and ρ2 of the first and second qubit,
respectively. Again, write them in both Dirac notation as well as explicitly as a
matrix in the computational basis.

8.8.2 Purification of mixed states

Given a mixed state ρ, a purification of ρ is a pure state |ψ〉〈ψ| of some potentially
larger system such that ρ is equal to a partial trace of |ψ〉〈ψ|.

1. Show that an arbitrary mixed state ρ always has a purification.

2. Show that purification is unique up to unitary equivalence.

3. Let |ψ1〉 and |ψ2〉 in HA ⊗ HB be two pure states such that trB |ψ1〉〈ψ1| =
trB |ψ2〉〈ψ2|. Show that |ψ1〉 = 1⊗ U |ψ2〉 for some unitary operator U on HB.

Well done — you have just proved the Schrödinger–HJW theorem!

8.8.3 Pure partial trace

Two qubits are in the state described by the density operator ρ = ρA ⊗ ρB. What is
the partial trace of ρ over each qubit?

8.8.4 Maximally Bell

What is the density matrix corresponding to two qubits prepared in the mixture of
the Bell state Φ+ = 1√

2 (|00〉 + |11〉) and the maximally mixed state, both with equal 0 The maximally mixed state of
two qubits is described by a (4×4)
matrix in HA ⊗ HB.probability 1

2 ?

8.8.5 Spectral decompositions and common eigenbases

This section is not yet finished.
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9 Quantum channels

About quantum channels, which are to density operators what uni-
taries are to state vectors: mathematical models for physically re-
alisable transformations. Also about many eponymous construc-
tions, such as the Stinespring and the Kraus representations, the
Jamiokowski isomorphism, and the Choi matrix.

Quantum evolution of any isolated system is unitary, but its constituent parts
may evolve in a more complicated way.

We have already discussed how entanglement forces us to describe quantum states
of open quantum systems (i.e. those which are only part of some larger system) in
terms of density operators. In this chapter we will describe how open systems evolve.
The question we are asking here is: what are the most general physically admissible
transformations of density operators? That is, if state vectors evolve according to
unitary operations, and we generalise state vectors to density operators, then what is
the “good” corresponding generalisation of unitary operations?

9.1 Everything is (secretly) unitary

At the fundamental level — and this should be your quantum mantra — there is 0 . . . There is only unitary evolu-
tion. There is only unitary evolu-
tion. There is only unitary evolu-
tion. . . . . . and everything else is
cheating.

only unitary evolution, and if there is any other evolution then it has to be derived
from a unitary evolution. From this perspective, any non-unitary evolution of an open
system is induced by a unitary evolution of a larger system — all evolutions become
unitary when you make your system large enough! But how? The short answer is:
by adding (via tensoring) and removing (via partial trace) physical systems. A typical
combination of these operations is shown in the following diagram:

fixed state |a⟩
U

discard

input ρ ρ′ output

Let’s explain what this diagram is really saying.
First, as always, we prepare our system of interest in an input state ρ.
Next we dilate the system by “adding” (or “taking into account”) an auxiliary

system which is large enough to include everything our system will interact with, and 0 Depending on the context, the
auxiliary system is either called
the ancilla (usually when we can
control it) or the environment
(usually when we cannot control
it).

also large enough to be in a pure state |a〉. Mathematically, we do this by tensoring the
input state ρ with |a〉〈a| to obtain |a〉〈a| ⊗ ρ (here we place the auxiliary system first
and our system of interest second). Importantly, we assume that we have “added in”
a large enough auxiliary system that the resulting dilated system is closed, and thus
undergoes unitary evolution, described by some U , resulting in the state U(|a〉〈a| ⊗
ρ)U†.

Finally, after all the (unitary) interactions have taken place, we trace out the
auxiliary system, turning the joint state U(|a〉〈a| ⊗ ρ)U† of the dilated system into the
final state of our system of interest: the output state ρ′.

We shall later show that the net effect of these three operations (adding, unitary
evolution, and tracing out) can be written, as long as the initial state |a〉 of the auxil-
iary system is not correlated with the input state ρ, in a nice compact way:

ρ 7−→ ρ′ =
∑

i

EiρE
†
i
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9.2 Random unitaries

where the Ei are some operators that satisfy
∑

i E
†
iEi = 1. Such a linear map is

called a completely positive trace-preserving map, or, in the parlance of quantum
information science, a quantum channel.

We will elaborate on the mathematics behind quantum channels shortly, but for
now let us only check the essential properties, i.e. that this map preserves both trace
and positivity (as its name suggests).

• Trace preserving. Since the trace is linear, invariant under cyclic permutations of
operators, and we ask that

∑
i E

†
iEi = 1, we see that

tr

(∑
k

EkρE
†
k

)
= tr

(∑
k

E†
kEkρ

)
= tr ρ.

• Positivity preserving. Since ρ is a positive (semi-definite) operator, so too is
√
ρ, 0Recall that an operator is positive

if and only if it can be written in
the form XX† for some X (here
X = Ek

√
ρ). Also, the sum of

positive operators is again a pos-
itive operator.

and we thus see that∑
k

EkρE
†
k =

∑
k

(Ek
√
ρ)(√ρE†

k).

These conditions are certainly necessary if we want to map density operators into
legal density operators, but we shall see in a moment that they are not sufficient:
quantum channels are not just positive maps, but instead completely positive maps.

We will discuss the special properties of completely positive trace preserving maps,
describe the most common examples, and, last but not least, specify when the action
of quantum channels can be reversed, or corrected, so that we can recover the original
input state. This will set the stage for our subsequent discussion of quantum error
correction.

9.2 Random unitaries

As a first step toward understanding the quantum description of an evolving open
system, consider a “two-qubit universe” in which we observe only one of the qubits.
Let’s revisit the controlled-NOT gate, in which two qubits undergo the unitary trans-
formation

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X =
[
1 0
0 X

]
but we’re going to focus on the transformation of the target qubit alone. We know
that it depends on the state of the control qubit:

• if the input state of the control qubit is |0〉, the target qubit evolves (unitarily)
according to the identity operator 1;

• if the input state of the control qubit is |1〉, the target qubit evolves (unitarily)
according to the bit-flip operator X;

• . . . but for input states of the control that are superpositions of |0〉 and |1〉 the
evolution of the target qubit is not unitary.

To justify this last point, note that, if the control qubit is in the state α0|0〉+ α1|1〉
and the target qubit is in some state |ψ〉, then the output state can be written as

α0|0〉 ⊗ 1|ψ〉+ α1|1〉 ⊗X|ψ〉

which shows that the control and the target become entangled. The target qubit alone
ends up in the statistical mixture of states |ψ〉 with probability |α0|2 and X|ψ〉 with
probability |α1|2.

We can verify this by expressing the above output state of the two qubits as the
density matrix

|α0|2|0〉〈0| ⊗ 1|ψ〉〈ψ|1 + |α1|2|1〉〈1| ⊗X|ψ〉〈ψ|X
+α0α

?
1|0〉〈1| ⊗ 1|ψ〉〈ψ|X + α?

0α1|1〉〈0| ⊗X|ψ〉〈ψ|1
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and then tracing over the control qubit, which gives 0 Recall that, for the basis states,
tr |i〉〈j| = 〈i|j〉 = δij .

|α0|21|ψ〉〈ψ|1 + |α1|2X|ψ〉〈ψ|X.

Then we can say that the input state of the target qubit evolves either according to
the identity operator (with probability |α0|2) or according to the X operator (with
probability |α1|2).

This argument works even if the target qubit is initially in a mixed state: we
are dealing with a linear transformation, and any mixed state can be expressed as a
statistical ensemble of pure states (via the convex decomposition ρ =

∑
i pi|ψi〉〈ψi| of

a density matrix). So, in general, we can express the evolution of the target qubit as 0 We can also focus on the evolu-
tion of the control qubit: see Exer-
cise 9.12.5. In fact, we can choose
any subset of qubits for our inputs
and outputs. For example, our in-
put could be the control qubit, and
the output could be both the con-
trol and the target qubits.

ρ 7−→ ρ′ = |α0|21ρ1 + |α1|2XρX

where ρ and ρ′ are the input and the output states, respectively. We may think about
this input-output relation as a mathematical representation of a quantum communi-
cation channel in which an input qubit is bit-flipped (via the operator X) with some
prescribed probability |α1|2. But we may also take a more “global” view and see the
action of the channel as arising from a unitary evolution on a larger (dilated) system,
here composed of two qubits (namely the target and the control).

Our discussion can easily be extended beyond two qubits to cover any conditional
dynamics of the type

U =
∑

i

|i〉〈i| ⊗ Ui =


U1 0 0 . . .
0 U2 0 . . .
0 0 U3 . . .
...

...
...

. . .


where the vectors |i〉 form an orthonormal basis in the Hilbert space associated with
a control system, and the Ui are the corresponding unitary operations performed on
a target system. If the control system is prepared in state

∑
i αi|i〉 and the target in

state |ψ〉, then the final state of the two systems is∑
i

αi|i〉 ⊗ Ui|ψ〉

and, by the same sequence of arguments as before, we obtain the evolution of the
target system alone, and express it as

ρ 7−→ ρ′ =
∑
i=1
|αi|2UiρU

†
i .

That is, the state of the target system is modified by the unitary Ui chosen randomly
with probability pi = |αi|2.

The reason we are paying particular attention to random unitaries is that each
unitary is invertible, and, as such, offers a sliver of hope for being able to reverse the
overall action of the channel. Indeed, if we can learn, post factum, which particular
unitary operation Ui was chosen, then we can simply apply the inverse U−1

i = U†
i

of that unitary and recover the original state. For example, if we can measure the
control system in the |i〉 basis, then measuring the outcome to be k tells us that we
have to apply U†

k to the target to recover its input state.
However, if we do not have access to the control system, then there is very little

we can do: we cannot figure out which particular unitary was applied by inspecting the
target system alone. In this case the best we can do is to apply the inverse of the most
likely unitary, which will then recover the input state, but only with some probability of
success. In order to do better than that we have to look at slightly different channels.

First though, a fundamental example of a random unitary evolution:
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A single-qubit Pauli channel applies one of the Pauli operators, X, Y or Z,
chosen randomly with some prescribed probabilities px, py and pz, giving

ρ 7−→ p01ρ1 + pxXρX + pyY ρY + pzZρZ.

The Pauli operators represent quantum errors: bit-flip X, phase-flip Z, and
the composition of the two Y = iXZ.

9.3 Random isometries

In many applications, including quantum communication and quantum error correc-
tion, it is useful to encode a quantum state of one system into a quantum state of
a larger system. Such operations are described by isometries. You may think about 0 The word isometric (like pretty

much most of the fancy words you
come across in this course) comes
from Greek, meaning “of the same
measures”: isos means “equal”,
and metron means “a measure”,
and so an “isometry” is a transfor-
mation that preserves distances.

isometries as a generalisation of unitaries: like unitaries, they preserve inner prod-
ucts; unlike unitaries, they are maps between spaces of different dimensions.

Let H and H′ be Hilbert spaces such that dimH ⩽ dimH′. An isometry is a
linear map V : H → H′ such that V †V = 1H

Isometries preserve inner products, and therefore also the norm and the
metric induced by the norm.

An isometry V : H → H′ maps the whole Hilbert space H onto a subspace of H′.
As a consequence, the matrix representation of an isometry is a rectangular matrix
formed by selecting only a few of the columns from a unitary matrix. For example,
given a unitary U we can construct an isometry V as follows:

U =


U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

 7−→ V =


U12 U14

U22 U24

U32 U34

U42 U44


The fact that an isometry V preserves the inner products comes from the fact that

we require V †V = 1H; we do not require V V † = 1H′ . Indeed, if we required both
of these, then that would be equivalent to asking for V to be unitary. The operator
V V † is a projector operator acting on H′, which projects onto the image of H under
the isometry V , as we can see by expressing V in Dirac notation:

V =
∑

i

|bi〉〈ai|,

where the |ai〉 form an orthonormal basis in H, and the |bi〉 are just orthonormal (but
not necessarily spanning) vectors in H′; in the special case where V is unitary, the
orthonormal vectors |bi〉 form an orthonormal basis in H′. Writing V in this form,
it is clear that V †V =

∑
i |ai〉〈ai| = 1, and that V V † =

∑
i |bi〉〈bi| projects on the

subspace spanned by |bi〉.
Although isometries are strictly more general than unitaries, an fundamentally

important fact is that isometries still represent physically admissible operations: they can
be implemented by bringing two systems together (via tensoring) and then applying
unitary transformations to the composite system. That is, take some system A in state
|ψ〉, and bring in another system B in some fixed state |b〉; applying some unitary U
to the combined system AB then gives an isometry from H = HA to H′ = HA ⊗HB,
i.e. the result is a linear map V defined by

V : |ψ〉 7−→ |ψ〉|b〉 7−→ U(|ψ〉|b〉).
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Any isometry is a quantum channel, since any quantum state described by the
state vector |ψ〉 (or by a density operator ρ) is transformed as

|ψ〉 7−→ V |ψ〉

(or as ρ 7→ V ρV †), and the normalisation condition is exactly the defining property
of isometries:

V †V = 1.

Isometries are incredibly important when it comes to error correction, and we will
see them again much more in Section ??.

9.4 Evolution of open systems

Needless to say, there is more to evolutions of open systems than mere random isome-
tries, and what follows is the most general scenario that we will come across in our
study of quantum information.

Consider two interacting systems, A and B, but this time do not assume that their
interacting dynamics admits a control-target interpretation. We will view A as an
auxiliary system, i.e. an ancilla, and focus on the evolution of system B. 0 For now, when we write tensor

products, we will place the ancilla
first and the system of interest sec-
ond: HA ⊗ HB. We do this to be-
gin with simply because block ma-
trices on tensor products are easier
to interpret when written in this
particular order. Later on we will
revert to the more common con-
vention in which the system of in-
terest is placed first.

Let us pick an orthonormal basis |i〉 of the Hilbert space HA associated with the
ancilla. Any unitary transformation of the combined system AB can then be written
as

U =
∑
i,j

|i〉〈j| ⊗Bij =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .

...
...

...
. . .


where the Bij are operators acting on the the Hilbert spaceHB associated with system
B. Note that the Bij do not need to be unitary, but, for the overall transformation U
to be unitary, they must satisfy∑

i

B†
ikBil = δkl1AB∑

i

BkiB
†
li = δkl1B

(?)

where 1AB and 1B are the identity operators onHA⊗HB andHB, respectively. These
two conditions correspond to the requirement that both column and row vectors must
be orthonormal for a matrix to be unitary, except that here U is a block matrix, and the
entries Bij are complex matrices rather than complex numbers, so some care must be
taken with the order of multiplication. Again, the evolution of the system B depends
on both U and on the initial state of the auxiliary system A.

Without any loss of generality, we may assume that system A is in a pure state, 0 If A were initially in a mixed
state, we could always regard A as
a subsystem of some larger Ã that
is in an entangled pure state.

which can be chosen to be one of the basis states |i〉, say |k〉. In this case, U acts by

U : |k〉 ⊗ |ψ〉 7−→
∑

i

|i〉 ⊗Bik|ψ〉 (‡)

for an arbitrary state |ψ〉 of B.
The resulting density operator for B is found by taking the density operator of the

output state of AB, which is∑
i,j

|i〉〈j| ⊗Bik|ψ〉〈ψ|B†
jk

and then tracing out A, obtaining 0Recall that 〈i|j〉 = δij .
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trA

∑
i,j

|i〉〈j| ⊗Bik|ψ〉〈ψ|B†
jk

 =
∑
i,j

〈i|j〉 ·Bik|ψ〉〈ψ|B†
jk

=
∑

i

Bik|ψ〉〈ψ|B†
ik.

In general, for any input state ρ, we obtain the map

ρ 7−→ ρ′ =
∑

i

BikρB
†
ik

=:
∑

i

BiρB
†
i

where, in the last expression on the right-hand size, we have dropped index k (re-
member, it was there only to remind us about the initial state of the ancilla). Since
the overall transformation U is unitary, recall that the Bi satisfy

∑
i B

†
iBi = 1. This

normalisation conditions guarantees that the trace is preserved.

In summary, we can think about a quantum evolution of subsystem B as a
sequence of the three distinct operations:

ρ 7−→ |k〉〈k| ⊗ ρ︸ ︷︷ ︸
add ancilla

7−→U(|k〉〈k| ⊗ ρ)U†︸ ︷︷ ︸
unitary evolution

7−→ trA
[
U(|k〉〈k| ⊗ ρ)U†]︸ ︷︷ ︸

discard ancilla

=
∑

i

BiρB
†
i = ρ′.

In words:

• First we pick up a system of interest which, in general, can be in a mixed state
ρ. It may be the case that this system is entangled with some other degrees
of freedom or with some other physical systems, but these other entities will
remain passive and will not enter any subsequent dynamics.

• Then we dilate the system: we add an ancilla which is large enough to include
everything our system will interact with, and also large enough to be in a pure
state. The expansion ends when the composed system is (for all practical pur-
poses) isolated and follows a unitary evolution U .

• We allow the expanded system to evolve under the unitary evolution.
• After the unitary evolution takes place, we discard the ancilla and focus on the

system alone. In fact we do not have to discard exactly what we added: we can
discard only part of the ancilla, or any other part of the dilated system. 0 Because of this, the output sys-

tem in this scenario does not have
to be the same as the original in-
put system (e.g. it could be strictly
larger), but usually it is.

It is adding (i.e. tensoring) the auxiliary system in a fixed state, and then dis-
carding it (via the partial trace), that is responsible for the seemingly non-unitary
character of this evolution.

The next step is to use what we have learnt about isometries (namely that they
are like unitaries but where the dimension is allowed to increase) to combine the first
two of these operations (adding an ancilla and following some unitary evolution) into
a single operation. This will lead to the so-called Stinespring dilation theorem, as
well as its ancilla-free counterpart, the Kraus decomposition.
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Factorisation systems.

This three-stage process (adding an ancilla, unitary evolution, and then trac-
ing out the ancilla) might reasonably be called a “factorisation”, since it factors
a (non-unitary) evolution into constituent parts: first something that looks a
bit like an injection (since it maps a smaller space into a bigger one); then
something that looks a bit like an isomorphism (since unitaries are invert-
ible); and finally something that looks a bit like a surjection (since it maps a
bigger space down to a smaller one). For now, let’s forget about this middle
part of the factorisation (where we let our system evolve unitarily), and just
keep the first and last part in mind as we look at the following construction.

Pick any function f : S → T between sets. Then we can decompose f into
an injection (↪→) and a surjection (↠) in two different ways:

1. S ↠ Im(f) ↪→ T
2. S ↪→ S t (T \ Im(f))↠ T

where the first is a surjection followed by an injection, and the second is
an injection followed by a surjection. In the first decomposition, the middle
set (namely Im(f)) is unique (up to unique isomorphism); in the second, the
middle set (namely S t (T \ Im(f))) is not unique (we can use any set given
by taking S and adding an extra arbitrary element for each element of T that
is not in the image of f).

The first of these decompositions is probably much more familiar and
friendly looking than the second, but it is indeed the second which is of
interest to us here, since it is of the same form as our three-stage process:
something injective-looking followed by something surjective-looking. In-
deed, as shown in Cunningham and Heunen’s “Purity through Factorisation”,
arXiv:1705.07652, Stinespring dilation (which is roughly this three-stage pro-
cess that we’ve been talking about) gives rise to a weak factorisation system,
but not an orthogonal one.

These notions (weak and orthogonal factorisation systems) are absolutely
fundamental to a large area of modern mathematics that deals with homotopy
theory and “higher structures” using the language of model categories.

9.5 Stinespring’s dilation and Kraus’s ambiguity

Once we start playing with adding physical systems and increasing the dimension of
the underlying Hilbert space, it is convenient to switch from unitaries to isometries. 0 Recall that a map V is an isom-

etry if V †V = 1. For example,
adding a system in state |k〉 gives
an isometry V : |ψ〉 7→ |k〉 ⊗ |ψ〉,
and the combination of adding a
system in a fixed state followed
by a unitary evolution of the com-
bined system is also an isometry.

This is more for mathematical simplicity than physical insight, but it is always good
to declutter our equations a bit if we can.

Recall that any unitary transformation of the combined system AB can be written
as

U =
∑
i,j

|i〉〈j| ⊗Bij =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .

...
...

...
. . .


where the Bij are operators acting on the the Hilbert spaceHB, and where the Bij are
not necessarily unitary, but (in order for the overall transformation U to be unitary)
satisfy∑

i

B†
ikBil = δkl1AB∑

i

BkiB
†
li = δkl1B
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9.5 Stinespring’s dilation and Kraus’s ambiguity

Also recall that, when we fix the initial state of system A to be |k〉, we know that U
acts by

U : |k〉 ⊗ |ψ〉 7−→
∑

i

|i〉 ⊗Bik|ψ〉

for an arbitrary state |ψ〉 of B.
This allows us to define an isometry V : HB → HA ⊗HB by

V : |ψ〉 7−→
∑

i

|i〉 ⊗ Ei|ψ〉

where Ei := Bik, which satisfy∑
i

E†
iEi = 1B.

The matrix representation of an isometry is a rectangular matrix given by selecting
only a few of the columns from a unitary matrix; here, with |k〉 fixed, it is only the
k-th column of the block matrix U that determines the evolution of B, as shown in
Figure 9.1.

U =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .
...

...
...

. . .

 7−→ V =


E1

E2

E3

...


Figure 9.1: For k = 2, the second block column is selected. The matrix representation
of the isometry V on the right-hand side look like a column vector, but remember that
the entries Ei := Bik are matrices.

Let us now rephrase our derivation of the evolution of system B using isometries.
Note that the isometry V in Figure 9.1 acts by

|ψ〉〈ψ| 7−→ V |ψ〉〈ψ|V † =
∑
i,j

|i〉〈j| ⊗ Ei|ψ〉〈ψ|E†
j .

We trace out A (recalling that tr |i〉〈j| = 〈i|j〉 = δij) and express the evolution of
system B (which is allowed to have a mixed input state ρ, since these can always be
expressed as statistical mixtures of pure states |ψ〉) as

ρ 7−→ ρ′ = trA V ρV
† =

∑
i

EiρE
†
i ,

where
∑

i E
†
iEi = 1. This expression shows two different ways of looking at quantum

evolutions, and both have their own name. 0 William Forrest “Woody”
Stinespring (1929–2012) was
an American mathematician
specialising in operator theory.
Karl Kraus (1938–1988) was a
German physicist known for his
contributions to the mathematical
foundations of quantum theory.
His book States, effects, and oper-
ations (Lecture Notes in Physics,
Vol. 190, Springer-Verlag, Berlin
1983) is an early account of the
notion of complete positivity in
physics.

Stinespring dilation. Any quantum channel E can be thought of as arising
from a unitary evolution on a dilated system. When we combine tensoring
and the unitary evolution into an isometry V , we can express the action of the
channel E as

ρ 7−→ ρ′ = trA V ρV
†,

where we trace out a suitably chosen ancilla A. This is the approach that we
discussed in Section 9.4. In quantum information science, we often refer to
this approach as the Church of the Larger Hilbert Space.
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9.5 Stinespring’s dilation and Kraus’s ambiguity

Kraus representation (a.k.a. operator-sum decomposition). It is often
more convenient to not deal with a larger Hilbert space, but to instead work
with operators directly between the input and output Hilbert spaces, avoiding
the middle one completely:

ρ 7−→ ρ′ =
∑

i

EiρE
†
i

where the Kraus operators (or effects) Ei satisfy the normalisation condi-
tion

∑
i E

†
iEi = 1 (also known as the completeness relation). Here we avoid

dragging in the ancilla, which can be a good thing, since ancillas typically
represent environments that can be very large and complex. Note that this
operator–sum decomposition is not unique, since the Kraus operators Ei de-
pend on the choice of basis in the ancilla.

These two representations — Stinespring and Kraus — are equivalent, and we can
easily switch between them:

• We have already seen how to go from a unitary evolution U on a larger system
to an isometry V , and then to a map on density operators represented by a set
of Kraus operators Ei (as in Figure 9.1).

• Conversely, once we have an operator-sum representation of the channel with
a set of Kraus operators Ei, we can introduce an ancilla of dimension equal
to the number of Kraus operators, and use the orthonormal basis |i〉 to form
the isometry V =

∑
i |i〉 ⊗ Ei. In terms of matrices, this corresponds to simply

“stacking up” the matrices Ei to form the block column (as shown in Figure
9.1), which gives us the matrix representation of V . If we want to go further,
from an isometry V to a unitary U , then the next step is somewhat arbitrary:
we can choose all the remaining block columns of U however we please, as long
as we end up with a unitary matrix U .

All linear transformations of density operators that can be written in Stine-
spring (or, equivalently, Kraus) form represent physically realisable operations
— we call them quantum channels, or superoperators (since they send op-
erators to operators).

The Stinespring form is conceptually very nice — “everything is unitary, and if
it isn’t, you’re just not looking at the big picture” — but the Kraus form tends to
be very useful computationally, since it doesn’t require bringing in ancillary data.
One useful analogy for understanding the completeness relation

∑n
i=1 E

†
iEi = 1 for

Kraus operators is how a density operator ρ, written in its spectral decomposition as∑n
i=1 λi|i〉〈i|, reduces to a pure state in the case where n = 1; in the same way, the

completeness relation for Kraus operators reduces to asking that E1 be unitary in the
case where n = 1. In other words, Kraus operators generalise unitaries in exactly the
same way that density operators generalise state vectors.

We note again that the Kraus decomposition is not unique: the operators Ei de-
pend on the choice of the ancilla basis. Indeed, let |ei〉 and |fj〉 be two orthonormal
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bases in the Hilbert space associated with the ancilla. Then V can be expressed as

V =
∑

i

|ei〉 ⊗ Ei

=
∑
i,j

|fj〉〈fj |ei〉 ⊗ Ei

=
∑

j

|fj〉 ⊗
∑

i

〈fj |ei〉︸ ︷︷ ︸
Rji

Ei

=
∑

j

|fj〉 ⊗ Fj

where we have used the fact that
∑

j |fj〉〈fj | = 1, and where Rji = 〈fj |ei〉 is a unitary
matrix connecting the two orthonormal bases (and also the two sets of the Kraus
operators) via Fj =

∑
i RjiEi. So we have a set of Kraus operators Ei associated with

basis |ei〉 and another, unitarily related, set of Kraus operators Fj associated with
basis |fj〉, and the two sets describe the same isometry, and hence the same quantum
channel. This correspondence goes both ways: if two channels E and F have their
Kraus operators related by some unitary Rji, then the two channels are identical:

F(ρ) =
∑

j

FjρF
†
j

=
∑
i,j,k

RjiEiρE
†
kR

?
jk

=
∑
i,k

∑
j

R?
jkRji


︸ ︷︷ ︸

δki

EiρE
†
k

=
∑

i

EiρE
†
i

= E(ρ).

In summary:

Suppose E1, . . . , En and F1, . . . , Fm are Kraus operators associated with quan-
tum channels E and F , respectively. We can append zero operators to the
shorter list to ensure that n = m (or we could view Rij as an isometry instead
of a unitary).

Then E and F describe the same channel if and only if Fj =
∑

i RjiEi for
some unitary R.

In particular, this unitary equivalence of the Kraus operators implies that the iden-
tity channel ρ 7→ ρ′ = 1ρ1 can only have Kraus operators that are proportional to the
identity.

9.6 Single-qubit channels

The best way to familiarise ourselves with the concept of a quantum channel is to
study a few examples, and we will start with the simplest case: single-qubit chan-
nels. The single-qubit case is special since we can visualise the action of the channel
by looking at the corresponding deformation of the Bloch ball.

179



9.6 Single-qubit channels

Recall that an arbitrary density matrix for a single qubit can be written in the form

ρ = 1
2

(1 + ~s · ~σ)

= 1
2

(1 + sxX + syY + szZ)

where ~s is the Bloch vector of the qubit with components (sx, sy, sz), and X, Y , and Z
are the Pauli operators. Recall also that unitary operations rotate the Bloch sphere. In
particular the X, Y , and Z operators — viewed as unitary transformations — rotate
the Bloch sphere by 180◦ around the x-, y-, and z-axis, respectively. General quantum
channels, however, may deform it further, into spheroids with a displaced centre, as
the following examples show.

• Bit-flip with probability p.

ρ 7−→ (1− p)ρ+ pXρX.

The Kraus operators are
√

1− p1 and
√
pX; the original Bloch sphere shrinks

into a prolate spheroid aligned with the x-axis; for the specific case of p = 1
2 ,

the Bloch sphere degenerates to the [−1, 1] interval on the x-axis.

• Phase-flip with probability p.

ρ 7−→ (1− p)ρ+ pZρZ.

The Kraus operators are
√

1− p1 and
√
pZ; the original Bloch sphere shrinks

into a prolate spheroid aligned with the z-axis; for the specific case of p = 1
2 ,

the Bloch sphere degenerates to the [−1, 1] interval on the z-axis.

• Depolarising channel with probability p.

ρ 7−→ (1− p)ρ+ p

3
(XρX + Y ρY + ZρZ) .

Here the qubit remains intact with probability 1 − p, while a quantum error
occurs with probability p. The error can be of any one of three types: bit-flip X,
phase-flip Z, or both bit- and phase-flip Y ; each type of error is equally likely.
For p < 3

4 , the original Bloch sphere contracts uniformly under the action of the
channel, and the Bloch vector shrinks by the factor 1− 4

3p; for the specific case
of p = 3

4 , the Bloch sphere degenerates to the point at the centre of the sphere;
for p > 3

4 , the Bloch sphere is flipped, and the Bloch vector starts pointing in the
opposite direction increasing the magnitude up to 1

3 (which occurs for p = 1).

There are two interesting points that must be mentioned here. The first one is
about the interpretation of the action of the channel in terms of Kraus operators: our
narrative may change when we switch to a different set of effects. For example, take 0 Recall that Kraus operators are

also sometimes called “effects”.the phase-flip channel with p = 1
2 and switch from the effects Ei to Fj as follows:

E1 = 1√
2

1

E2 = 1√
2
Z

 7−→

F1 = 1√

2
(E1 + E2) = |0〉〈0|

F2 = 1√
2

(E1 − E2) = |1〉〈1|.


These two sets of Kraus operators {E1, E2} and {F1, F2} describe the same channel,
but the narrative is different: the first set of effects tells us that the channel chooses
randomly, with the same probability, between two options (let the qubit pass undis-
turbed or apply the phase-flip Z); the second set tells us that channel essentially per-
forms the measurement in the standard basis, but the outcome of the measurement is
not revealed.
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9.7 Composition of quantum channels

Describing actions of quantum channels purely in terms of their effects
(i.e. Kraus operators) can be ambiguous.

The second interesting point is that not all transformations of the Bloch sphere
into spheroids are possible. For example, we cannot deform the Bloch sphere into
a pancake-like oblate spheroid. This is due to complete positivity (instead of mere
positivity) of quantum channels, which we will explain shortly.

9.7 Composition of quantum channels

We mentioned that quantum channels are combinations of

1. adding a physical system in a fixed state (via tensoring),
2. unitary transformations, and
3. discarding a physical system (taking a partial trace).

As expected from the fact that the Stinespring point of view is equivalent to the
Kraus point of view, each of these operations admits an operator-sum decomposition.
This is obvious for unitary evolution (ρ 7→ UρU†), but perhaps less so for the other
two operations. One reason to care about this is that the Kraus decomposition gives a
tidy way of describing composition of quantum channels.

• Adding a system. Any quantum system can be expanded by bringing in an
auxiliary system in a fixed state |a〉. This transformation takes vectors in the
Hilbert space associated with the original system and tensors them with a fixed
vector |a〉 in the Hilbert space associated with the auxiliary system:

|ψ〉 7−→ |a〉 ⊗ |ψ〉 = (|a〉 ⊗ 1)|ψ〉.

In terms of density operators, we write this “expansion” transformation as

ρ 7−→ ρ′ = |a〉〈a| ⊗ ρ
= (|a〉 ⊗ 1)ρ(〈a| ⊗ 1)
= V ρV †

where V = |a〉 ⊗ 1. We note that V †V = 〈a|a〉 ⊗ 1 = 1 is the identity in the
Hilbert space associated with the system, and so V is an isometry. Indeed, this
transformation is an isometric embedding.

• Discarding a system. Conversely, given a composite system in state ρ, we can
discard one of its subsystems. The partial trace over an auxiliary system can be
written in the Kraus representation as

ρ 7−→ ρ′ = trA ρ

= (tr⊗1)ρ

=
∑

i

(〈i| ⊗ 1)ρ(|i〉 ⊗ 1)

=
∑

i

EiρE
†
i

where the vectors |i〉 form an orthonormal basis in the Hilbert space associated
with the auxiliary system. Again, we can check that the Kraus operators Ei =
|i〉 ⊗ 1 satisfy the completeness relation

∑
i E

†
iEi = 1 ⊗ 1 (using the fact that∑

i |i〉〈i| = 1).
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Any sequential composition of two quantum channels E and F with Kraus opera-
tors {Ai}i∈I and {Bj}j∈J (respectively) is another quantum channel described by the 0 Here we have tacitly assumed

that the dimensions agree, i.e. that
the output of E and the input of F
are of the same dimension, so that
the composition makes sense.

Kraus operators {BjAi}i∈I,j∈J . Showing this is rather straightforward, at least in the
operator-sum representation: let

E =
∑

i

Ai ·A†
i

F =
∑

j

Bj ·B†
j

where
∑

i A
†
iAi =

∑
j B

†
jBj = 1; then the sequential composition of E followed by F

can be written as

F ◦ E =
∑
i,j

(BjAi) · (BjAi)†

so that the BjAi are the Kraus operators associated with the new channel F◦E , where
the normalisation condition (or completeness relation) follows from

∑
i,j

(BjAi)†(BjAi) =
∑

i

A†
i

∑
j

B†
jBj

Ai

=
∑

i

A†
iAi

= 1.

You might wonder why we explicitly called the above composition “sequential” —
isn’t this how we always compose functions? In actual fact, since we have access to
tensor products, there is another sort of composition, namely parallel composition: 0 You might also call this simul-

taneous composition, to contrast
with sequential composition, but
“parallel” is by far the most com-
monly accepted terminology.

if we have systems A and B with channels EA acting on A and EB acting on B, then
the parallel composition is denoted by EA⊗EB, acting on the joint system A⊗B, and
with Kraus operators given by the Ai⊗Bj . The normalisation condition again follows
from a simple calculation:∑

i,j

(Ai ⊗Bj)†(Ai ⊗Bj) =
∑
i,j

A†
iAi ⊗B†

jBj

= 1A ⊗ 1B .

Now that we know how to compose quantum channels in terms of Kraus opera-
tors, we can see that the Stinespring representation is perfectly consistent with the
Kraus representation: the three basic operations that we are allowed to use to build
channels in the Stinespring representation (i.e. adding a system, unitary evolution,
and discarding a system) are all themselves quantum channels, in that they admit a
Kraus decomposition.

Before moving on, we make a small (but important) remark:

When we compose quantum channels, each channel needs its own indepen-
dent ancilla — do not share ancillas between different channels.

For example, say we have three channels, E1, E2, and E3, with Ei defined by the
unitary Ui and the state |ai〉 of its ancilla. Then the (sequential) composition E3◦E2◦E1
is given by

|a1⟩
U1

|a2⟩
U2

|a3⟩
U3

ρ ρ′1 ρ′2 ρ′3
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where each Ei has its own associated ancilla |ai〉. For more on this, see Section
9.12.2, where we talk about Markov approximation.

9.8 Completely positive trace-preserving maps

A while back we upgraded from working with state vectors |ψ〉 to working with den-
sity operators ρ, which are positive Hermitian operators ρ with tr ρ = 1, where “pos- 0 It’s a small abuse of notation,

but we often simply say “positive”
to mean “positive semi-definite” or
“non-negative”. We write ρ ⩾ 0 to
mean that ρ is positive.

itive” means that 〈v|ρ|v〉 ⩾ 0 for all |v〉 (or, equivalently, that all its eigenvalues are
non-negative real numbers). It is easy to verify that quantum channels preserve posi-
tivity and trace, but the converse is not true! That is, there are linear maps that pre-
serve positivity and the trace, but which are not quantum channels, and thus which
are not “physical operations”.

The matrix transpose operation ρ 7→ ρT is a good example of such an unphysical
operation: it preserves both trace and positivity, and if ρ is a density matrix then so
too is ρT , but we will show that the transpose cannot be written in the Stinespring
(or the Kraus) form; it is not induced by a unitary operation on some larger Hilbert
space, and it cannot be physically implemented. So, we then ask, what is the class of
physically admissible maps? That is, how can we classify which maps are quantum
channels and which are not?

First, some notation. We say that a linear operator f : H → H′ between Hilbert
spaces is bounded if there exists some real number B > 0 such that ‖f(x)‖H′ ⩽
B‖x‖H for every vector x ∈ H. Given a pair of Hilbert spaces H and H′, we denote
the set of bounded linear operators from H to H′ by B(H,H′). We write B(H) as
shorthand for B(H,H).

Bounded and unbounded operators.

One reason to care so much about bounded operators is the following fact:
a linear operator between normed vector spaces is bounded if and only if it is
continuous.

Another important fact is that the set B(H,H′) is more than just a mere
set: it has both topological structure (it has a norm and forms a Banach space
under this norm) and algebraic structure (it is an associative algebra over
C), along with the bonus feature of a particularly well-behaved involution
given by the adjoint. Formally, B(H,H′) is the prototypical example of a
C*-algebra.

Now here is another example of where working only with finite-
dimensional spaces greatly simplifies the mathematics: ifX and Y are normed
vector spaces, with X finite dimensional, then every linear map f : X → Y is
bounded (or, equivalently, continuous).

In the infinite-dimensional setting, it is important to know whether or not
a given operator is bounded, but it turns out that certain unbounded opera-
tors are still very useful. There are some technical details, but such operators
are used to model observables in the Hilbert-space formalism of quantum me-
chanics.

Then, mathematically speaking, a quantum channel E is a specific type of map

E : B(H)→ B(H′)

that sends states (i.e. density operators) on some Hilbert space H to states on some
(possibly different) Hilbert space H′. But we are not interested in just any such maps,
of course — the statistical interpretation of quantum theory imposes certain properties
on the subset of maps in which we are interested.

Firstly, for such a map E to be a channel it must respect the mixing of states.
Consider an ensemble of systems, with a fraction p1 of them in the state ρ1, and
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9.8 Completely positive trace-preserving maps

the remaining p2 of them in the state ρ2. The overall ensemble is described by
ρ = p1ρ1 + p2ρ2. If we apply E to each member of the ensemble individually, then the
overall ensemble will be described by the density operator ρ′ = E(ρ), which should
be given by ρ′ = p1E(ρ1) + p2E(ρ2). We conclude that E must be a linear map.

Next, since E must map density operators to density operators, it has to be both
positive (E(ρ) ⩾ 0 whenever ρ ⩾ 0) and trace preserving (tr E(ρ) = tr ρ for all ρ).

Finally comes a subtle point. It turns out that being positive is not good enough;
we must further require that the map E remains positive even when extended to act on a
part of a larger system. Suppose that Alice and Bob share a bipartite system AB in an
entangled state ρAB, and, whilst Alice does nothing, Bob applies the operation E to his
subsystems, and his subsystems only. Then the resulting map on the whole bipartite
system is given by 1⊗ E , and we require that this also give a density operator ρ′

AB of
the composed system. It turns out that this is a strictly stronger property than mere
positivity; we are asking for something called complete positivity. Needless to say,
complete positivity of E implies positivity, but the converse does not hold: there are
maps which are positive but not completely positive. The matrix transpose operation
ρ→ ρT is a classic example of such a map.

Let’s study this matrix transpose example a bit more. Consider the transpose op-
eration on a single qubit: T : |i〉〈j| 7→ |j〉〈i| (for i, j ∈ {0, 1}). It preserves both
trace and positivity, and if ρ is a density matrix then so too is T (ρ) = ρT . How-
ever, if the input qubit is part of a two qubit system, initially in the entangled state
|Ω〉 = 1√

2 (|0〉|0〉 + |1〉|1〉), and the transpose is applied to only one of the two qubits
(say, the second one), then the density matrix of the two qubits evolves under the
action of the partial transpose 1⊗ T as

|Ω〉〈Ω| = 1
2
∑
i,j

|i〉〈j| ⊗ |i〉〈j| 1⊗T7−→1
2
∑
i,j

|i〉〈j| ⊗ T (|i〉〈j|)

=1
2
∑
i,j

|i〉〈j| ⊗ |j〉〈i|.

The output is known as the SWAP matrix, since it describes the SWAP operation: |j〉|i〉 7→
|i〉|j〉. Since this operation squares to the identity, we know that its eigenvalues must
be either ±1: states which are symmetric under interchange of the two qubits have
eigenvalue 1, while antisymmetric states have eigenvalue −1. In particular then, the
SWAP matrix has negative eigenvalues, which means that 1 ⊗ T does not preserve
positivity (since 1 ⊗ T applied to the positive operator |Ω〉〈Ω| is not positive), and
therefore T is not a completely positive map.

If you prefer to see this more explicitly, then you can use the matrix representation
of |Ω〉〈Ω|, apply the partial transpose 1⊗ T , and then inspect the resulting matrix:

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 1⊗T7−→ 1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
So the partial transpose 1 ⊗ T maps the density matrix |Ω〉〈Ω| of a maximally mixed
state |Ω〉 to the SWAP matrix, which has a negative eigenvalue (namely −1) and thus
is not a density matrix (since it is not positive).

We have seen that, at the very least, we want to be considering completely positive
trace-preserving maps, but how do we know whether or not there are any further
restrictions left to impose? Needless to say, here is where mathematics alone cannot
guide us, since we are trying to characterise maps which are physically admissible, and
mathematics knows nothing about the reality of our universe! However, one thing
that we can do is compare our abstract approach with the derivations of quantum
channels defined in terms of the Stinespring (or Kraus) representation. As it happens,
we can (and will!) show that a map is completely positive and trace preserving if and
only if it can be written in the Stinespring (or Kraus) form. In other words:
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Quantum channels are exactly the completely positive trace-preserving (CPTP)
maps.

One direction of this claim is much simpler than the other. Any quantum channel
E must be completely positive, since the Kraus decomposition guarantees positivity
of both E and the extended map 1 ⊗ E , since if E has Kraus decomposition

∑
i EiE

†
i ,

then the extended channel 1⊗E has Kraus decomposition
∑

i(1⊗Ei)(1⊗E†
i ), which

means that 1⊗ E is also a positive map, whence E is completely positive.
Conversely, showing that CPTP maps are quantum channels is less simple. In order

to prove this, we will now introduce a very convenient tool called the Choi matrix,
which gives yet another way to characterise linear maps between operators.

9.9 Channel-state duality

Suppose that dimH = d and dimH′ = d′, and pick a basis for each space. Now any
linear map E : B(H) → B(H′) can be completely characterised by its action on the
d2-many basis matrices |i〉〈j| of B(H) (where i, j ∈ {1, 2 . . . , d}), i.e. for any density
operator ρ on H we have

E(ρ) = E

 d∑
i,j=1

ρij |i〉〈j|

 =
d∑

i,j=1
ρijE(|i〉〈j|). (\)

We can now tabulate the (d× d)-many (d′ × d′) matrices E(|i〉〈j|) in H′ by forming a
bigger (dd′ × dd′) block matrix in H⊗H′:

E(|0⟩ ⟨0|) E(|0⟩ ⟨1|) E(|0⟩ ⟨2|) · · ·

E(|1⟩ ⟨0|) E(|1⟩ ⟨1|) E(|1⟩ ⟨0|) · · ·

E(|2⟩ ⟨0|) E(|2⟩ ⟨1|) E(|2⟩ ⟨2|) · · ·
...

...
...

. . .

 .

After scaling by a factor of 1
d , we call this block matrix Ẽ ∈ B(H ⊗ H′) the Choi

matrix of E . 0 Man-Duen Choi was brought
up in Hong Kong. He received
his Ph.D. degree under the guid-
ance of Chandler Davis at Toronto.
He taught at the University of
California, Berkeley, from 1973
to 1976, and has worked since
then at the University of Toronto.
His research has been mainly in
operator algebras, operator the-
ory, and polynomial rings. He
is particularly interested in exam-
ples/counterexamples and 2 × 2
matrix manipulations.

The Choi matrix is essentially another way of representing a linear map E : B(H)→
B(H′), since if you are given the Choi matrix Ẽ of E and you want to evaluate E(ρ),
then you simply follow Equation (\), taking the values of E(|i〉〈j|) from the Choi ma-
trix. We can write this more formally as follows.

The Choi matrix Ẽ of a linear map E : B(H)→ B(H′) satisfies

1
d
E(ρ) = (tr⊗1)

[
(ρT ⊗ 1d′×d′)Ẽ

]
for all density matrices ρ in B(H), where d = dimH.

The expression above may look baffling at first glance, but this is often the case
when we turn something conceptually obvious into more compact mathematical no-
tation. In order to gain some intuition here, recall that, for matrices A and B,

trATB =
∑
i,j

AijBij .
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If we take A and B to be the block matrices ρ⊗1 and Ẽ , respectively, then we can use
this to show that

(tr⊗1)
[
(ρT ⊗ 1)Ẽ

]
= 1
d

∑
i,j

ρijE(|i〉〈j|).

This gives us a one-to-one correspondence between linear maps E : B(H)→ B(H′)
and matrices Ẽ acting on the tensor productH⊗H′, known as the Choi–Jamiokowski
isomorphism E 7→ Ẽ .

The Choi–Jamiokowski isomorphism.

The correspondence between linear maps B(H) → B(H′) and opera-
tors in B(H ⊗ H′), known as the Choi–Jamiokowski isomorphism (or
channel-state duality in the specific setting of quantum information), is an-
other example of a well known correspondence between vectors in HA ⊗HB
and operators B(H?

A,HB) or B(H?
B,HA).

Take a tensor product vector in |a〉⊗|b〉 ∈ HA⊗HB. Then it defines natural
maps in B(H?

A,HB) and B(H?
B,HA), via

〈x| 7−→ 〈x|a〉|b〉
〈y| 7−→ |a〉〈y|b〉

for any linear forms 〈x| ∈ H?
A and 〈y| ∈ H?

B . We then extend this construction
(by linearity) to any vector in HA ⊗HB. These isomorphisms are canonical:
they do not depend on the choice of any bases in the vectors spaces involved.

However, some care must be taken when we want to define corre-
spondence between vectors in HA ⊗ HB and operators in B(HA,HB) or
B(HB,HA). For example, physicists like to “construct” B(HB,HA) in a de-
ceptively simple way:

|a〉|b〉 ←→ |a〉〈b|.

Flipping |b〉 and switching from HB to H?
B is an anti-linear operation (since

it involves complex conjugation). This is fine when we stick to a specific basis
|i〉|j〉 and use the ket-flipping approach only for the basis vectors. This means
that, for |b〉 =

∑
j βj |j〉, the correspondence looks like

|i〉|b〉 ←→
∑

j

βj |i〉〈j|

and not like

|i〉|b〉 ←→ |i〉〈b| =
∑

j

β?
j |i〉〈j|.

This isomorphism is non-canonical: it depends on the choice of the basis. But
it is still a pretty useful isomorphism! The Choi–Jamiokowski isomorphism is
of this kind (i.e. non-canonical) — it works in the basis in which you express
a maximally mixed state |Ω〉 =

∑
i |i〉|i〉.

Mathematically, it is not too surprising that the matrix elements of an operator
on a tensor product can be reorganised and reinterpreted as the matrix elements
of an operator between operator spaces. What is interesting, and perhaps not so
obvious, however, is that the positivity conditions for maps correspond exactly to
conditions on their Choi matrices under this correspondence. That is, this one-to-one
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9.9 Channel-state duality

correspondence between linear maps E : B(H)→ B(H′) and matrices Ẽ acting on the
tensor product H ⊗ H′ descends to a one-to-one correspondence between quantum
channels and some specific family of matrices (which we will shortly discuss). In other
words, we can classify quantum channels as being exactly those linear maps that have
a certain image under the Choi–Jamiokowski isomorphism! In order to see this, let us
express the Choi matrix as the result of 1⊗ E acting on the maximally mixed state

|Ω〉 := 1√
d

d∑
i=1
|i〉|i〉

in H⊗H.

The Choi matrix Ẽ of a linear map E : B(H)→ B(H′) is given by

Ẽ = (1d×d ⊗ E)|Ω〉〈Ω| = 1
d

∑
i,j

|i〉〈j| ⊗ E(|i〉〈j|)

where d = dimH.
Pictorially, we might represent this by something like

dimH = d 1 dimH = d

Ω

dimH = d E dimH′ = d′

In this form, we can see right away that, if E is a quantum channel, then Ẽ is
a density matrix. In fact, not just any density matrix: the first subsystem of the
maximally entangled state |Ω〉 is initially maximally, and remains maximally mixed,
since we apply the identity operator, and so (1 ⊗ tr)Ẽ = 1

d 1. The converse is also
true: any density matrix Ẽ such that (1⊗ tr)Ẽ = 1

d 1 defines a quantum channel, i.e. a
completely positive trace-preserving map. This is just one example of how, in general,
the Choi–Jamiokowski isomorphism provides a simple way of studying linear maps
on operators by means of inspecting their Choi matrices.

Let Ẽ be the Choi matrix of a linear map E : B(H)→ B(H′). Then
1. E is completely positive if and only if Ẽ is positive semi-definite.
2. E is trace preserving if and only if (1⊗ tr)Ẽ = 1

d 1.
3. E sends the identity operator to the identity operator if and only if

(tr⊗1)Ẽ = 1
d 1.

4. E sends Hermitian operators to Hermitian operators and only if Ẽ is
Hermitian.

We shall prove the first two of these correspondences here, and leave the last two
as an exercise.

Let’s start with complete positivity, since one direction is much easier: if E is a
completely positive map, then its extension 1 ⊗ E maps |Ω〉〈Ω| to a positive semi-
definite matrix, and so Ẽ is positive semi-definite. The converse is less immediate. If
Ẽ is positive semi-definite, then its eigenvalues pk are non-negative, and we can write
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its spectral decomposition as

Ẽ =
∑

k

pk|ψk〉〈ψk| =
∑

k

|ψ̃k〉〈ψ̃k|

where the vectors |ψ̃k〉 = √pk|ψk〉 are pairwise orthogonal but not normalised. Each
of the vectors |ψ̃k〉 can be written as

|ψ̃k〉 = (1⊗ Ek)|Ω〉

for some operator Ek (Exercise 9.12.15). This means that

Ẽ =
∑

k

|ψ̃k〉〈ψ̃k|

=
∑

k

(1⊗ Ek)|Ω〉〈Ω|(1⊗ E†
k)

= 1
d

∑
i,j

|i〉〈j| ⊗
∑

k

Ek〈i||j〉E†
k︸ ︷︷ ︸

E(|i〉〈j|)

 .

Comparing this last expression with the definition of Ẽ , we conclude that E is of the
form

E(ρ) =
∑

k

EkρE
†
k

which is a completely positive map in Kraus form (though not necessarily trace pre-
serving, since we do not require that

∑
k EkE

†
k = 1).

For the trace-preserving correspondence, note first of all that, if E is trace preserv-
ing, then

(1⊗ tr)Ẽ = 1
d

∑
i,j

|i〉〈j| tr E(|i〉〈j|)︸ ︷︷ ︸
δij

= 1
d

∑
i

|i〉〈i|

= 1
d

1.

Conversely, for any operator ρ in B(H), we have already seen that

1
d

tr E(ρ) = (tr⊗1)
[
(ρT ⊗ 1)Ẽ

]
and so, tracing over H′ by applying 1⊗ tr, we see that

tr E(ρ) = (1⊗ tr)
[
d(tr⊗1)

[
(ρT ⊗ 1)Ẽ

]]
which rearranges to give

tr E(ρ) = d(tr⊗ tr)
[
(ρT ⊗ 1)Ẽ

]
= d(tr⊗1)

[
ρT (1⊗ tr)Ẽ

]
by using the fact that (tr⊗ tr)[(A⊗ 1)C] = (tr⊗1)[A(1⊗ tr)C], which is just another
way of writing the defining property of the partial trace: trAB(A⊗1)C = trA(A trB C).
So if (1⊗ tr)Ẽ = 1

d 1, then

tr E(ρ) = tr ρT = tr ρ
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and so E is trace preserving. Note that we have already used this defining property
of the partial trace when calculating the expectation value of an observable A that
pertains only to a subsystem A of a bipartite system AB described by some density
operator ρAB, noting that tr[(A⊗ 1)ρAB] = tr[AρA], where ρA = trB ρAB.

In particular then, completely positive trace-preserving maps (quantum channels)
have Choi matrices that are positive semi-definite and such that their partial trace
gives the maximally mixed state 1

d 1, and we have just shown that the converse is
true.

Channel–state duality. The following three things are all equivalent to one
another:

• quantum channels (i.e. linear maps that can be written in Stinespring or
Kraus form)

• completely positive trace-preserving (CPTP) maps
• linear maps E whose Choi matrix Ẽ is positive semi-definite and such

that (1⊗ tr)Ẽ = 1
d 1.

Furthermore, all completely positive maps admit a Kraus decomposition ρ 7→∑
k EkρE

†
k, and these Kraus operators can be obtained from the spectral decompo-

sition of the corresponding Choi matrix. Given the Kraus decomposition, if we also
want the map to be trace preserving, then we must additional require that the Kraus
operators satisfy

∑
k E

†
kEk = 1.

9.10 The mathematics of “can” and “cannot”

So what is channel-state duality good for? To start with, it can be used to asses
whether or not a given map B(H) → B(H′) can actually be physically implemented,
i.e. if it is a CPTP map. Indeed, all we have to do is to check if the corresponding Choi
matrix is a density matrix. Let’s look at a simple example.

Consider the map 0Again, δij is the Kronecker delta,
which is equal to 1 if i = j and
equal to 0 if i 6= j.

E : |i〉〈j| 7−→ p|j〉〈i|+ (1− p)δij
1
2

1

where 0 ⩽ p ⩽ 1 is some fixed parameter. This map acts on a density operator ρ via

ρ 7−→ pρT + (1− p)1
2

1

(where ρT is the transpose of ρ).
But is this map a quantum channel? That is, does it represent a physical process

that can be implemented in a lab?
We can interpret the convex-sum expression

E(|i〉〈j|) = p|j〉〈i|+ (1− p)δij
1
2
|i〉〈j|

as follows: take the input state ρ and either (i) apply the transpose, with probability
p, or (ii) replace it with the maximally mixed state, with probability 1 − p. This is
fine, except that the transpose operation is not completely positive, and, as such, is
not physically admissible — it cannot be implemented. But does this mean that the
map E itself cannot be implemented? Not necessarily!

In fact, the answer depends on the value of p. The case p = 0 corresponds to just
replacing the input with the maximally mixed state, which is something that can be
easily implemented. However, as p increases from 0 to 1, at some critical point the
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map switches from completely positive to merely positive. In order to find this critical
value of p, we first calculate E(|i〉〈j|) for i, j ∈ {0, 1} as follows:

|0〉〈0| =
[
1 0
0 0

]
E7−→
[ 1+p

2 0
0 1−p

2

]
|0〉〈1| =

[
0 1
0 0

]
E7−→
[
0 0
p 0

]
,

|1〉〈0| =
[
0 0
1 0

]
E7−→
[
0 p
0 0

]
|1〉〈1| =

[
0 0
0 1

]
E7−→
[ 1−p

2 0
0 1+p

2

]
,

We can then write down the Choi matrix:

Ẽ = 1
2

[
E(|0〉〈0|) E(|0〉〈1|)
E(|1〉〈0|) E(|1〉〈1|)

]
= 1

2


1+p

2 0 0 0
0 1−p

2 p 0
0 p 1−p

2 0
0 0 0 1+p

2


which lets us apply channel-state duality: E is completely positive (and hence physically
realisable) if and only if Ẽ ⩾ 0, and the latter is true only when p ⩽ 1

3 (note that the
eigenvalues of Ẽ are 1

4 (1 + p) and 1
4 (1− 3p)).

9.11 Kraus operators, revisited

Channel-state duality gives us more than just a one-to-one correspondence
between states Ẽ and channels E — it also gives a one-to-one correspondence
between vectors in the statistical ensemble Ẽ and the Kraus operators in the
decomposition of E .

With the above in mind, we see that the freedom to choose the Kraus operators
representing a channel in many different ways is really the same thing as the free-
dom to choose the ensemble of pure states representing a density operator in many
different ways.

We already know that if two mixtures (pk, |ψk〉) and (ql, |φl〉) are described by the 0The number of vectors contribut-
ing to each mixture (and hence the
number of corresponding Kraus
operators) may be different, but
we can always simply extend the
smaller set to the required size by
adding zero operators.

same density operator∑
k

|ψ̃k〉〈ψ̃k| = Ẽ =
∑

l

|φ̃l〉〈φ̃l|

(where |ψ̃k〉 = √pk|ψk〉 and |φ̃l〉 = √ql|φl〉) then they are related to one another:
there exists some unitary R such that

|ψ̃k〉 =
∑

l

Rkl|φ̃l〉.

Using the aforementioned fact that any vector |ψ〉 in H ⊗H′ can be written as |ψ〉 =
1⊗ V |Ω〉, this implies the same unitary freedom in choosing the Kraus operators.

So how many Kraus operators do we really need? Channel-state duality tells us
that the minimal number of Kraus operators needed to express E : B(H) → B(H′) in
the operator-sum form is given by the rank of its Choi matrix Ẽ , i.e. we need no more
than dd′ such operators (where d = dimH and d′ = dimH′). In fact, this minimal set
of Kraus operators corresponds to the spectral decomposition of Ẽ . 0 We talk about spectral decom-

position in more detail in Section
12.11.1.

Indeed, if Ẽ =
∑

k |ṽk〉〈ṽk| and |ṽk〉 = (1 ⊗ Ek)|Ω〉, then the orthogonality of |ṽk〉
and |ṽl〉 implies the orthogonality (in the Hilbert–Schmidt sense) of the corresponding

0 Recall that the Hilbert–Schmidt
product (A|B) of two operators
A and B is defined by (A|B) =
1
2 trA†B.
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Kraus operators Ek and El. In order to see this, we write 〈ṽk|ṽl〉 as

〈ṽk|ṽl|ṽk|ṽl〉 = 〈Ω|(1⊗ E†
k)(1⊗ El)|Ω〉

= tr(1⊗ E†
kEl)|Ω〉〈Ω|

= 1
d

tr
∑
i,j

|i〉〈j| ⊗ E†
kEl|i〉〈j|

(using the fact that we can substitute 1
d

∑
i,j |i〉〈j| ⊗ |i〉〈j| for |Ω〉〈Ω|). Now, the trace

of the tensor product of two matrices is the product of their traces, hence

〈ṽk|ṽl〉 = 1
d

∑
i,j

〈i|j〉 trE†
kEl|i〉〈j|

= 1
d

trE†
kEl

(using the fact that 〈i|j〉 = δij and
∑

i |i〉〈i| = 1). So we have shown that if 〈ṽk|ṽl〉 = 0
then trE†

kEl = 0.

A linear map E : B(H) → B(H′) is completely positive if and only if it admits
an operator-sum decomposition of the form

E(ρ) =
∑

k

EkρE
†
k.

If this is the case, then this decomposition has the following properties:
• E is trace preserving if and only if

∑
k E

†
kEk = 1.

• Two sets of Kraus operators {Ek} and {Fl} represent the same map E if
and only if there exists a unitary R such that Ek =

∑
l RklFl (where the

smaller set of the Kraus operators is padded with zeros, if necessary).

Note that, for any E : B(H) → B(H′), there always exists a representation with at
most dd′ mutually orthogonal Kraus operators: trE†

iEj ∝ δij .
For example, consider the simpler case where dimH = dimH′ = d Then the

Kraus operators Ek are vectors in a d2-dimensional Hilbert space, with the Hilbert–
Schmidt inner product trE†

kEl. We can pick an orthonormal basis of operators {Bi}
and express each Kraus vector in this basis as Ek =

∑
ckiBi (where i = 1, . . . , d2 and

k = 1, . . . , n, with n possibly much larger than d2). This gives us

ρ 7−→
∑
i,j

BiρB
†
j

(∑
k

ckic
?
kj

)
=
∑
i,j

BiρB
†
jCij

The matrix Cij is positive semi-definite, and hence unitarily diagonalisable: Cij =∑
k UikdkU

†
kj for some unitary U and some dk ⩾ 0. We can then unitarily “rotate” our

operator basis and use the Ck =
∑

j UjkBj

√
dk as our new Kraus operators.

The utility of Kraus operators when it comes to understanding quantum channels
will be even more obvious when we prove some facts about correctable channels in
Section ??.
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9.12 Remarks and exercises

9.12.1 Purifications and isometries

All purifications of a density operator are related by an isometry acting on the pu-
rifying system. That is, if ρ is a density operator on H, and |ψA〉 ∈ H ⊗ HA and
|ψB〉 ∈ H ⊗HB are two purifications of ρ with dimHA ⩽ dimHB, then

|ψB〉 = (1⊗ V )|ψA〉

for some isometry V .
To show this, we start with the spectral decomposition of ρ

ρ =
∑

i

pi|i〉〈i|

and note that

|ψA〉 =
∑

i

√
pi|i〉 ⊗ |ai〉

|ψB〉 =
∑

i

√
pi|i〉 ⊗ |bi〉

which defines an isometry V =
∑

i |bi〉〈ai| satisfying the desired equation.
This observation leads to a way of relating all convex decompositions of a given

density operator: let (pk, |ψk〉) and (ql, |φl〉) be convex decompositions of a density
operator ρ; then there exists an isometry V such that these two decompositions

n∑
k=1

|ψ̃k〉〈ψ̃k| = ρ =
m∑

l=1

|φ̃l〉〈φ̃l|

(where n ⩾ m, and |ψ̃k〉 = √pk|ψk〉 and |φ̃l〉 = √ql|φl〉) are related:

|ψ̃k〉 =
∑

l

Vkl|φ̃l〉.

9.12.2 The Markov approximation

Unitary evolutions form a group, but quantum channels form a semigroup, since they
are not necessarily invertible. Indeed, quantum operations are invertible only if they
are either unitary operations or simple isometric embeddings (such as the process of
bringing in the environment in some fixed state and then immediately discarding it,
without any intermediate interaction).

Anyway, composition of quantum channels in the Kraus representation is rather
straightforward, but do not be deceived by its mathematical simplicity! We must
remember that quantum channels do not capture all possible quantum evolutions: the
assumption that the system and the environment are not initially correlated is crucial,
and it does impose some restrictions on the applicability of our formalism. Compare,
for example, the following two scenarios.

Firstly: 0 Here we have reverted to the
convention of writing the an-
cilla/environment after the system
of interest instead of before.ρ

UA

ρ′

UB

ρ′′

|e⟩
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Here the system, initially in state ρ, undergoes two stages of evolution, and the
environment, initially in state |e〉, is not discarded after the first unitary evolution UA;
the environment persists and participates in the second unitary evolution UB . In this
case the evolutions ρ 7→ ρ′ and ρ 7→ ρ′′ are both well defined quantum channels, but
the evolution ρ′ 7→ ρ′′ is not: it falls outside the remit of our formalism because the
input state of the system and the state of the environment are not independent.

Secondly:

ρ

UA

ρ′

UB

ρ′′

|a⟩ |b⟩

Here we have two stages of evolution, as before, but we discard the environment
after the first unitary, and start the second unitary evolution in a fresh tensor-product
state, with a new environment; the two stages involve independent environments. In
this case all three evolutions (ρ 7→ ρ′, ρ′ 7→ ρ′′, and ρ 7→ ρ′′) are well defined quantum 0 A quantum Markov process!

Andrey Markov (1929–2012) was
a Russian mathematician best
known for his work on stochastic
processes.

channels, and they compose: if EA describes the evolution from ρ to ρ′, and EB from
ρ′ to ρ′′, then the composition EB ◦ EA describes the evolution from ρ to ρ′′.

In practice we often deal with complex environments that have internal dynamics
that “hides” any entanglement with the system as quickly as it arises. For example,
suppose that our system is an atom, surrounded by the electromagnetic field (which
serves as the environment). Let the field start in the vacuum state. If the atom
emits a photon into the environment, then the photon quickly propagates away, and
the immediate vicinity of the atom appears to be empty, i.e. resets to the vacuum
state. In this approximate model, we assume that the environment quickly forgets
about the state resulting from any previous evolution. This is known as the Markov
approximation — in a quantum Markov process the environment has essentially no
memory.

9.12.3 What use are positive maps?

Positive maps that are not completely positive are not completely useless. True, they
cannot describe any quantum dynamics, but still they have useful applications — for
example, they can help us to determine if a given state is entangled or not.

Recall that a quantum state of a bipartite system AB described by the density
matrix %AB is said to be separable if %AB can be written in the form

%AB =
∑

k

pkρA,k ⊗ ρB,k

where ρA,k are density matrices on A and ρB,k are density matrices on B (and where
pk ⩾ 0 and

∑
k pk = 1); otherwise %AB is said to be entangled. If we apply the partial

transpose 1 ⊗ T to this state, then it remains separable, since, as we have seen, the
transpose ρB is a legal density matrix.

In separable states, one subsystem does not really know about the existence of the
other, and so applying a positive map to one part produces a proper density operator,
and thus does not reveal the unphysical character of the map. So, for any separable
state ρ, we have (1⊗ T )ρ ⩾ 0.

Positive (but not completely positive) maps, such as the transpose, can be
quite deceptive: you have to include other systems in order to detect their
unphysical character.

In particular, positive maps appear to be completely positive on separable
states.
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As an example, consider a quantum state ρp of two qubits which is a mixture of the
maximally mixed state |Ω〉 = 1√

2 (|00〉 + |11〉) and the identity matrix with respective 0 Recall that a state is said to be
maximally mixed if the outcomes
of any measurement on that state
are completely random.

probabilities p and 1− p. That is,

ρp = p|Ω〉〈Ω|+ (1− p)
4

1⊗ 1.

If we apply the partial transpose 1 ⊗ T to this state, and check for which values of
p the resulting matrix is a density matrix, we can show that the density operator ρp

describes an entangled state for all p ∈ [ 1
3 , 1].

We say that a state is a PPT state if its partial transpose is positive. An important 0 “PPT” stands for positive partial
transpose.thing to note is that separable states are PTT, but the converse is generally not true:

there exist entangled PPT states. However, in the specific case of two qubits, the
converse is true: the PPT states are exactly the separable states.

SEP

PPT

all other states

9.12.4 Partial inner product

Tensor products bring the possibility to do “partial things” beyond just the partial
trace. GivenHA⊗HB, any vector |x〉 ∈ HA defines an anti-linear mapHA⊗HB → HB
called the partial inner product with |x〉. It is first defined on the product vectors
|a〉 ⊗ |b〉 by the formula

|a〉 ⊗ |b〉 7−→ 〈x|a〉|b〉

and then extended to other vectors in HA ⊗HB by linearity. Similarly, any |y〉 ∈ HB
defines a map HA ⊗HB → HA via

|a〉 ⊗ |b〉 7−→ |a〉〈y|b〉

For example, the partial inner product of

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 ∈ HA ⊗HB

with of |0〉 ∈ HA is

〈0|ψ〉 = c00|0〉+ c01|1〉

and the partial inner product of the same |ψ〉 with |1〉 ∈ HB is

〈1|ψ〉 = c01|0〉+ c11|1〉.

9.12.5 The “control” part of controlled-NOT

Consider a single-qubit channel induced by the action of the c-NOT gate. Recall that
the unitary operator associated with the c-NOT gate can be written as

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X

where is X is the Pauli σx gate (i.e. the NOT gate). Let us step through the following
simple circuit:
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input ρ ρ′ output

|0⟩ discard

This time we are interested in the evolution of the control qubit: the control qubit
will be our system, and the target qubit, initially in a fixed state |0〉, will play the role
of an ancilla.

We can calculate the Kraus operators:

Ei = (1⊗ 〈i|)U(1⊗ |0〉)

which we simply write as Ei = 〈i|U |0〉 (for i = 0, 1). Expanding out the definition of
U , we see that

Ei = 〈i|U |0〉 = 〈i|(|0〉〈0| ⊗ 1 + |1〉〈1| ⊗X)|0〉
= |0〉〈0|〈i|1|0〉+ |1〉〈1|〈i|X|0〉
= |i〉〈i|

We can also check the normalisation condition:

E†
0E0 + E†

1E1 = |0〉〈0|+ |1〉〈1| = 1.

The unitary action of the gate when the state of the target qubit is fixed at |0〉 can
be written as

|ψ〉|0〉 7−→E0|ψ〉|0〉+ E1|ψ〉|1〉
=|0〉〈0||ψ〉|0〉+ |1〉〈1||ψ〉|1〉
=〈0|ψ〉|0〉|0〉+ 〈1|ψ〉|1〉|1〉

which is a familiar c-NOT entangling process: if |ψ〉 = α0|0〉+α1|1〉 then |ψ〉|0〉 evolves
into α0|0〉|0〉+ α1|1〉|1〉.

The evolution of the control qubit alone can be expressed in the Kraus form as

ρ 7−→ ρ′ = E0ρE
†
0 + E1ρE

†
1

= |0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|
= ρ00|0〉〈0|+ ρ11|1〉〈1|.

Then, in the matrix form, if the initial state of the control qubit is |ψ〉 = α0|0〉+α1|1〉,
we get[

|α|20 α0α
?
0

α?
0α1 |α1|2

]
= ρ 7−→ ρ′ =

[
|α0|2 0

0 |α1|2
]
.

As we can see, the diagonal elements of ρ survive, and the off-diagonal elements
(the coherences) disappear. The two Kraus operators, E0 = |0〉〈0| and E1 = |1〉〈1|,
define the measurement in the standard basis, and so you may think about this oper-
ation as being equivalent to measuring the control qubit in the standard basis and then
just forgetting the result.

9.12.6 Surprisingly identical channels

Let us now compare two single qubit-quantum channels: A(ρ) =
∑

k AkρA
†
k, defined

by the Kraus operators

A1 = |0〉〈0| =
[
1 0
0 0

]
A2 = |1〉〈1| =

[
0 0
0 1

]

195



9.12 Remarks and exercises

and B(ρ) =
∑

k BkρB
†
k, defined by the Kraus operators

B1 = 1√
2

= 1√
2

[
1 0
0 1

]
B2 = Z√

2
= 1√

2

[
1 0
0 −1

]
.

We are familiar with the first channel from the previous example (9.12.5): it
performs the measurement in the standard basis, but doesn’t reveal the outcome of this
measurement. The second channel chooses randomly, with equal probability, between
two options: it will either let the qubit pass undisturbed, or apply the phase-flip Z.

These two apparently very different physical processes correspond to the same
quantum channel: A(ρ) = B(ρ) for any ρ. Indeed, you can check that B1 = (A1 +
A2)/

√
2 and B2 = (A1 −A2)/

√
2, whence

B(ρ) = B1ρB
†
1 +B2ρB

†
2

= 1
2

(A1 +A2)ρ(A1 +A2)† + 1
2

(A1 −A2)ρ(A1 −A2)†

= A1ρA
†
1 +A2ρA

†
2

= A(ρ).

You can also check that the two channels can be implemented by the following
two circuits:

discard

ρ A(ρ)

|0⟩

discard

ρ B(ρ)

|0⟩ H

Figure 9.2: The c-NOT gate appears here as the measurement gate. The target qubit
(on the bottom) measures the control qubit (on the top) in the standard basis (oper-
ation A on the left) or in the Hadamard basis (operation B on the right). The extra
Hadamard gate on the target qubit has no effect on the control qubit.

9.12.7 Independent ancilla

Another way to understand the freedom in the operator-sum representation is to re-
alise that, once the system and the ancilla cease to interact, any operation on the
ancilla alone has no effect on the state of the system.

ρ

U

ρ′

|e⟩ discard

ρ

U

ρ′

|e⟩ R discard

Figure 9.3: The quantum channel ρ 7→ ρ′ is not affected by the choice of a unitary R,
and so these two processes are the same.

That is, the two unitaries U and (1 ⊗ R)U (where R acts only on the ancilla)
describe the same channel, even though the Kraus operators Ek = 〈ek|U |e〉 for the
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latter are

Fk = 〈ek|(1⊗R)U |e〉

=
∑

j

〈ek|R|ej〉〈ej |U |e〉

=
∑

j

RkjEj

Indeed, the unitary evolution (1⊗R)U gives

ρ⊗ |e〉〈e| 7−→
∑
k,l

EkρE
†
l ⊗R|ek〉〈el|R†

and the subsequent trace over the environment gives

trE

∑
k,l

EkρE
†
l ⊗R|ek〉〈el|R† =

∑
k,l

EkρE
†
l 〈el|R†R|ek〉

=
∑

k

EkρE
†
k.

9.12.8 Order matters?

We know that, given a fixed state of the environment, the unitaries U and (1 ⊗ R)U
(where R acts only on the environment) define the same quantum channel. Is the
same true for U and U(1 ⊗ R) — do these two unitaries define the same quantum
channel as one another?

9.12.9 Unchanged reduced density operator

Show that, for any operator ρ on HA ⊗HB and any operator R on HB, we have 0 Hint: show this for separable op-
erators ρ = A⊗B and then extend
the result to any operator ρ by lin-
earity.

trB
[
(1⊗R)ρ(1⊗R†)

]
= trB ρ.

That is, the reduced density operator ρA = trB ρ is not affected by R.

9.12.10 Cooling down

We can show that the process of cooling a qubit to its ground state, described the map
E(ρ) = |0〉〈0|, is a quantum channel. Indeed, the set of Kraus operators is |0〉〈0| and
|0〉〈1|, and all Bloch vectors are mapped to the Bloch vector representing state |0〉〈0|.

9.12.11 No pancakes

Consider a single-qubit operation which causes the z-component of the Bloch vector
to shrink while preserving the values of the x- and y-components. Under such an
operation, the Bloch sphere is mapped to an oblate spheroid which touches the Bloch
sphere along its equator.

Explain why we cannot physically implement such a map.

9.12.12 Pauli twirl

Show that randomly applying the Pauli operators 1, X, Y , and Z, with uniform prob-
ability, to any density operator ρ of a single qubit (an operation known as the Pauli
twirl) results in the maximally mixed state

1
4

1ρ1 + 1
4
XρX + 1

4
Y ρY + 1

4
ZρZ = 1

2
1.
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9.12.13 Depolarising channel

The “most popular” Pauli channel is the depolarising channel 0 Recall that a single-qubit Pauli
channel is a channel that applies
one of the Pauli operators, X, Y
or Z, chosen randomly with some
prescribed probabilities px, py and
pz .

ρ 7−→ (1− p)ρ+ p

3
(XρX + Y ρY + ZρZ) .

In the depolarising channel, a qubit in state ρ remains intact with probability 1− p, or
is otherwise transformed with one of the Pauli operators X, Y , and Z, each chosen
randomly with probability p/3.

Show, using the Pauli twirl (Exercise 9.12.12) or otherwise, that we can rewrite
the depolarising channel as

ρ 7−→ ρ′ =
(

1− 4
3
p

)
ρ+ 4

3
p

1
2

1.

In particular then, we can say that, for p ⩽ 3
4 , the channel either does nothing

or, with probability 4
3p, throws away the initial quantum state and replaces it by the

maximally mixed state.)
It is also instructive to see how the depolarising channel acts on the Bloch sphere.

An arbitrary density matrix for a single qubit can be written as

1
2

(1 + ~s · ~σ),

where ~s is the Bloch vector, and ~σ = (σx, σy, σz) is the vector of Pauli matrices. The
depolarising channel maps this state to

1
2

[
1 +

(
1− 4

3
p

)
~s · ~σ

]
.

The Bloch vector shrinks by a factor of 1− 4
3p. This means that, for p ⩽ 3

4 , the Bloch
sphere contracts uniformly under the action of the channel; for p = 3

4 , the sphere
is contracted to a single point at its centre; and for 3

4 ⩽ p ⩽ 1, the Bloch vector is
flipped, and starts pointing in the opposite direction.

9.12.14 Toffoli gate

Consider the Toffoli gate

input ρ discard

|1⟩
ρ′ output

|1⟩

Express ρ′ as a function of ρ in the Kraus representation.

9.12.15 Expressing vectors using the maximally mixed state

Show that any vector |ψ〉 in H⊗H′ can be written as

|ψ〉 = 1⊗ V |Ω〉

where V =
∑

i,j Vij |j〉〈i| is an operator from H to H′, and |Ω〉 = 1
d

∑
i |i〉|i〉 is a

maximally entangled state in H ⊗H. (Here the vectors |i〉 and |j〉 form orthonormal
bases in H and H′, respectively.)
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9.12.16 Complete positivity of a certain map

Let E be the linear map on a single qubit defined by

E(1) = 1
E(σx) = axσx

E(σy) = ayσy

E(σz) = azσz

where ax, ay, and az are some fixed real numbers. Using the Choi matrix of E ,
determine the range of ax, ay, az for which the map E is positive, and the range for
which it is completely positive.

9.12.17 Duals

We say that E? : B(H)→ B(H′) is the dual of a linear map E : B(H)→ B(H′) if

tr[E?(X)Y ] = tr[XE(Y )]

for any operators X and Y in B(H).

1. Show that, if E is trace preserving, then E? is unital (i.e. that it sends the identity
to the identity, or equivalently that its Kraus operators Fj satisfy

∑
j FjF

†
j = 1).

2. Show that, if
∑

i EiE
†
i is an operator-sum decomposition of E , then

∑
i E

†
iEi is

an operator-sum decomposition of E?.

9.12.18 Trace, transpose, Choi

Let E : B(H)→ B(H′), and let d = dimH and d′ = dimH′. Show that, for any (d× d)
matrix X and any (d′ × d′) matrix Y ,

tr[E(X)Y ] = tr[Ẽ(XT ⊗ Y )].

(For example, if we are interested in the component E(X)ij = 〈i|E(X)|j〉, then we
can take Y = |j〉〈i|.)

9.12.19 Entanglement witness

Show that, if E is a positive semi-definite map that is not necessarily completely posi-
tive, then its Choi matrix Ẽ is still positive semi-definite on separable states.

9.12.20 Almost Kraus decomposition

Show that any linear map E : B(H) → B(H′) can be written as ρ 7→
∑

k EkρF
†
k . This 0 Hint: use the singular-value de-

composition of the Choi matrix.is very reminiscent of the Kraus decomposition, except that here Ek and Fk are not,
in general, the same operator.

9.12.21 Tricks with a maximally mixed state

A maximally mixed state of a bipartite system can be written, using the Schmidt
decomposition (from Exercise 5.14.13), as

|Ω〉 = 1√
d

∑
i

|i〉|i〉

whence

|Ω〉〈Ω| = 1
d

∑
i,j

|i〉〈j| ⊗ |i〉〈j|
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Each subsystem is of dimension d, and all the Schmidt coefficients are equal. Here
are few useful tricks involving a maximally mixed state.

• If we take the transpose in the Schmidt basis of |Ω〉, then

〈Ω|A⊗B|Ω〉 = 1
d

tr(ATB).

• Any pure state |ψ〉 =
∑

i,j cij |i〉|j〉 of the bipartite system can be written as

(C ⊗ 1)|Ω〉 = (1⊗ CT )|Ω〉.

This implies that

(U ⊗ U?)|Ω〉 = |Ω〉

(where U? denotes the matrix given by taking the complex conjugate, entry-
wise, of U , i.e. without also taking the transpose).

• The swap operation SWAP = S : |i〉|j〉 7→ |j〉|i〉 can be expressed as

S = d|Ω〉〈Ω|TA

= d
∑
i,j

(
|i〉〈j|

)T ⊗ |i〉〈j|

= d
∑
i,j

|j〉〈i| ⊗ |i〉〈j|

where we write XTA to mean the partial transpose over A, i.e. T ⊗ 1. This
implies that

tr[(A⊗B)S] = trAB

and that

(A⊗ 1)S = S(1⊗A).
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Applications and reality
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10 Quantum algorithms

About quantum interference in disguise: Hadamard, function evalu-
ation, Hadamard. Also about the early quantum algorithms and how
they deal with querying oracles, searching for a needle in a haystack,
and estimating periodicity of certain functions. Finally, about phase
estimation, hidden order determination, and Shor’s famous algorithm
for prime factorisation, via the (inverse) quantum Fourier transform.

To boil down the theory of classical computers to a single sentence, we can say
that they essentially evaluate functions: given n-bits of input, they produce m-bits
of output that are uniquely determined by the input. In other words, (very simple)
classical computers encode binary functions

f : {0, 1}n → {0, 1}m

and then compute the value of the output for any particular specified n-bit argument.
But we can make an even further simplification: a binary function with an m-bit
output value is equivalent tom-many binary functions with 1-bit output values (which
we call Boolean functions). In other words, we might just as well say that the basic
task performed by a computer is the evaluation of Boolean functions

f : {0, 1}n → {0, 1}.

How can we adapt this to the world of quantum computing?

10.1 Quantum Boolean function evaluation

In quantum computation, all elementary operations are reversible (i.e. unitary), so we
need to compute Boolean functions in a reversible fashion — we can do so as follows:

|x〉|y〉 7−→ |x〉|y ⊕ f(x)〉.

The corresponding circuit diagram (for an input register of n = 3 qubits) is shown
in Figure 10.1.

|x⟩ |x⟩

|y⟩ f |y ⊕ f(x)⟩

Figure 10.1: Computing some f : {0, 1}3 → {0, 1} in a quantum manner, where x ∈
{0, 1}3, y ∈ {0, 1}, and ⊕ denotes XOR, or addition modulo 2.

Here we use two registers: the first one stores the arguments |x〉 (where x ∈ 0Reading the circuit diagram from
top to bottom.{0, 1}n is our binary string input), and the second one the value f(x). More pre-

cisely, the value f(x) is added bit-wise to the pre-existing binary value y of the second
register. We usually set y = 0 to get

|x〉|0〉 7−→ |x〉|f(x)〉.

Quantum Boolean function evaluation is a special case of the generalised x-controlled-
U on two registers:∑

x∈{0,1}n

|x〉〈x| ⊗ Ux
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where Ux is either the identity 1 (when f(x) = 0) or the bit-flip X (when f(x) = 1). 0Do not confuse the capitalX (the
Pauli bit-flip operator σx) with the
small x (a binary string stored in
the first register, and the argument
of our Boolean function f).

We can write this very succinctly as∑
x∈{0,1}n

|x〉〈x| ⊗Xf(x).

Because of this, we sometimes denote the quantum evaluation of the function f by
Uf , which is a gate on the (n+ 1) qubits |x〉|y〉.

Let’s look at a worked example. Consider the Boolean function f : {0, 1}2 → {0, 1}
given by

f(x) =

{
1 if x = 01;
0 otherwise

which we might call the indicator (or characteristic) function for the binary string
01, sometimes denoted χ01. The evaluation |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 can be tabulated
explicitly:

|00〉|0〉 7−→ |00〉|0〉 |00〉|1〉 7−→ |00〉|1〉
|01〉|0〉 7−→ |01〉|1〉 |01〉|1〉 7−→ |01〉|0〉
|10〉|0〉 7−→ |10〉|0〉 |10〉|1〉 7−→ |10〉|1〉
|11〉|0〉 7−→ |11〉|0〉 |11〉|1〉 7−→ |11〉|1〉

and then∑
x∈{0,1}2

|x〉〈x| ⊗Xf(x) =|00〉〈00| ⊗ 1 + |01〉〈01| ⊗X

+|10〉〈10| ⊗ 1 + |11〉〈11| ⊗ 1.

Finally, the matrix form looks as follows:

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1


As you can see, this is a diagonal block matrix: a (4× 4) matrix with (2× 2) matrices
as entries. The rows and the columns of the (4× 4) matrix are labelled by the binary 0 We always use the

lexicographic order
00 < 01 < 10 < 11.

strings 00, 01, 10, 11, and the (2 × 2) matrices on the diagonal represent operations
applied to the qubit in the second register. Here, all of these matrices on the diagonal
are the identity 1 except for the (01, 01) entry (i.e. the second one), which is the bit-
flip X. This is because f(01) = 1 (and so we want to turn the control value y = 0 into
y = 1, which is achieved by applying the bit-flip operator), but f(x) = 0 for all other
binary strings x (and so we want to leave the control value y = 0 as it is).

10.2 More phase kick-back

What makes quantum evaluation of Boolean functions really interesting — and what
truly sets it apart from classical evaluation — is its action on a superposition of different
inputs. For example, 0 We make two notational simpli-

fications: we usually don’t worry
about normalisation factors, and
we often just write

∑
x

to mean∑
x∈{0,1}n .

∑
x

|x〉|0〉 7−→
∑

x

|x〉|f(x)〉
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produces f(x) for all x in a single run. However, it is more instructive to see the effect
of quantum function evaluation when the qubit in the second register is prepared in
the state |−〉 := 1√

2 (|0〉 − |1〉) = H|1〉, since then∑
x

|x〉|−〉 7−→
∑

x

(−1)f(x)|x〉|−〉

(as shown in Figure 10.2). In words, whenever f(x) = 1, the bit-flip X is applied to
the qubit in the second register.

∑
x |x⟩ ∑

x(−1)f(x) |x⟩

|−⟩ f |−⟩

Figure 10.2: Computing some f : {0, 1}3 → {0, 1} with the second register in state
|−〉.

The reason for defining the state |−〉 as we do is that it is the eigenstate of X with
eigenvalue −1, i.e. X|−〉 = −|−〉. So, due the phase kick-back, whenever f(x) = 1,
the phase factor −1 appears in front of the corresponding term |x〉. As you can see,
the second register stays in state |−〉 all the way through the computation — it is the
first register where things happen.

Let us now see how quantum Boolean function evaluation introduces phase shifts
in quantum interference experiments, and how such experiments can be viewed as
computations.

10.3 Oracles

The computational power of quantum interference was discovered by counting how
many times certain Boolean functions have to be evaluated in order to find the answer
to a given problem. Imagine a “black box” (sometimes also called an oracle) that
computes some fixed Boolean function, but whose inner workings are unknown to
us. Then imagine that we are in a scenario where we want to learn about some given
property of the Boolean function, but we have to “pay” (in energy, time, money, or
anything!) for each use (often referred to as a query) of the box. In such a setting,
the objective is to minimise number of queries to the oracle while finding out as much
information as possible about the function that it computes. For this purpose, we
ignore everything that happens inside the black box: in our rules of the game, the
Boolean function evaluation counts as just one computational step.

10.4 Deutsch’s algorithm

We start, once more, with the simplest quantum interference circuit

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

but let’s turn this into a black-box scenario, often known as the binary observable
measurement problem: 0You might recognise this as Exer-

cise 2.14.8, and we will return to
this problem again in Section 10.8.• we are allowed to prepare the input in any state that we like;

• we are allowed to read the output;
• but all we know about the value of ϕ is that it is either 0 or π, and we are not

allowed to “look inside” the phase gate to see which value it is!
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With these rules, can we figure out which value ϕ has been set to?
Of course we can — we’re quantum information scientists!
One way of doing it is to prepare the input in the state |0〉 and check the output: if

ϕ = 0 then the output is always |0〉, and if ϕ = π then it is always |1〉. In other words,
a single run of the interference experiment is sufficient to determine the difference.

The very first quantum algorithm, proposed by David Deutsch in 1985, is very
much related to this effect, but where the phase setting is determined by the Boolean
function evaluation via the phase kick-back.

Scenario. (Global properties of a one-bit function).
We are presented with an oracle that computes some unknown function

f : {0, 1} → {0, 1}. Note that there are only four possibilities for what f can
be: it could be one of two constant functions (i.e. those where f(0) = f(1)), or
one of two balanced functions (i.e. those where f(0) 6= f(1)).

f(0) f(1)

constant 0 0
constant 1 1
balanced 0 1
balanced 1 0

Our task is to determine, using the fewest queries possible, whether the func-
tion computed by the oracle is constant or balanced.

Note that we are not asked for the particular values f(0) and f(1), but only whether
the two values are the same or different. Classical intuition tells us that we have to eval-
uate both f(0) and f(1) and compare them, which involves evaluating f twice. But,
in the quantum setting, we can solve this problem with a single function evaluation,
using the following circuit. 0 The original version of Deutsch’s

algorithm provides the correct an-
swer with probability 50%. Here
we present a modified/improved
version. The more general prob-
lem, which deals with unknown
functions f : {0, 1}n → {0, 1}
for n ⩾ 1, is known as the
Deutsch–Jozsa problem.

Circuit. (Deutsch’s algorithm).
First register: 1 qubit. Second register: 1 qubit.

|0⟩ H H

{
|0⟩ if constant

|1⟩ if balanced

|−⟩ f |−⟩

During the function evaluation, the second register “kicks back” the phase factor
(−1)f(x) in front of |x〉, but the state of the second register remains unchanged; the
first register is modified as follows:

|0〉 H7−→ |0〉+ |1〉
Uf7−→ (−1)f(0)|0〉+ (−1)f(1)|1〉

= |0〉+ (−1)f(0)⊕f(1)|1〉
H7−→ |f(0)⊕ f(1)〉.

The evolution of the first qubit is thus identical to that described by the circuit
diagram
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10.5 The Bernstein–Vazirani algorithm

φ
|0⟩ H H

{
0 if constant

1 if balanced

where the relative phase is ϕ = (−1)f(0)⊕f(1). The first qubit ends in state |0〉 if
the function f is constant, and in state |1〉 if the function is balanced, and the standard
measurement distinguishes these two cases with certainty. 0 This is also implemented in the

Quantum Flytrap Virtual Lab.But really this is just the binary observable measurement problem in disguise!
Indeed, the fact that quantum Boolean function evaluation of a function f is given by

|x〉|y〉 7−→ |x〉|y ⊕ f(x)〉

means that the unitary Uf has eigenvalues ±1 because it satisfies U2
f = 1, since two

consecutive evaluations gives

|x〉|y〉 7−→|x〉|y ⊕ f(x)〉
7−→|x〉|y ⊕ f(x)⊕ f(x)〉

=|x〉|y〉.

So the fact that 1 = e0 and −1 = eiπ means that Uf acts as a phase gate with phase
either 0 or π. We will come back to this link between Deutsch’s algorithm and binary
observable measurement in Section 10.8.

Deutsch’s result laid the foundation for the new field of quantum computation,
and was followed by several other quantum algorithms for various problems. They
all seem to rest on the same generic sequence:

• a Hadamard transform;
• function evaluation;
• another Hadamard (or Fourier) transform. 0As explained in Section 10.9, the

Hadamard transform is a special
case of the Fourier transform over
the group Zn2 .

As we shall see in a moment, in some cases (such as in Grover’s search algorithm)
this sequence is repeated several times.

Let us now follow a tour through the three early quantum algorithms, where each
one offers a higher-order speed-up when compared to their classical analogues than
the last: firstly linear, then quadratic, and finally exponential. After this, we will
look at generalising binary observable measurement, the corresponding algorithm
analogous to Deutsch’s, and how this leads us to arguably the most famous quantum
algorithm: Shor’s algorithm for prime factorisation.

10.5 The Bernstein–Vazirani algorithm

Scenario. (Hidden inner-product determination).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}, but we are promised that f is of the form

f(x) = a · x ≡ (a1 · x1)⊕ . . .⊕ (an · xn)

for some fixed binary string a = a1a2 . . . an ∈ {0, 1}n.
Our task is to determine, using the fewest queries possible, the value of the

n-bit string a.

It’s quite easy to see how to do this classically: if we input the value x = 00 . . . 010 . . . 0,
where the m-th bit is a 1 and all other bits are 0, then f(x) is simply the m-th bit of
a; after n such calls, we will know every bit value, and thus know a. It is also clear
that there cannot exist a better classical algorithm: each call to the oracle teaches us

206

https://lab.quantumflytrap.com/lab/deutsch-jozsa?mode=laser


10.5 The Bernstein–Vazirani algorithm

exactly one bit of information, and since we must learn n bits, we must query it n
times.

In contrast, by running the circuit below, it is possible to determine the value of a
with a single call to the oracle! 0 This algorithm is named for

Ethan Bernstein and Umesh
Vazirani who proposed it in 1997.

Circuit. (The Bernstein-Vazirani algorithm).
First register: n qubits. Second register: 1 qubit.

|0⟩⊗n

H H |a1⟩

H H |a2⟩

...

H H |an⟩

|−⟩ f |−⟩

A quick note on notation: the “. . .” in the circuit means “there are more wires here
but they are identical (apart from the numbering) to the ones above”. You might also
see other notation to denote this, such as

n
|0⟩⊗n

H

or even simply

|0⟩⊗n
H

Now, stepping through the execution of the circuit (and ignoring the second reg-
ister, which, as per usual, remains in the state |−〉 throughout), we obtain

|0⊗n〉 H⊗n

7−→
(

1√
2

)n ∑
x∈{0,1}n

|x〉

Uf7−→
(

1√
2

)n ∑
x∈{0,1}n

(−1)a·x|x〉

H⊗n

7−→
(

1√
2

)n ∑
x∈{0,1}n

(−1)a·x
(

1√
2

)n ∑
y∈{0,1}n

(−1)y·x|y〉


=
(

1
2

)n ∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)(a⊕y)·x

 |y〉
where we write the second Hadamard transform as

|x〉 7−→
(

1√
2

)n ∑
y∈{0,1}n

(−1)y·x|y〉.

To see that this output is indeed equal to |a〉, we can use the fact that, for any 0Exercise 10.12.5.
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10.6 Grover’s search algorithm

y ∈ {0, 1}n,

∑
x∈{0,1}n

(−1)x·y =

{
0 if y 6= 0;
2n if y = 0

which, in our case, tells us that

∑
x∈{0,1}n

(−1)(a⊕y)·x =

{
0 if y 6= a;
2n if y = a.

In other words, if you take the sum over x, then all the terms always cancel out
unless a⊕ y = 00 . . . 0, but this happens if and only if y = a. Then the standard bit-by-
bit measurement of the first register gives the value of a and solves the problem with
a single call to the oracle.

Alternatively, if you don’t immediately see how this sum works for z 6= a (where
we write |z〉 to mean the output), you can first calculate the probability that the output
is z = a. In this case it is easy to see that the sum is 2n, and that in the final state∑

z λz|z〉 the term z = a has amplitude 1. Thus, by normalisation, all the other terms
must be equal to 0.

10.6 Grover’s search algorithm

The next algorithm we will study aims to solve the problem of searching for a specific
item in an unsorted database. Think about an old-fashioned phone book: the entries
are typically sorted alphabetically, by the name of the person that you want to find.
However, what if you were in the opposite situation: you had a phone number and
wanted to find the corresponding person’s name? The phone book is not sorted in
that way, and to find the number (and hence name) with, say, 50% probability, you
would need to search through, on average, 50% of the entries. Needless to say, in a
large phone book this would take a long time.

While this might seem like a rather contrived problem (a computer database
should always maintain an index on any searchable field), many problems in com-
puter science can be cast in this form, i.e. that of an unstructured search.

Scenario. (Unstructured search).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}.
Our task is to find, using the fewest queries possible, an input x ∈ {0, 1}n

such that f(x) = 1.

Suppose that we know that, amongst the N = 2n binary strings, there are M � N
which are tagged, i.e. strings on which f evaluates to 1. Since there is no structure
in the database, any classical search requires around N/M steps, i.e. the function f
must be evaluated roughly N/M times.

In contrast, there is a quantum search algorithm, implemented by the circuit be-
low, which requires only roughly

√
N/M steps. 0 This algorithm is named for Lov

Grover, who proposed it in 1996.
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10.6 Grover’s search algorithm

Circuit. (Grover’s search).
First register: n qubits. Second register: 1 qubit.

Grover iteration operator G
(repeat O(2n/2) times)

|0⟩⊗n

H H H |z1⟩

H H H |z2⟩

...
...

H H H |zn⟩

|−⟩ f f0 |−⟩

where f0 tags the binary string consisting of n zeros:

f0(x) =

{
1 if x = 00 . . . 0;
0 otherwise.

Yet again, we can recognise the typical Hadamard, function evaluation, Hadamard
sequence, and yet again we can see that the second register (the bottom qubit, in state
|−〉) plays an auxiliary role: the real action takes place in the first register. However,
unlike the previous algorithms, a single call to the oracle does not do very much, and
we have to build up the quantum interference in the first register through repeated
calls to the oracle (without any intermediate measurements!).

Here, the basic step is the Grover iteration operator G, which is the boxed part
of the circuit that we repeat over and over:

G = (H⊗n ⊗ 1)Uf0(H⊗n ⊗ 1)Uf .

After O(2n/2) applications of G, we measure the first register bit-by-bit and obtain 0 Recall the big-O notation intro-
duced in Exercise 1.11.7.the value of |z〉 = |z1z2 . . . zn〉, which is such that, with “high” probability, f(z) = 1.

In order to actually see how this algorithm works, and to justify our use of the phrase
“with high probability”, we can take a more geometric approach.

First, we define two orthonormal vectors in the Hilbert space describing the first
register: 0 Once again, we shall completely

ignore the second register from
now on, since all the interesting
stuff happens in the first.|a〉 = 1√

N −M

∑
x∈f−1(0)

|x〉

|b〉 = 1√
M

∑
x∈f−1(1)

|x〉

where f−1(i) := {x ∈ {0, 1}n | f(x) = i} is the preimage of i. Since these vectors
are orthonormal, they are, in particular, linearly independent, and so their span is a
two-dimensional subspace — this is the subspace in which our search will take place.

Using the fact that f−1(0) and f−1(1) form a partition of the space {0, 1}n, we 0 A partition of a set X is
a collection of disjoint subsets
X1, . . . , Xm ⊆ X whose union is
all of X, i.e. Xi ∩ Xj = ∅ for all
i 6= j, and X1 ∪ . . . ∪Xm = X.

see that the two-dimensional span of |a〉 and |b〉 contains, in particular, the equally-
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10.6 Grover’s search algorithm

weighted superposition |s〉 = H⊗n|0⊗n〉 of all binary strings of length n:

|s〉 = 1√
N

∑
x∈{0,1}n

|x〉

= 1√
N

∑
x∈f−1(0)

|x〉+ 1√
N

∑
x∈f−1(1)

|x〉

=
√
N −M
N

|a〉+
√
M

N
|b〉

= (cos θ)|a〉+ (sin θ)|b〉

where we use the fact that√
N −M
N

2

+
√
M

N

2

= 1 = sin2 θ + cos2 θ

to parametrise
√

N−M
N as cos θ and

√
M
N as sin θ (with θ ≈

√
M
N , since N �M).

The state |s〉 is our starting input for our sequence of Grover iterations, and we will
show that applying G, when restricting to the plane spanned by |a〉 and |b〉, amounts
to applying a rotation by angle 2θ. Grover’s search algorithm can then be understood
as a sequence of rotations which take the input state |s〉 towards the target state |b〉.

To see this, note that the unitary transformation induced by the oracle

f : |x〉 7→ (−1)f(x)|x〉

can be written as 0 To prove this, it suffices to
check that these two transforma-
tions agree on the standard basis;
since f−1(0) and f−1(1) form a
partition, we know that any ele-
ment (and, in particular, any basis
element) is either in the preimage
of 0 or of 1; if it is in the former,
then Ia acts as the identity; if the
latter, then Ia acts as −1.

Ia := 2|a〉〈a| − 1

which we can interpret as a reflection through the |a〉-axis: we see that

Ia|a〉 = 2|a〉〈a||a〉 − |a〉
= 2|a〉 − |a〉
= |a〉

Ia|b〉 = 2|a〉〈a||b〉 − |b〉
= −|b〉

and since −|b〉 is a vector that points in the opposite direction from |b〉, it must be a
reflection; since −|b〉 is still orthogonal to |a〉, the reflection must be in the |a〉-axis.

Some further algebraic manipulation shows that Ia = 2|a〉〈a| − 1 = 1 − 2|b〉〈b|.
Now, in particular, evaluation of f0 can be written as 2|0〉〈0| − 1, and thus thought
of as a reflection through the |0〉-axis. If we sandwich f0 in between two Hadamards
then we obtain Is = 2|s〉〈s| − 1, which is reflection through the |s〉-axis. By definition
then, the Grover iteration operator G is the composition

G = IsIa.

Now recall the purely geometric fact that if we have two intersecting lines L1
and L2 in two-dimensional Euclidean space, meeting with angle α, then reflecting an
object through L1 and then reflecting the resulting image through L2 is the same as
simply rotating the original object around the point of intersection L1∩L2 by an angle
of 2α.

The angle between |a〉 and |s〉 is θ, so each time G is applied the vector is rotated
(around the origin) by an angle of 2θ towards the |b〉-axis. All that remains to do is to
just choose the “right” number r of steps such that we end up as close to the |b〉-axis
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10.7 Simon’s algorithm

as possible. The state |s〉 starts at angle θ to |a〉, and we should perform our final (and
only) measurement when this angle is π/2, i.e. when (2r + 1)θ = π/2, which gives

r ≈ π

4

√
N

M
.

|b⟩

|a⟩θ
|s⟩

the initial state

|b⟩

|a⟩
θ
θ

2θ |s⟩

IsIa|s⟩

Ia|s⟩

applying G = IsIa

Figure 10.3: Understanding the Grover search algorithm geometrically.

So the quantum algorithm searches an unsorted list of N items in roughly
√
N 0 Recall that M � N , so

√
N
M

≈√
N .steps: it offers a quadratic speed-up when compared to classical search, which can be

of immense practical importance. For example, cracking some of the more popular
modern ciphers, such as AES, essentially requires a search among many binary strings
(called keys). If these can be checked at a rate of, say, one million keys per second,
then a classical computer would need over a thousand years to find the correct key,
while a quantum computer using Grover’s algorithm would find it in less than four
minutes.

10.7 Simon’s algorithm

Here we will see the simplest quantum algorithm that offers an exponential speed-up
when compared to the best possible classical algorithm.

Scenario. (Hidden binary-addition determination).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}n, but we are promised that f satisfies, for all x ∈ {0, 1}n,

f(x) = f(x⊕ s)

for some fixed s ∈ {0, 1}n, which we call the period of f . (We assume that s is
not the string of n zeros, otherwise the problem becomes trivial.)

Our task is to determine, using the fewest queries possible, the value of the
n-bit string s.

Note that asking for f to be periodic is equivalent to asking that f be two-to-one:
for any y ∈ {0, 1}n such that there exists some x ∈ {0, 1}n with f(x) = y, there exists
exactly one other x′ 6= x such that f(x′) = y as well.

Classically, this problem is exponentially hard. We will not go through a detailed
proof of this fact, but the intuition is reasonably simple: since there is no structure in
the function f that would help us find its period s, the best we can do is evaluate f on
random inputs and hope that we find some distinct x and x′ such that f(x) = f(x′),
and then we know that s = x ⊕ y. After having made m queries to the oracle, we
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10.7 Simon’s algorithm

have a list of m-many tuples (x, f(x)); there are m(m − 1)/2 possible pairs which
could match within this list, and the probability that a randomly chosen pair match
is 1/2n−1. This means that the probability of there being at least one matching pair
within the list of m tuples is less than m2/2n. This means that the chance of finding a
matching pair is negligible if the oracle is queried on fewer than m =

√
2n inputs.

The quantum case, on the other hand, gives a result (again, with “high” probabil-
ity) within a linear number of steps. The circuit that solves this problem, shown below,
has a familiar Hadamard–function–Hadamard structure, but the second register has
now been expanded to n qubits. 0 This circuit is named for Daniel

Simon, who proposed it in 1994.

Circuit. (Simon’s problem).
First register: n qubits. Second register: n qubits.

|0⟩⊗n

H H

H H

...

H H

|0⟩⊗n f...
...

This time, let’s follow the evolution of both registers throughout this circuit. We
start off by preparing the equally-weighted superposition of all n-bit strings with the
first Hadamard, and then query the oracle:

|0⊗n〉|0⊗n〉 H⊗n⊗17−→ 1√
2n

∑
x

|x〉|0⊗n〉

Uf7−→ 1√
2n

∑
x

|x〉|f(x)〉.

The second Hadamard transform on the first register then yields the final output state:

1
2n

∑
x,y

(−1)x·y|y〉|f(x)〉. (‡)

But if we measure the second register before applying the second Hadamard trans- 0As we shall see in a moment, the
actual measurement on the second
register is not actually necessary.

form to the first register, we obtain one of the 2n−1 possible values of f(x), each
equally likely. Let’s study the implications of this.

Suppose that the outcome of the measurement is f(a) for some a ∈ {0, 1}n. Given
that both a and a⊕ s are mapped to f(a) by f , the first register then collapses to the
state

1√
2
(
|a〉+ |a⊕ s〉

)
.

The subsequent Hadamard transform on the first register then gives us the final state 0 We write s⊥ to mean the set of
all y ∈ {0, 1}n such that y · s = 0.
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1√
2n+1

∑
y

(
(−1)a·y + (−1)(a⊕s)·y

)
|y〉|f(a)〉

= 1√
2n+1

∑
y

(−1)a·y
(

1 + (−1)s·y
)
|y〉|f(a)〉

= 1√
2n−1

∑
y∈s⊥

(−1)a·y|y〉|f(a)〉

where we have used the fact that (a⊕ s) · y = (a · y)⊕ (s · y), and that 1 + (−1)s·y can
have only two values: either 2 (when s · y = 0) or 0 (when s · y = 1). Now we finally
measure the first register: the outcome is selected at random from all possible values
of y such that s · y = 0, each occurring with probability 1/(2n−1).

In fact, we did not have to measure the second register at all: it was a mathemati-
cal shortcut, simply taken for pedagogical purposes. Instead of collapsing the state to
just one term in a superposition, we can express Equation (‡) as

1
2n

∑
y,f(a)

(
(−1)a·y + (−1)(a⊕s)·y

)
|y〉|f(a)〉

= 1
2n

∑
y,f(a)

(−1)a·y
(

1 + (−1)s·y
)
|y〉|f(a)〉

where the summation over f(a) means summing over all binary strings in the image
of f , which is a convenient shorthand for the more complicated formal statement: for 0 Another (complicated sound-

ing) way of expressing this sum
is by choice of a section of f ,
i.e. picking one element az in each
preimage f−1(z) is equivalent to
defining a function a : {0, 1}n →
{0, 1}n by a 7→ az which satisfies
(a ◦ f)(z) = z, or a ◦ f = 1.

all z ∈ {0, 1}n, since our function f is two-to-one, we know that the preimage f−1(z)
has either two elements or none; if it’s the latter, then we don’t include z in our sum;
if it’s the former, we pick one and call it a (knowing that the other, by the setup, must
be a⊕ s, which you can see appearing in the first equation above). With this, the final
output of the algorithm is

1
2n−1

∑
y∈s⊥

|y〉
∑
f(a)

(−1)a·y|f(a)〉

and, again, the measurement outcome is selected at random from all possible values
of y such that s · y = 0.

We are not quite done yet: we cannot infer s from a single output y. However,
once we have found n − 1 linearly independent strings y1, y2, . . . , yn−1, we can solve 0 It is important to note that we

are talking about the pure “ab-
stract” binary strings, and not the
corresponding states in the Hilbert
space. Concretely, this means that
linearly independent here means
“no string in the set {y1, . . . , yn}
can be expressed as the bitwise
sum of some other strings in this
set”. That is, we are working with
the Z/2Z-vector space of strings,
not the C-vector space of states!

the n− 1 equations
s · y1 = 0
s · y2 = 0

...

s · yn−1 = 0


to determine a unique value of s. (Note that we only need n − 1 values, and not n,
because s = 0 will always be a solution, but we have explicitly assumed that this is
not the case in our statement of the scenario, and so it suffices to narrow down the
space of possible solutions to consist of two elements, since then we know that we can
just take the non-zero one.)

So we run this algorithm repeatedly, each time obtaining another value of y that
satisfies s ·y = 0. Every time we find some new value of y that is linearly independent
of all previous ones, we can discard half the potential candidates for s.
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s

y1

s

y1

y2
s

Figure 10.4: Picture all possible binary strings as dots, but with the string s denoted
by a star. Every linearly independent yk+1 lets us “zoom in” twice as close towards s.

Now, the probability that (n− 1)-many outputs y1, . . . , yn−1 are linearly indepen-
dent is(

1− 1
2n−1

)(
1− 1

2n−2

)
. . .

(
1− 1

2

)
. (⊛)

To see this, suppose that we have k linearly independent binary strings y1, . . . , yk.
Then these strings span a subspace with 2k elements, consisting of all binary strings
of the form

⊕k
i=1 biyi, where b1, . . . , bk ∈ {0, 1}. Now suppose we obtain some yk+1.

It will be linearly independent from the y1, . . . , yk if and only if it lies outside the
subspace spanned by the y1, . . . , yk, which occurs with probability 1− (2k)/(2n).

We can bound Equation (⊛) from below: the probability of obtaining a linearly 0Use the inequality

(1 − x)(1 − y) = 1 − x− y − xy

⩾ 1 − (x+ y)

which holds for any 0 < x, y < 1.

independent set {y1, . . . , yn−1} by running the algorithm n− 1 times (i.e. not having
to discard any values and run again) is

n−1∏
k=1

(
1− 1

2k

)
⩾
[
1−

(
1

2n−1 + 1
2n−2 + . . .+ 1

4

)]
· 1

2
>

1
4
.

We conclude that we can determine s with some constant probability of error after
repeating the algorithm O(n) times. The exponential separation that this algorithm
demonstrates between quantum and classical highlights the vast potential of a quan-
tum computer to speed up function evaluation.

10.8 Phase estimation

In Section 10.4, we took the problem of binary observable measurement and at
Deutsch’s algorithm, which uses quantum Boolean function evaluation as the controlled-
U gate. Now we’re going to generalise the binary observable measurement problem
to other controlled-U gates, trying to deduce the value of an unknown phase that can
be a lot more general than simply 0 or π. Afterwards, we’ll explain how this is the
first step towards Shor’s algorithm for prime factorisation.

Let’s start by rephrasing the binary observable measurement problem in terms of
phase estimation (or eigenvalue estimation). Recall the problem: we are handed
some phase gate of unknown phase ϕ, but we are promised that ϕ is either 0 or π;
we want to figure out which one it is by running a simple circuit one time. But this is
entirely equivalent to having access to an oracle that computes a controlled-U gate,
along with having an eigenstate |u〉 with eigenvalue ±1 (i.e. eiϕ for ϕ ∈ {0, π}), since
this acts as a phase gate of phase 0 or π (depending on whether the eigenvalue is +1
or −1) on the first register when we plug in |u〉 to the second register. This is just
phase kick-back again! So let’s state the problem this way, and use the solution that
we have already described in Section 10.4 (which is really the circuit that we saw all
the way back in Section 5.12).
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10.8 Phase estimation

Scenario. (Binary phase estimation).
We are presented with an oracle that computes a controlled-U gate, along

with an eigenstate |u〉 of U with eigenvalue eiϕ We are promised that ϕ is either
0 or π.

Our task is to determine, using the fewest queries possible, the value of ϕ.

Circuit. (Controlled-U interference).
First register: 1 qubit. Second register: 1 qubit.

|0⟩ H H

{
|0⟩ if φ = 0

|1⟩ if φ = π

|u⟩ U |u⟩

So we see that the eigenvalues being ±1, or, equivalently, ϕ being 0 or π, is fun-
damental to this story — this is what we want to generalise, so that we can deal with
more values of ϕ. 0We won’t be able to find the value

of completely arbitrary phases ex-
actly, only those of a certain ra-
tional form. However, we will
talk about the problem of arbitrary
phases in Section 12.9.

Scenario. (Phase estimation).
We are presented with an oracle that computes a controlled-U gate, along

with an eigenstate |u〉 of U with eigenvalue eiϕ. We are promised that ϕ is of the
form

ϕ = 2π m
2n

for some integers m and n.
Our task is to determine, using the fewest queries possible, the value of

ϕ/2π = m/2n

Let’s work our way up to finding a circuit to solve this problem, starting with the
following simple mathematical observation. Since eiϕ = ei(ϕ+2π), we can assume m
to be an integer between 0 and 2n−1, which means that it has a binary representation
of the form

m =
n∑

i=1
mi2n−i

for mi ∈ {0, 1}, and so

ϕ = 2π
n∑

i=1
mi2−i

This helps us rephrase the problem as “find the values of the mi for i = 1, . . . , t”.
Now, rather than tackling the full problem, let’s try a much smaller modification

of the original binary observable measurement problem: we have the same setup —
a phase gate of unknown phase ϕ — but this time we are promised that ϕ is either 0
or π/2 (instead of 0 or π). How can we adapt our original solution to find the phase
value?

After some thought, you might see the trick: if we can apply the phase gate twice
in a row, then we reduce the problem to the one we have already solved. Indeed, if
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10.8 Phase estimation

ϕ = 0 then repeating it twice is the same as simply applying it once; if ϕ = π/2 then
repeating it twice is the same as simply applying a phase gate of phase π.

Iterating this idea leads us to the first step of solving the general phase estimation
problem, since if U |u〉 = eiϕ|u〉 then U2n−1 |u〉 = e2n−1iϕ|u〉. But

2n−1ϕ = 2nπ
m

2n

= πm

= π

n∑
i=1

mi2n−i

= πmn + π

n−1∑
i=1

mi2n−i

︸ ︷︷ ︸
all divisible by 2

and so, by the 2π-periodicity of eix, we see that

U2n−1
|u〉 = emnπi|u〉

and now we’re happy: mn ∈ {0, 1}, so this is an eigenvalue of U2n−1
with phase 0 or

π, reducing us to the original binary observable measurement problem that we have
already solved by replacing U with U2n−1

. We have found the n-th bit mn!

|0⟩ H H |mn⟩

|u⟩ U2n−1 |u⟩

We’ve dealt with shrinking the distance between the two possible phases (if we 0 Any interval [a, b] in R can
be turned into any other interval
[c, d] by a single shrink (or scale)
and a single shift: multiply a and
b by (d − c)/(b − a) to get a′ and
b′, and then add c − a′ to both a′

and b′.

have 0 and π/k for some k ∈ N then we simply replace U by Uk), so now let’s look
at the other way of modifying a pair of phases: shifting. We have the same setup —
a phase gate of unknown phase ϕ — but this time we are promised that ϕ is either
−π/2 or π/2 (instead of 0 or π). How can we adapt our original solution to find the
phase value?

This time we just need to add π/2 to each of the phases, since then we’d end up
back at 0 and π. This means that we simply need to precede (or follow) the phase
gate by the π/4-phase gate S = [ 1 0

0 i ]. 0Refer to Section 2.6 for an expla-
nation of this confusing terminol-
ogy.

We already know how to find the value of mn, so let’s use this to now find the
value of mn−1. If we just try the same trick as before then we run into problems: it’s
true that U2n−2 |u〉 = e2n−2ϕ|u〉, but

2n−2ϕ ≡ πmn−1 + πmn/2 mod 2π

so we have an annoying phase of πmn/2 in the way. However, we know that all we
have to do now is to compensate for this by adding another phase gate:

−πmn

2|0⟩ H H |mn−1⟩

|u⟩ U2n−2 |u⟩

Once we’ve got the value of mn−1 from this circuit, then we can simply apply the
same idea to find mn−2, mn−3, and so on, until we have all the mi for i = 1, . . . , n.
For example, the circuit to determine mn−3 (given than we already know mn, mn−1,
and mn−2) is
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10.8 Phase estimation

−πmn

8 −πmn−1

4 −πmn−2

2|0⟩ H H |mn−3⟩

|u⟩ U2n−3 |u⟩

The entire process for determining the whole string m1 . . .mn, solving the sce-
nario, can be written in a form that looks exactly how we expect: Hadamard–phase–
Hadamard, modulo some subtle changes, which we will explain.

Circuit. (Phase estimation).
First register: n qubits. Second register: 1 qubit.

|0⟩⊗n

H

FT †

|m1⟩

H |m2⟩

...

H |mn⟩

|u⟩ U△ |u⟩

where U4 is defined below, and FT † is defined in Section 10.9.

In this circuit, we write U4 to mean the unitary that performs function evaluation
as

|x〉|u〉 7−→ eiϕx|x〉|u〉

or, in circuit language, the gate that acts on the i-th register as a controlled-U2n−i

gate:

...

U△

=

. . .

. . .

...
...

. . .

. . .

U2n−1

U2n−2 . . . U

It is important to note, however, that we are sweeping something under the rug
here. If we can treat U4 as an oracle itself, then this does indeed give an efficient
solution, but if all we have access to is U then things are definitely not efficient: we
are calling it 2n−1 + 2n−2 + . . .+ 20 = 2n − 1 many times, which is exponentially bad!
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10.9 Quantum Fourier transform

The only remaining part of the circuit to discuss is this mysterious FT † gate, but
this deserves a section of its own.

10.9 Quantum Fourier transform

In Section 10.8 we constructed a circuit to perform phase estimation of an unknown
rational phase ϕ = 2πm/2n. The circuit, as per usual, was split into three parts: first
some Hadamard gates, then a modified controlled-U gate, and finally some undefined
gate FT †. Following our usual credo, this last gate should look something like a
Hadamard, and we shall see that it is indeed related. This gate turns out to be pretty
foundational, and turns up all over the place, so it’s worth taking some time to talk
about it in more detail.

If we look back at what we needed this gate to do, we see that it has to contain
these compensating phase shifts that depend on which bit mi of m we are trying to
calculate, e.g. −π(mn/8 + mn−1/4 + mn−2/2) in the case of m3. We draw this as a
circuit in Figure 10.5.

|mn⟩

|mn−1⟩

|mn−2⟩

|mn−3⟩

H

P †
π/2 H

P †
π/4 P †

π/2 H

P †
π/8 P †

π/4 P †
π/2 H

Figure 10.5: The gate FT † followed by measurement, acting on four qubits. The
double vertical lines linking gates indicate that the result of the classical measurement
is used to control the application (for example, we want the first phase gate on each
register to be multiplied by mn).

Hopefully it’s clear how to generalise this definition of the gate to an arbitrary
number of qubits, but to give a formal definition it’s easier (and also useful) to give a
symbolic definition. 0 Here we switch from thinking of

binary strings of length n to think-
ing of integers from 0 to 2n − 1,
as described in Section 5.4. It’s
good to be comfortable switching
between the two!

The quantum Fourier transform (QFT) acting on n qubits is defined by the
unitary

UFT = 1√
N

N−1∑
x,y=0

e2πixy/N |y〉〈x|

where N = 2n.

Note that this is the definition for the gate that would be denoted by FT , whereas
what we use in the phase estimation circuit is FT †. In other words, we are really
using the inverse quantum Fourier transform. 0 There are some confusing con-

ventions when it comes to whether
or not to use the word “inverse”
here, but we generally decide to
do so.
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10.9 Quantum Fourier transform

Checking that this matrix is actually unitary is slightly involved, so we’ll only
sketch how it’s done here. We can see that

UFTU
†
FT = 1

N

N−1∑
x,y,z=0

e2πix(y−z)/N |y〉〈z|

since |x〉|y〉 = δxy, and then we can separately consider the cases y = z and y 6= z; in
the latter case, we’ll have to sum a geometric progression, which gives

1
N

N−1∑
x=0

e2πix(y−z)/N = 1− e2πi(y−z)

1− e2πi(y−z)/N

= 0.

So in what way does this relate to the Hadamard gate that we already know and
love? Looking at the n = 1 case of the definition of UFT we get

UFT = 1√
2

[
1 1
1 −1

]
which is exactly the usual Hadamard gate H on 1 qubit. However, if we now look at
n = 2 and compare UFT with H ⊗H (which we calculated in Exercise 5.14.12), then
we see that they differ:

UFT = 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



H ⊗H = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


In fact, we can give a general expression for UFT on n qubits: it is the (2n×2n) matrix

UFT = 1√
2n



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ω2n−1

1 ω2 ω4 ω6 . . . ω2(2n−1)

1 ω3 ω6 ω9 . . . ω3(2n−1)

...
...

...
...

. . .
...

1 ω2n−1 ω2(2n−1) ω3(2n−1) . . . ω(2n−1)(2n−1)


where ω is a primitive 2n-th root of unity (that is, ω2n = 1, but ωm 6= 1 for any
m < 2n).

It turns out the quantum Fourier transform and the Hadamard are both examples
of a more general construction known as the Fourier transform on finite groups:
applied to the cyclic group Z/2nZ we get the QFT; applied to the n-fold product
(Z/2Z)n we get the Hadamard. However, we won’t need this level of formalism going
forward, we just need to remember that we have yet one more useful gate at our
disposal!

Fourier theory and group representations.

This section is not yet finished.

The way that we wrote the QFT in Figure 10.5 is not the conventional way in
which it normally appears, since we’re assuming that we measure the result at the
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10.10 Hidden-order determination

end. In general, we might not want to do this, and instead replace the dependence
of the corrective phase gates on the classical measurements by controlled qubits, as
shown in Figure 10.6. We sometimes refer to this as the coherent circuit for the
inverse quantum Fourier transform.

One other note about conventions is the difference in ordering of bits between
the circuit representation above and the unitary operator definition given before: in
the circuit, the least significant bit appears in the first register as opposed to the last,
with increasing significance of bits as we go up registers (i.e. down the page). We
could of course introduce a lot of SWAP gates to make these conventions agree, but
this is typically unnecessary if we instead just keep track of which qubits are which
and remember what we want to do with each one next.

H P †
π/2 P †

π/4 P †
π/8

H P †
π/2 P †

π/4

H P †
π/2

H

Figure 10.6: The gate FT † without measurement, acting on four qubits. This no
longer depends on any classical measurements, but instead uses controlled-phase
gates.

10.10 Hidden-order determination

In the same way that Deutsch’s algorithm (10.4) dealt with binary observable mea-
surement for a unitary implementing some function evaluation, the hidden-order de-
termination algorithm that we are now going to study deals with phase estimation for
a unitary implementing some function evaluation. This turns out to be an important 0 Deutsch’s algorithm is to bi-

nary observable measurement as
hidden-order determination is to
phase estimation.

step along the path towards Shor’s algorithm

Scenario. (Hidden-order determination).
We are presented with an oracle that computes the function on n qubits

Ua|z〉 = |az mod N〉

for some fixed (known) integer N = 2n, along with a fixed (known) integer a
that is coprime to N .

Our task is to determine, using the fewest queries possible, the order r of a
modulo N , i.e. the smallest positive integer r such that ar ≡ 1 mod N .

Let’s be clear and spell out what notational shortcuts we’re making here. Every 0 For example, if n = a = 3, then
U3 applied to |4〉 = |1〉|0〉|0〉 is
|12 mod 8〉 = |4〉 = |1〉|0〉|0〉,
and applied to |5〉 = |1〉|0〉|1〉 is
|15 mod 8〉 = |7〉 = |1〉|1〉|1〉.

integer 0 ⩽ z < 2n corresponds to a basis state |z〉 of the space of n qubits, given by
writing z in binary form. So when we write |az mod N〉, this means that we take the
product of the integers a and z, take this integer modulo N , and then consider the
basis state given by writing this result in binary form.

The hypothesis that N is a power of 2 is actually unnecessary, as we will later
explain, but we assume it for now since for the sake of ease.
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10.10 Hidden-order determination

First of all, we can write down some eigenstates of Ua parametrised by an integer
s ∈ Z

|us〉 = 1√
r

r−1∑
k=0

e−2πi(sk/r)|ak mod N〉.

Since 2πi(r + 1)k/r ≡ 2πi(k/r) mod 2πi, we see that this gives us r eigenstates,
parametrised by s = 0, . . . , r− 1 Now let’s show that these are indeed eigenstates. By
the definition of Ua,

Ua|us〉 = 1√
r

r−1∑
k=0

e−2πi(sk/r)|yk+1 mod N〉

= 1√
r

r∑
j=1

e2πi(s/r)e−2πi(sj/r)|yj mod N〉

where we simply changed the index of the sum to j = k + 1. But r is the order of a
modulo N , so we the j = r term can be written as j = 0, giving

Ua|us〉 = e2πi(s/r)|us〉

which shows that |us〉 is an eigenstate with eigenvalue e2πi(s/r).
Of course, we cannot actually prepare any of these eigenstates |us〉 because they

require knowledge of the natural number r that we are trying to find! But at the very
least this now looks a bit like a problem that we have seen before: if we could prepare
some particular |us〉 then the phase estimation algorithm (from Section 10.8) would
allow us to calculate s/r, and thus r. So let’s try one of our always-useful tricks:
superposition.

Although we cannot prepare any |us〉 individually, note that 0 Recall that, if ω 6= 1 is an n-th
root of unity, then

∑n−1
i=0 ωi = 0.

1√
r

r−1∑
s=0
|us〉 = 1

r

r−1∑
s=0

r−1∑
k=0

e−2πi(sk/r)|ak mod N〉

= 1
r

r−1∑
k=0

(
r−1∑
s=0

e−2πi(sk/r)

)
|ak mod N〉

= 1
r

r−1∑
s=0
|1〉︸ ︷︷ ︸

k=0

+1
r

r−1∑
k=1

(
r−1∑
s=0

e−2πi(sk/r)

)
|ak mod N〉

= |1〉

and so we should get something interesting by just plugging in |1〉.
The actual circuit is practically identical to the phase estimation circuit of Section 0 Named for Peter Shor, who pro-

posed it as part of his factoring
algorithm (see Section 10.11) in
1994.

10.8, but where U is replaced by Ua, and |u〉 is replaced by |1〉.
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Circuit. (Shor’s order-finding algorithm).
First register: 2n+ 1 qubits. Second register: n qubits.

n

|0⟩⊗2n+1

H

FT †
H

...

H

|1⟩⊗n U△
a

As always, let’s step through the circuit. Immediately after the first Hadamard we
are in the state(

1√
N

N−1∑
x=0
|x〉

)
|1〉.

Next, just after the function evaluation Ua, we are in the state

1√
r

r−1∑
s=0
|Φs〉|us〉

where

|Φs〉 = 1√
N

N−1∑
n=0

eiφsx|x〉

and φs = 2π(s/r), so that eiφsx is the eigenvalue of |us〉 for Ua.
To calculate the effect of the inverse quantum Fourier transform, we will make

the same pedagogical shortcut as we did when studying Simon’s algorithm (Section 0 There is a deep link between
this algorithm and Simon’s algo-
rithm. As we have mentioned,
hidden-order determination forms
a key part of Shor’s algorithm; Si-
mon’s algorithm and Shor’s algo-
rithm (and Deutsch’s algorithm,
in fact) are all closely related:
they are all examples of hidden
subgroup problems.

10.7) and pretend that we make a measurement in the basis |us〉 in the auxiliary
system before applying the inverse QFT. We will measure one of the r possible val-
ues of s, each with equal probability 1/r, and doing so will leave the main register
in the corresponding state |Φs〉. But this is exactly the picture of what happened af-
ter applying U4 in the phase estimation circuit! This means that we already know
what the inverse QFT will do: it will give us the value of 22n+1(s/r). Since this will
happen irrelevant of which value of s we measure, we need not actually perform the
measurement. 0 It is very fortunate that we do

not need to perform this measure-
ment, since in general we will not
know how to implement it: recall
that to construct |us〉 we would
need to already know the value of
the order r that we are trying to
find.

So running through the entire circuit and then measuring the main register will
give us the value of 22n+1(s/r), which is almost enough to recover the value of r, but
not quite: since we didn’t measure the auxiliary register, we don’t know which value
of s we obtained! However, now a purely classical (and efficient) algorithm comes
to our rescue: the continued fractions algorithm. This will give us the values of s
and r provided that a certain inequality is satisfied, which is always the case if our
main register has 2n + 1 qubits. We will not delve into these details of the classical 0The explicit inequality in the con-

tinued fractions algorithm actually
tells us that 2n + 1 is the smallest
possible size for the main register
to ensure exactness with complete
certainty.

post-processing of the measurements since they are no longer quantum; consider this
yet another chance for the interested reader to either work out the details themselves
or to find the answers elsewhere through some research of their own.
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Finally, the assumption at the very start that N be of the form 2n is not actually
necessary (just as the assumption that the phase in the phase estimation problem be
of the form 2πm/2n is not actually necessary). Suppose that N isn’t of this form, and
let n be the smallest integer such that N < 2n. Then we want to extend Ua to act on n
qubits, and we need to be careful how we do so. For example, we cannot simply take
the same function Ua|z〉 = |az mod N〉, since then Ua|0〉 = |0〉 = Ua|N〉 but |0〉 and
|N〉 are orthogonal (remember, we always assume our bases to be orthonormal!), so
this Ua cannot be unitary because it sends orthogonal states to non-orthogonal states.
The correct modification to make for our purposes is to define

Ua|z〉 =

{
|az mod N〉 0 ⩽ z < N

|z〉 R ⩽ z < 2n

which is indeed unitary over the whole space of n qubits.

10.11 Shor’s algorithm

Given its importance in the field of (post-)quantum cryptography (and thus in the real
world), as well as its fame, it would be remiss of us to not dedicate at least one section
in this book to Shor’s algorithm. However, as you will see, the actual quantum part
of the algorithm is exactly the order-finding circuit from Section 10.10; the rest is an
application of classical number theory to reduce the problem of prime factorisation
to the problem of hidden-order determination. Because of this, we will not spend too
much time on the details — this is not a book on classical number theory! — but we
hope that this section at least highlights the important fact which is that other areas
of mathematics and physics have much to offer for the aspiring quantum information
scientist. Of course, it is infeasible to try to learn everything in mathematics, but this
is also exactly the point: it’s good to be aware that there is a lot of it out there, and
that we all have a lot to learn from each others’ specialities.

The purpose of Shor’s algorithm is to find the prime factorisation of a composite 0 There are a few algorithms
known by the name of “Shor’s al-
gorithm”, but they are all some-
what related.

integer. This is a classically difficult problem, and hence forms the basis of some very
well-known public-key cryptography schemes, such as RSA (see Exercise 10.12.1),
but Shor’s algorithm offers a distinct speed-up. More precisely, to factor an integer
R classically with the general number field sieve method is a sub-exponential prob-
lem (i.e. somewhere between polynomial in R and exponential in R), whereas Shor’s
algorithm is polylogarithmic (i.e. polynomial in logR). This means that Shor’s al-
gorithm witnesses integer factorisation as a bounded-error quantum polynomial time
problem: it lives in BQP (recall Section 1.9).

Since any integer has a unique (up to ordering) prime factorisation consisting of 0 The fact that prime factorisation
is essentially unique is so is impor-
tant that it earns the name of the
fundamental theorem of arithmetic.

finitely many prime numbers, it suffices to find a single prime factor, since then we
can simply divide our original number by this and run the algorithm over and over
until it terminates, recording the prime factors that we find along the way. But still,
turning the problem of “find a prime factor” into a problem that we have already
solved (namely hidden-order determination) requires some work, so let’s get started.

Recall that the greatest common divisor gcd(m,n) (or highest common fac-
tor hcf(m,n)) of a pair of integers (m,n) is the largest integer that divides both of
them. This can be efficiently computed by a (very old) classical algorithm known as
Euclid’s algorithm, so we can make use of it in freely. In fact, let us now list the
things that we can do efficiently with classical algorithms:

• compute the hcf of two integers (Euclid’s algorithm)
• determine if an integer is prime (the Miller–Rabin primality test)
• determine if an integer is even (check if the last digit is a 0 in its binary expan-

sion)
• determine if an integer R can be written as R = ab for some integers a ⩾ 1 and
b ⩾ 2 (Exercise 10.12.6).
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10.11 Shor’s algorithm

One more small note of terminology: throughout this section, we say factor to
mean non-trivial factor, i.e. the factors of R are the natural numbers that divide R
apart from 1 and R.

Lemma. Let x and R be natural numbers such that
• R is not prime;
• 1 < x < R− 1;
• x2 ≡ 1 mod R.

Then both hcf(x− 1, R) and hcf(x+ 1, R) are factors of R.

Note that 1 < x < R − 1 is equivalent to saying that x 6≡ ±1 mod R. In other
words, we assume x to be a non-trivial square root of 1 modulo R.

Proof. The hypothesis tells us that

x2 − 1 = kR

for some integer k, and so factoring x2 − 1 tells us that

R | (x+ 1)(x− 1)

(where we write a | b to mean that a divides b).
Now, since x < R − 1, we know that x + 1 < R and so R cannot divide x + 1

because it is simply too big. This means, in particular, that hcf(x + 1, R) 6= R. But
now note that if hcf(x − 1, R) = 1 then, since R | (x + 1)(x − 1), it must be the case
that R | x + 1, and we have just said that this cannot happen. The same argument
applies if we swap x + 1 and x − 1, so we have proven that both hcf(x − 1, R) and
hcf(x+ 1, R) are factors of R.

The essence of the above proof is much simpler than the length might suggest: we
are sort of just saying that R cannot divide either x + 1 or x − 1 alone, and so must
be “split up” into two parts, with one inside x+ 1 and the other inside x− 1.

Or we could appeal directly to the fundamental theorem of arithmetic. Write R =
pa1

1 . . . pan
n , and now consider each prime factor individually. Since R | (x+ 1)(x− 1),

we know that p1 | (x + 1)(x − 1). A very useful fact about prime numbers is that, if 0 This “very useful fact” is se-
cretly just the fact that prime num-
bers are prime elements in the
ring of integers. The usual defi-
nition of “prime number” that we
are used to (“only divisible by 1
and itself”) actually says that they
are irreducible elements. The
link between these two concepts
requires some knowledge of ring
theory.

p divides a product ab, then either p divides a or p divides b. So here we see that p1
must divide either x+ 1 or x− 1. We can continue like this for all the prime factors pi

of R, but note that it cannot be the case that all the pi divide only x+ 1 and not x− 1,
since this would then force pa1

1 . . . pan
n = R to divide x + 1, which we have already

said cannot happen (and similarly for all the pi dividing only x− 1). This means that
both hcf(x− 1, R) and hcf(x+ 1, R) are non-trivial.

Now let’s state another useful lemma (which we will not prove).

Lemma. Let R be an odd natural number with m ⩾ 2 distinct prime factors.
If y is chosen uniformly at random from the set of natural numbers that are
coprime to and smaller than R, then the probability that the order r of y
modulo R is even and satisfies

yr/2 6≡ −1 mod R

is at least

1− 1
2m − 1

.
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10.11 Shor’s algorithm

How is this lemma useful to us? Well, it says that if we randomly pick some
1 < y < R satisfying the hypotheses, then with non-zero probability (that increases
as R has more and more prime factors) it will be such that we can apply the previous
lemma to x = yr/2, almost. The one problem is that x > y, and so it might also be the
case that x > R, and the previous lemma needed the assumption that x < R− 1. But
we can fix this!

Lemma. Let y and R be natural numbers such that
• R is not prime;
• the order r of y modulo R is even;
• yr/2 < R;

Then either yr/2 +1 is divisible by R, or both hcf(yr/2−1, R) and hcf(yr/2 +
1, R) are factors of R.

Proof. First of all, recall that the order r is the smallest natural number such that

yr ≡ 1 mod R.

Since r is even, yr/2 is well defined and we can factor

kR = yr − 1 = (yr/2 + 1)(yr/2 − 1)

as before. Now we have to do something different, because it is no longer necessarily
the case that yr/2 + 1 is smaller than R. However, we can still show that R does not
divide the yr/2 − 1 term, since if it did then we would have that

yr/2 ≡ 1 mod R

which contradicts the fact that r is the smallest natural number such that this holds.
So either R divides the yr/2 + 1 term, or it doesn’t; in the latter case, we can then
apply exactly the same argument as before to show that both hcf(yr/2 − 1, R) and
hcf(yr/2 + 1, R) are factors of R.

The fact that this lemma requires R to be odd and also have at least two distinct
prime factors means that we can only apply it if we have checked that both of these
things are true. In other words, we need to know that R is not even, and also that R
is not of the form pb for some prime p. But as we’ve already mentioned, both of these
properties can be checked by an efficient algorithm by a classical computer.

Now we’re ready to state Shor’s algorithm.
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10.12 Remarks and exercises

Shor’s algorithm. (Factoring the natural number R.)
1. Check that R is not prime.

If so, stop and return the factor R.

2. Check if R is even.

If so, stop and return the factor 2.

3. Check if R = ab for some integers a ⩾ 1 and b ⩾ 2.

If so, stop and return the factor a.

4. Uniformly at random pick an integer 1 < y < R and evaluate hcf(y,R);
check if hcf(y,R) > 1.

If so, stop and return the factor hcf(y,R).

5. Compute the order r of y modulo R via hidden-order determination
(from Section 10.10).

6. Check if r is odd.

If so, go back to step 4.

7. Check if yr/2 ≡ −1 mod R.

If so, go back to step 4.

8. Compute hcf(yr/2 − 1, R) and hcf(yr/2 + 1, R).
Stop and return these as factors.

Picking it apart, we see that steps 1 to 3 are simply checking easy cases; steps 4,
6, and 7 are checking that the necessary hypotheses are satisfied in order for step 8
to calculate factors of R. The only place that we use anything quantum in in step 5,
where we have to do hidden-order determination. The fact that steps 6 and 7 won’t 0Even better, thanks to a result by

Ekerå, one can be rather sure that
this quantum subroutine will only
need to be run a single time.

cause us to get stuck in an endless loop is justified by the fact that they will both be
passed over with probability 1− 1/(2m−1), as we mentioned above.

10.12 Remarks and exercises

10.12.1 RSA

This section is not yet finished.

10.12.2 More complexity classes

This section is not yet finished.

10.12.3 Implementing reflections

This section is not yet finished.

10.12.4 Grover’s optimality

This section is not yet finished.
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10.12 Remarks and exercises

10.12.5 Picking out a single state

Prove that, for any y ∈ {0, 1}n,

∑
x∈{0,1}n

(−1)x·y =

{
0 if y 6= 0;
2n if y = 0.

10.12.6 Writing an integer as a power

1. Show that R = 21 cannot be written in the form ab for integers a ⩾ 1 and b ⩾ 2.
2. Generalise this to a method that could work in O(L3) for any value of R that is

L bits long. 0 Hint: since R is L bits long, R <
2L, and so b < L.
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11 Quantum cryptography

About . . .

This section is not yet finished.
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12 Approximation

About quantifying precision in implementations of quantum circuits
using the notion of metrics — more specifically, the trace distance.
Also about the practical feasibility of universal sets of gates and cor-
rectly distinguishing non-orthogonal states described by density oper-
ators.

We have talked a lot about preparing specific quantum states and constructing
specific unitary operations, but the space of states of any quantum system is a con-
tinuous space, and the set of unitary transformations is also continuous. It is entirely
unrealistic to imagine that in the actual world we will be able to prepare, for example,
a qubit precisely in the state |0〉, or to perform a unitary transformation that is exactly
equal to the controlled-not gate. We never have infinite precision in our manipulations
of the physical world. The good news is that, for all practical purposes, infinite pre-
cision is not actually necessary, and we can achieve most of our goals by preparing
quantum states and performing quantum operations that are “close enough” to the
desired ones. But what is “close enough”, and how do we quantify it?

12.1 Metrics

To begin with, let us work with pure states, and save the problem of dealing with
mixed states for a later section. We will start with the second question: how do we
quantify this notion of “close enough”? The central concept is one with which you
are probably already somewhat familiar (we mentioned it in Sections 0.3 and 0.5),
namely that of a metric, or distance.

Given a set X, a metric (or distance) on X is a function d : X × X → R⩾0
such that

• Identity of indiscernibles: d(a, b) = 0 if and only if a = b
• Symmetry: d(a, b) = d(b, a) for all a, b ∈ X
• Triangle inequality: d(a, c) ⩽ d(a, b) + d(b, c) for all a, b, c ∈ X.

Generalisations of metrics.

There are four conditions governing metrics (identity of indiscernibles is an
“if and only if” statement, so we can separate it into two “if” statements). As
is usually the case in mathematics, it is interesting to ask what happens if we
drop one or more of these.

• If we drop d(a, b) = 0 =⇒ a = b then we get pseudometrics.
• If we drop a = b =⇒ d(a, b) = 0 then we get metametrics, or partial

metrics.
• If we drop d(a, b) = d(b, a) then we get quasimetrics. These arise “in

real life”, if you think about travelling around a city that has lots of
one-way streets, or travelling up or down a big hill.

• If we drop d(a, c) ⩽ d(a, b)+d(b, c) then we get semimetrics (though be
careful here: lots of authors use “semimetric” to mean almost any one
of these generalisations, and the terminology is very non-consistent!).

We can also consider the case of extended metrics, where the distance
function is allowed to take the value ∞. For many category theorists, “the”
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12.2 How far apart are two quantum states?

notion of metric space is that of an extended pseudoquasimetric.

The most common norm is the Euclidean distance, that is, distance between two
points in Euclidean space. Given points A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
in Rn, their Euclidean distance is√

|b1 − a1|2 + |b2 − a2|2 + . . .+ |bn − an|2.

But we already know that Euclidean space Rn is more than just a set: it is a vector
space. This means that we don’t just have a metric space (i.e. a set with a metric), but
instead a normed vector space, where the norm ‖ · ‖ of a vector is defined to be the
distance of that vector from the origin: ‖a‖ := d(a, 0).

It turns out that this norm (and thus this metric) actually arises from a more
fundamental structure, namely that of the inner product. Returning to the bra-ket
notation, we recall that the norm of any vector |a〉 is exactly ‖a‖ =

√
〈a|a〉, and thus

the distance between any two vectors |a〉, |b〉 is exactly d(|a〉, |b〉) = ‖|b〉−|a〉‖ (though
for simplicity we sometimes write this as ‖b− a‖ instead, or even ‖a− b‖, since this is
equal). This norm is also called the 2-norm, or the `2-norm (for reasons that we will
come back to in Section 12.11.2), and is defined for any finite-dimensional Hilbert
space Cn using the fact that C ∼= R2, so that ‖x+ iy‖ := ‖(x, y)‖ =

√
x2 + y2.

Before moving on to talk about state vectors, let us first discuss one other met-
ric space which shows up in information theory (both classical and quantum). The
space of binary strings (of some fixed length n) admits a metric known as the Ham- 0 You can think of this as just a

set, but we have already seen that
this is actually a vector space over
Z/2Z, where addition corresponds
to XOR.

ming distance. This is defined quite simply as “the number of positions at which the
corresponding bits are different”. For example,

d(0101101011, 1101110111) = 4

since these two strings differ in four bits:

0 1 0 1 1 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1
! ✓ ✓ ✓ ✓ ! ! ! ✓ ✓

More formally, if we define the Hamming weight of a binary string of length n
as the number of bits equal to 1, then the Hamming distance between two strings
is simply the Hamming weight of their difference (where subtraction is calculated in
Z/2Z, i.e. mod 2). We leave the proof that this is indeed a metric as an exercise
(Exercise 12.11.4).

12.2 How far apart are two quantum states?

Given two pure states, |u〉 and |v〉, we could try to measure the distance between
them using the Euclidean distance ‖u − v‖. This works for vectors, but has some
drawbacks when it comes to quantum states. Recall that a quantum state is not
represented by just a unit vector, but by a ray, i.e. a unit vector times an arbitrary
phase factor. Multiplying a state vector by an overall phase factor has no physical
effect: the two unit vectors |u〉 and eiφ|u〉 describe the same state. So, in particular,
we want the distance between |u〉 and −|u〉 to be zero, since these describe the same
quantum state. But if we were to use the Euclidean distance, then we would have
that ‖u− (−u)‖ = ‖u+ u‖ = 2, which is actually as far apart as the two unit vectors
can be!

One solution to this problem is to define the distance between |u〉 and |v〉 as the
minimum over all phase factors, i.e.

d(u, v) := min
φ∈[0,2π)

{
‖u− eiφv‖

}
.
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12.2 How far apart are two quantum states?

But with some algebraic manipulation we can actually figure out what this minimum
is without calculating any of the other values.

We first express the square of the distance between any two vectors in terms of
their inner product:

‖u− v‖2 = 〈u− v|u− v〉
= 〈u|u〉 − 〈u|v〉 − 〈v|u〉+ 〈v|v〉
= ‖u‖2 + ‖v‖2 − 2 Re〈u|v〉

(where Re(z) is the real part of the complex number z). Then we can write the
Euclidean distance between state vectors as

‖u− v‖ =
√

2(1− Re〈u|v〉).

Now if we want to minimise this expression over all rotations of v, then we want 〈u|v〉 0 Recall that multiplication by a
complex number corresponds to
rotation and scaling, and so multi-
plication by a phase factor (which
is always of unit length) corre-
sponds to just rotation.

to be real and as large as possible, i.e. for 〈u|v〉 = |〈u|v〉|. This gives us a definition of
distance.

The state distance between two state vectors |u〉 and |v〉 is

d(u, v) :=
√

2(1− |〈u|v〉|).

Note that we sometimes write the state distance as ‖u− v‖, and we might refer to
it as “Euclidean distance”, which is an abuse of notation: really we should be writing
min{‖|u〉 − eiϕ|v〉‖}. But this sort of thing happens a lot in mathematics, and it’s 0 In computer science lingo, this

is what you might call operator
overloading.

good to get used to it. The justification is that, as we have already said, the usual
Euclidean distance doesn’t really make great sense for state vectors (because of this
vector vs. ray distinction), and so if we know that |u〉 and |v〉 are state vectors then
writing ‖u− v‖ (which is already shorthand for ‖|u〉 − |v〉‖) should suggest “oh, they
mean the version of ‖·‖ that makes sense for state vectors, where we take a minimum”.

For small values of d(u, v) = ‖u−v‖, we can think of this distance as being the
angle between the two unit vectors. Indeed, if we think of Euclidean (unit)
vectors, then the difference v−u is, for sufficiently small ‖u−v‖, just the angle
between the two unit vectors (expressed in radians), because a small segment
of a circle “almost” looks like a triangle.

u

v

v − u

Alternatively (and more formally), we can see this by writing |〈u|v〉| =
cosα ≈ 1− α2/2, since then

‖u− v‖ =
√

2(1− |〈u|v〉|) ≈ α.

This can certainly help with intuition, but extra care must always be taken
when dealing with complex vector spaces, since our geometric intuition breaks
down rapidly in (complex) dimension higher than 1.

As you might hope, two state vectors which are close to one another give similar
statistical predictions. In order to see this, pick a measurement (any measurement)
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12.2 How far apart are two quantum states?

and consider one partial outcome described by a projector |a〉〈a|. What can we say
about the difference between the two probabilities

pu = |〈a|u〉|2

pv = |〈a|v〉|2

if we know that ‖u− v‖ ⩽ ε?
Well, first of all, let us introduce two classic tricks that are almost always useful

when dealing with inequalities — the first holds in any normed vector space, and the
latter in any inner product space.

• the reverse triangle inequality:∣∣∣‖u‖ − ‖v‖∣∣∣ ⩽ ‖u− v‖
• the Cauchy–Schwartz inequality: 0 This is arguably the most useful

mathematical inequality that we
have!〈u|v〉2 ⩽ 〈u|u〉〈v|v〉

or, equivalently (by taking square roots),

|〈u|v〉| ⩽ ‖u‖‖v‖.

Furthermore, the two sides of the inequality are equal if and only if |u〉 and |v〉
are linearly dependent.

Using these, we see that

|pu − pv| =
∣∣∣|〈a|u〉|2 − |〈a|v〉|2∣∣∣

=
∣∣∣(|〈a|u〉|+ |〈a|v〉|)(|〈a|u〉| − |〈a|v〉|)∣∣∣

⩽ 2
∣∣∣|〈a|u〉| − |〈a|v〉|∣∣∣

⩽ 2
∣∣∣〈a|u〉 − 〈a|v〉∣∣∣

⩽ 2‖a‖‖u− v‖
= 2‖u− v‖.

So if ‖u− v‖ ⩽ ε, then |pu − pv| ⩽ 2ε.
Again, we can appeal to some geometric intuition if we pretend that |u〉 and |v〉

are Euclidean vectors instead of rays. Write

|〈a|u〉| = cos(α)
|〈a|v〉| = cos(α+ ε)

where ε is the (very small) angle between |u〉 and |v〉, whence ‖u− v‖ = ε. Then

|〈a|u〉|2 − |〈a|v〉|2 = cos2(α)− cos2(α+ ε)
≈ ε sin(2α)
⩽ ε.

As an interesting exercise, you might try to explain why this approach gives a tighter
bound (ε instead of 2ε).
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12.3 Fidelity

12.3 Fidelity

Sometimes, when quantifying closeness of states, the inner product is a more conve-
nient tool than the distance/norm. Analogous to how we define the distance between
states |u〉 and |v〉 as d(u, v) = ‖u− v‖, we define the fidelity between them as

F (u, v) := |〈u|v〉|2.

This is not a metric, but it does have some similarly nice properties: for example,
F (u, v) = 1 when the two states are identical, and F (u, v) = 0 when the two states
are orthogonal (which means that they are “as different as possible”). Intuitively, we
can understand fidelity as the probability that the state |u〉 (resp. |v〉) would pass a
test for being in state |v〉 (resp. |u〉). In other words, if we perform an orthogonal
measurement on |u〉 that has two outcomes (true if the state is |v〉; false if the state
is orthogonal to |v〉), then the fidelity F (u, v) = |〈u|v〉|2 is exactly the probability that
we measure the outcome true.

Recall our definition of state distance:

d(u, v) =
√

2(1− |〈u|v〉|)

This gives us a relation between distance and fidelity: once we know one, we can
easily calculate the other. However, everything we have said so far applies only to
pure states — we will see how the mixed state case is slightly more complicated
shortly.

One final remark: as another example of the many inconsistencies in the literature,
some authors define F (u, v) to be |〈u|v〉| instead of |〈u|v〉|2. Whenever we say fidelity,
we mean the latter: |〈u|v〉|2.

12.4 Approximating unitaries

So now we know a bit about how norms (or metrics, or inner products) can help us
to understand distance between state vectors, can we say something similar about
quantum evolutions? Say we have unitary operators U and V acting on the same
Hilbert space, where U is some “target” unitary that we want to implement in a real-
life circuit, and V is an “approximate” unitary that we can actually implement in
practice. We say that V approximates U with precision ε, or that U and V are
ε-close, if 0Note that V approximatesU with

precision ε if and only if U approx-
imates V with precision ε. Even
though we might think of one as
being our ideal unitary and the
other as being the best feasible
real-life implementation that we
can achieve, this is only us giving
names to things — the definition
does not care which way round we
think of them.

‖U − V ‖ ⩽ ε

where ‖ · ‖ is some norm on unitary matrices (of the same size), which we would
want to satisfy the following property: if ‖U − V ‖ is “small”, then U should be hard
to distinguish from V when acting on any quantum state.

Before defining such a norm, however, we first recall some linear algebra which
we briefly touched upon in Exercise 5.14.13. The singular values of an operator A
are the square roots of the (necessarily non-negative) eigenvalues of the Hermitian
operator A†A. If A is normal (e.g. a density operator), then its singular values are
exactly the absolute values of its eigenvalues. We tend to denote singular values by
si(A) (or just si if it is clear which operator we are talking about), and we write σ(A)
to mean the set of eigenvalues of A, i.e.

σ(A) := {λ ∈ C | det(A− λ1) = 0}.

This means that

{si(A)} = {
√
λ | λ ∈ σ(A)}.
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12.4 Approximating unitaries

The operator norm (or spectral norm) ‖A‖ of an operator A ∈ B(H) is
the maximum length of the vector A|v〉 over all possible normalised vectors
|v〉 ∈ H, i.e.

‖A‖ := max
|v〉∈S1

H

{
|A|v〉|

}
(where S1

H is the unit sphere in H, i.e. the set of vectors of norm 1). One can
show that ‖A‖ is equal to the largest singular value of A.

If A is normal (e.g. a density operator), then

‖A‖ = max
λ∈σ(A)

{
|λ|
}
.

The operator norm satisfies some very useful properties: 0 Proving these properties, along
with some others, is a good thing
to practise — see Exercise 12.11.5.• If A is normal, then ‖A†‖ = ‖A‖

• ‖A⊗B‖ = ‖A‖‖B‖
• If U is unitary, then ‖U‖ = 1
• If P 6= 0 is an orthogonal projector, then ‖P‖ = 1
• Sub-multiplicativity: ‖AB‖ ⩽ ‖A‖‖B‖.

Now suppose that some quantum system, initially in state |ψ〉, evolves according
to U or V . Let P be a projector associated with some specific outcome of some
measurement that can be performed on the system after either evolution (such as
P = |a〉〈a|, as in our earlier example). Let pU (resp. pV ) be the probability of
obtaining the corresponding measurement outcome if the operation U (resp. V ) was
performed. By definition, we see that

|pU − pV | =
∣∣∣〈ψ|U†PU |ψ〉 − 〈ψ|V †PV |ψ〉

∣∣∣
=
∣∣∣〈ψ|U†P (U − V )|ψ〉+ 〈ψ|(U† − V †)PV |ψ〉

∣∣∣
⩽
∣∣∣〈ψ|U†P (U − V )|ψ〉

∣∣∣+
∣∣∣〈ψ|(U† − V †)PV |ψ〉

∣∣∣
where the inequality is exactly the triangle inequality.

By an application of the Cauchy–Schwartz inequality followed by sub-multiplicativity,0See Exercise 12.11.5.

we then have

|pU − pV | ⩽ ‖U†P‖‖U − V ‖+ ‖U† − V †‖‖V P‖
⩽ 2‖U − V ‖.

This tells us what ε-closeness means: suppose that V and U are ε-close; then if,
instead of applying one, we apply the other, and subsequently measure the resulting
physical system, we know that the probabilities of any particular outcome in any
measurement will differ by at most 2ε.

Now what about working with sequences of unitaries, as we do when we construct
quantum circuits? It turns out that closeness is additive under multiplication of uni-
taries: if ‖U1 − V1‖ ⩽ ε1 and ‖U2 − V2‖ ⩽ ε2, then

‖U2U1 − V2V1‖ = ‖U2U1 − V2U1 + V2U1 − V2V1‖
= ‖(U2 − V2)U1 + V2(U1 − V1)‖
⩽ ‖U2 − V2‖‖U1‖+ ‖V2‖‖U1 − V1‖
= ‖U2 − V2‖+ ‖U1 − V1‖
⩽ ε1 + ε2.

We can then apply this argument inductively.

234



12.5 Approximating generic unitaries is hard, but. . .

Errors in the approximation of one sequence of unitaries by another accumu-
late at most linearly in the number of unitary operations:

‖Un · · ·U1 − Vn · · ·V1‖ ⩽
n∑

i=1
εn

if ‖Ui − Vi‖ ⩽ εi for all i = 1, . . . , n.

This linear error accumulation relies heavily on the fact that the norm of a unitary
operator is equal to 1; for non-unitary operators, errors could accumulate exponen-
tially, which would make efficient approximations of circuits practically impossible.
Geometrically, this is because unitaries just rotate vectors, without scaling them.

Again, we can appeal to some trigonometry. First note that

‖U − V ‖ = ‖UV † − 1‖

since the operator norm is unitarily invariant. Since UV † is also unitary, its eigenval- 0See Exercise 12.11.5.

ues are exactly phase factors eiϕ for ϕ ∈ R; the corresponding eigenvalue of UV † − 1
has modulus

|eiϕ − 1| =
√

2
√

1− cosϕ.

Putting this all together, we see that asking for ‖U −V ‖ ⩽ ε is exactly asking for each
eigenvalue of UV † − 1 to satisfy

√
2
√

1− cosϕ ⩽ ε, which rearranges to

cosϕ ⩾ 1− ε2

2

which is simply |ϕ| ⩽ ε for small enough ε. So U rotates relative to V by (at worst)
an angle of order ε, and if we compose unitaries in a sequence then the accumulated
rotation increases linearly with the number of unitaries.

12.5 Approximating generic unitaries is hard, but. . .

Now that we understand approximations of unitary operators, we can revisit the ques-
tion of universality that we touched upon in Sections 2.13 and 3.5. Recall that we call
a finite set G of gates universal if any n-qubit unitary operator can be approximated
(up to an overall phase) to arbitrary accuracy by some unitary constructed using only
gates from G (and we then call the gates in G elementary). In other words, G
is universal if, for any unitary U acting on n-qubits and for any ε > 0, there exist
U1, . . . , Ud ∈ G such that Ũ := Ud · · ·U1 satisfies

‖Ũ − eiϕU‖ ⩽ ε

for some phase ϕ.
For example, each of the following sets of gates is universal:

• {H, c-S}
• {H,T, c-NOT}
• {H,S, Toff}

where S and T are the π/4- and π/8-phase gates (Section 2.6), c-S is the con-
trolled S gate, and Toff is the Toffoli gate (Exercise 9.12.14).

But now we can be a bit more precise with the question that the notion of univer-
sality is trying to answer: given a universal set of gates, how hard is it to approximate
any desired unitary transformation with accuracy ε? That is, how many gates do we
need?
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12.5 Approximating generic unitaries is hard, but. . .

The answer is a lot. In fact, it is exponential in the number of qubits — most
unitary transformation require large quantum circuits of elementary gates. We can
show this by a counting argument (along with a healthy dose of geometric intuition).

Consider a universal set of gates G consisting of g gates, where each gates acts
on no more than k qubits. How many circuits (acting on n-qubits) can we construct
using t gates from this set? We have g

(
n
k

)
choices for the first gate, since there are g 0 Counting arguments nearly

always use binomial coefficient
notation:

(
a
b

)
:= a!

b!(b−a)! .
gates, and

(
n
k

)
ways to place it so that it acts on k out of n qubits. The same holds for

all subsequent gates, and so we can build no more than(
g

(
n

k

))t

circuits of size t from G. What is important is that g
(

n
k

)
is polynomial in n, and g and

k are fixed constants, so we will write this upper bound as

(poly(n))t.

In more geometric language, we have shown that, with t gates, we can generate
(poly(n))t points in the space U(N) of unitary transformations on n-qubits, where
N = 2n. Now imagine drawing a ball of radius ε (in the operator norm) centred at
each of these points — we want these balls to cover the entire unitary group U(N),
since this then says that any unitary is within distance ε of a circuit built from t gates
in G. We will not get into the details of the geometry of U(N), but simply use the fact
that a ball of radius ε in U(N) has volume proportional to εN2

, whereas the volume
of UN) itself is proportional to CN2

for some fixed constant C. So we want

εN2
(poly(n))t ⩾ CN2

which (after some algebraic manipulation) requires that

t ⩾ 22n log(C/ε)
log(poly(n))

.

In words, the scaling is exponential in n but only logarithmic in 1/ε.

When we add qubits, the space of possible unitary operations grows very
rapidly, and we have to work exponentially hard if we want to approximate
the resulting unitaries with some prescribed precision. If, however, we fix the
number of qubits and instead ask for better and better approximations, then
things are much easier, since we only have to work logarithmically hard.

The snag is that this counting argument does not give us any hints as to how we
can actually build such approximations. A more constructive approach is to pick a
set of universal gates and play with them, building more and more complex circuits.
There is an important theorem in this direction that tells us that it does not matter
much which particular universal set of gates we choose to start with.

The Solovay–Kitaev Theorem. Choose any two universal sets of gates that
are weakly closed under inverses (that is, the inverse of any gate in the set
can be constructed (exactly) as a finite sequence of gates in the set, even if
it is not itself an elementary gate). Then any t-gate circuit built from one set
of gates can be implemented to precision ε using a tpoly(log(t/ε))-gate circuit
built from the other set. Furthermore, there is an efficient classical algorithm
for finding this circuit.
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Since errors accumulate linearly, it suffices to approximate each gate from one
set to accuracy ε/t, which can be achieved by using a poly(log(t/ε))-gate circuit built
from the other set. So we can efficiently convert (constructively, via some efficient
classical algorithm) between universal sets of gates with overhead poly(log(1/ε))),
i.e. logc(1/ε) for some constant c. For all practical purposes, we want to minimise c,
but the counting argument above shows that the best possible exponent is 1, so the
real question is can we get close to this lower bound? In general, we do not know.
However, for some universal sets of gates we have nearly optimal constructions. For
example, the set {H,T} can be used to approximate arbitrary single-qubit unitaries
to accuracy ε using log(1/ε) many gates, instead of poly(log(1/ε)), and the circuits
achieving this improved overhead cost can be efficiently constructed (for example, by
the Matsumoto–Amano construction).

12.6 How far apart are two probability distributions?

Before we switch gears and discuss how to generalise state distance to density opera-
tors, let us first take a look at distances between probability distributions. What does
it mean to say that two probability distributions (over the same index set) are similar
to one another?

Recall that a probability distribution consists of two things — a sample space 0Things are simpler for us because
we work with so-called discrete
probability distributions, and so
we can use sums instead of inte-
grals. The general theory requires
much more real analysis.

Ω, which is the set of all possible outcomes, and a probability function p : Ω→ [0, 1],
which tells us the probability of any specific outcome — subject to the condition that∑

k∈Ω p(k) = 1. Given any subset of outcomes A ⊆ Ω, we define p(A) =
∑
{k ∈

A}p(k).

The trace distance (also known as the variation distance, L1 distance, sta-
tistical distance, or Kolmogorov distance) between probability distributions
p and q on the same sample space Ω is

d(p, q) := 1
2
∑
k∈Ω

|p(k)− q(k)|.

This is indeed a distance: it satisfies all the necessary properties. It also has a 0Exercise. Show that this distance
satisfies the triangle inequality.rather simple interpretation, as we now explain. Let p(k) be the intended probability

distribution of an outcome produced by some ideal device P , but suppose that the
actual physical device Q is slightly faulty: with probability 1 − ε it works exactly as
P does, but with probability ε it goes completely wrong and generates an output
according to some arbitrary probability distribution e(k). What can we say about the
probability distribution q(k) of the outcome of such a device? Well, we can exactly
say that

d(p, q) ⩽ ε

by substituting q(k) = (1− ε)p(k) + εe(k). Conversely, if d(p, q) = ε then we can rep-
resent one of them (say, q(k)) as the probability distribution resulting from a process
that generates outcomes according to p(k) followed by a process that alters outcome
k with total probability not greater than ε.

Note that the normalisation property of probabilities implies that∑
k

p(k)− q(k) = 0.

We can split up this sum into two parts: the sum over k for which p(k) ⩾ q(k), and
the sum over k for which p(k) < q(k). If we call the first part S, then the fact that
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∑
k p(k)− q(k) = 0 tells us that the second part must be equal to −S. Thus∑

k

|p(k)− q(k)| = S + | − S| = 2S

whence S = d(p, q).

S S

p(k) q(k)

k

Figure 12.1: Visualising the distance between two (continuous) probability distribu-
tions.

Just as a passing note, we will point out that∑
k

max{p(k), q(k)} = 1 + S

= 1 + d(p, q)

and the shaded area in Figure 12.1 is equal to 0Again, since we are working with
finite probability distributions, we
can use sums; in the continuous
case shown in Figure 12.1, we
would really need to use integrals
instead.

∑
k

min{p(k), q(k)} = 1− S

= 1− d(p, q).

The latter lets us write the trace distance as

d(p, q) = 1−
∑

k

min
k
{p(k), q(k)}

and the former will be useful very soon.
As for intuition, the trace distance is a measure of how well we can distinguish a

sample from distribution p from a sample from distribution q: if the distance is 1 then
we can tell them apart perfectly; if the distance is 0 then we can’t distinguish them at
all. Now suppose that p and q represent the probability distributions of two devices,
P and Q, respectively, and that one of these is chosen (with equal probability) to
generate some outcome. If you are given the outcome k, and you know p(k) and q(k),
then how can you best guess which device generated it? What is your best strategy,
and with what probability does this let you guess correctly? It turns out that we can
answer this using the trace distance.

Arguably the most natural strategy is to look at max{p(k), q(k)}: guess P if p(k) >
q(k); guess Q if q(k) > p(k); guess uniformly at random if p(k) = q(k). Following
this strategy, the probability of guessing correctly (again, under the assumption that
P and Q were chosen between with equal probability) is

psuccess = 1
2
∑

k

max{p(k), q(k)}

which we can rewrite as

psuccess = 1
2

(1 + d(p, q)).
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Here is another way of seeing the above. The probability that the devices P and
Q will not behave in the same way is bounded by d(p, q). This means that, with
probability 1− d(p, q), the devices behave as if they were identical, in which case the
best you can do is to guess uniformly at random, which will make you succeed with
probability 1

2 (1 − d(p, q)). With the remaining probability d(p, q), the devices may
behave as if they were completely different, and then you can tell which one is which
perfectly, letting you succeed with probability exactly 1 · d(p, q) = d(p, q). So the total
probability of success is equal to

1
2

(1− d(p, q)) + d(p, q) = 1
2

(1 + d(p, q)).

12.7 Dealing with density operators

Now we return to quantum states, and generalise the notion of trace distance to
density operators.

The trace norm of an operator is the sum of its singular values:

‖A‖tr :=
∑

i

si(A).

If A is normal (e.g. a density operator), then

‖A‖tr =
∑

λ∈σ(A)

|λ|.

The induced trace distance between two density operators is

dtr(ρ, σ) := 1
2
‖ρ− σ‖tr.

There are many questions raised by this definition, such as “how does this relate
to the trace distance of probability distributions?” and “how does this trace norm
relate to the operator norm from Section 12.4?” — we will answer the first question
now, but our answer to the second builds upon the notion of an `p-norm, which is a
discussion that we will postpone for Section 12.11.2.

We can simply think of the trace distance for density operators as the natural
analogue of the trace distance for probability distributions: it is a tight upper bound
on the distances between the probability distributions obtained from ρ and σ by a
measurement, as we now justify.

Let {Pk} be a complete set of orthogonal projectors, defining a projective mea-
surement in some H. This measurement gives outcome k with some probability p(k)
if the quantum system is in state ρ, and the same outcome with some probability q(k)
if the system is in state σ. That is,

p(k) := trPkρ

q(k) := trPkσ.

Then

dtr(p, q) := 1
2
∑

k

|p(k)− q(k)|

= 1
2
∑

k

| trPk(ρ− σ)|

= 1
2

tr((ρ− σ)U)
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where we define

U :=
∑

k

trPk(ρ− σ)
| trPk(ρ− σ)|

Pk

or, in other words, U is the sum of the Pk but where the signs are determined by
whether | trPk(ρ− σ)| is equal to + trPk(ρ− σ) or − trPk(ρ− σ).

Since this U is unitary, and since the trace norm can be written as 0See Section 12.11.2.

‖A‖tr = max
U unitary

| trAU |

we finally obtain that

dtr(p, q) := 1
2
∑

k

|p(k)− q(k)|

=⩽ 1
2
‖ρ− σ‖

=: dtr(ρ, σ)

which says that the trace distance dtr(ρ, σ) gives an upper bound on distances between
probability distributions obtained from ρ and σ by a measurement. The fact that
this bound is tight (i.e. attainable) is witnessed by the measurement defined by the
projectors onto the eigenspaces of ρ− σ.

As an example, consider pure states |u〉 and |v〉. The trace distance between them
is

1
2
‖|u〉〈u| − |v〉〈v|‖tr.

We can write |v〉 as

|v〉 = α|u〉+ β|ū〉

where |ū〉 is some unit vector orthogonal to |u〉, and where α = 〈u|v〉, with β deter-
mined by |α|2 + |β|2 = 1. Then

|u〉〈u| − |v〉〈v| =
[
1 0
0 0

]
−
[
|α|2 αβ?

α?β |β|2
]

=
[
|β|2 −αβ?

−α?β −|β|2
]

(which has eigenvalues ±|β|), and the trace distance is given by

1
2
‖|u〉〈u| − |v〉〈v|‖tr =

√
1− |〈u|v〉|2

which is exactly
√

1− fidelity.
As a consequence of this, we see that

1
2
‖|u〉〈u| − |v〉〈v|‖tr ⩽ ‖u− v‖

since

1− |〈u|v〉|2 =
(

1 + |〈u|v〉|
)(

1− |〈u|v〉|
)

⩽ 2
(

1− |〈u|v〉|
)

= ‖u− v‖2.

So if two states |u〉 and |v〉 are ε-close in the trace distance, then the probability
distributions of outcomes of any measurement performed on a physical system in
state |u〉 or |v〉 will also be ε-close in the trace distance.
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12.8 Distinguishing non-orthogonal states, again

Let’s briefly return to the problem considered in Section 4.9, where we are given
a system and told that it is in either state |ψ1〉 or |ψ2〉, with equal probability, but
that these two vectors are not orthogonal. The goal is to find a measurement that
maximises the probability of correctly identifying which state the system is in. Before
solving this problem using the language of distances, let us repeat the geometric idea
that we used previously.

Draw two vectors, |ψ1〉 and |ψ2〉, separated by some angle ε. We want to find some
orthonormal vectors |e1〉 and |e2〉 that specify the optimal projective measurement.
First, note that any projections on the subspace orthogonal to the plane spanned by
|ψ1〉 and |ψ2〉 will reveal no information about the identity of the state, so we know
that we will want our orthonormal vectors to lie in the span of |ψ1〉 and |ψ2〉. Now,
since |ψ1〉 and |ψ2〉 are both equally likely to occur, we want to place |e1〉 and |e2〉
symmetrically around them, as shown in Figure 12.2

|ψ2⟩

|ψ1⟩

|e2⟩

|e1⟩

ε

Figure 12.2: Recall Section 4.9 — the optimal measurement to distinguish between
the two equally likely non-orthogonal signal states |ψ1〉 and |ψ2〉 is described by the
two orthogonal vectors |e1〉 and |e2〉 placed symmetrically around them.

The probability of correctly distinguishing the two states is

psuccess = 1
2
|〈e1|ψ1〉|2 + 1

2
|〈e2|ψ2〉|2

which reduces, with our schema, to

psuccess = cos2
(π

2
− ε

2

)
= 1

2
(1 + sin ε)

≈ 1
2

(1 + ε)

= 1
2

(1 + ‖ψ1 − ψ2‖).

where the last equality holds whenever ε is “small enough”. But, happily, we can be
much more precise than this!

Let’s start by rephrasing the problem in terms of density operators. We are sent
one of two quantum states, either ρ0 or ρ1, with equal probability. You might notice
that we’re now labelling our states with {0, 1} instead of {1, 2}. This is simply to
help guide our intuition: we are being sent one bit of information, a 0 or a 1; the
only complication is that this is happening in such a way that we cannot perfectly
distinguish between them (since we are receiving non-orthogonal quantum states).
We want to choose two orthogonal projectors P0 and P1, so outcome P0 is interpreted
as a 0 and outcome P1 as a 1. The probability of correctly detecting which state was
sent is, as always, the probability that ρ0 was sent and outcome P0 was observed, plus
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the probability that ρ1 was sent and outcome P1 was observed. In symbols,

psuccess = 1
2

tr(P0ρ0) + 1
2

tr(P1ρ1)

= 1
4

tr[(P0 + P1)(ρ0 + ρ1)] + 1
4

tr[(P0 − P1)(ρ0 − ρ1)]

= 1
2

+ 1
4

tr[(P0 − P1)(ρ0 − ρ1)]

where the last equality follows from the fact that P0 + P1 = 1.
By applying Hölder’s inequality, this tells us that 0See Section 12.11.2.

psuccess ⩽
1
2

+ 1
4
‖(P0 − P1)‖‖(ρ0 − ρ1)‖tr

⩽ 1
2

+ 1
4
‖ρ0 − ρ1‖tr

= 1
2

(1 + dtr(ρ0, ρ1)).

Again, this upper bound is attained by taking P0 to be the projector onto the
eigenspace of ρ0 − ρ1 corresponding to the positive eigenvalues, and P1 the projector
corresponding to the negative eigenvalues: this gives tr(P0−P1)(ρ0−ρ1) = ‖ρ0−ρ1‖tr.

Of course, the whole story of quantum state distinguishability has much more to
it than we have covered here. In Exercise 12.11.9 we ask about the case where the
two states ρ0 and ρ1 are sent with non-equal probabilities p0 and p1, respectively.
The more general scenario, where some quantum source emits states ρ0, . . . , ρn with
respective probabilities p0, . . . , pn, turns out to be incredibly difficult — we do not
know an optimal discrimination strategy, except for in a few special cases.

12.9 Approximate phase estimation

In Section 10.8 we showed how to determine the phase of an eigenvalue of a controlled-
U gate, hidden by an oracle, under the assumption that the phase was of a particu-
larly nice rational form: 2πm/2n. More precisely, we were able to find the integer
m mod 2n. Here we will improve upon this result, explaining how to adapt the same
circuit for arbitrary phases.

So say we have some controlled-U gate with eigenvector |u〉 and eigenvalue eiϕ.
We can run the same circuit as we did in Section 10.8:

|0⟩⊗n

H

FT † |ỹ⟩
H

...

H

|u⟩ U△ |u⟩

As before, the Hadamard gate followed by the controlled-U4 gate prepare the
state

1√
N

N−1∑
x=0

eiϕx|x〉|u〉
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where N = 2n, with n the number of qubits in the first register, since the phase kick-
back leaves the eigenstate |u〉 unchanged. Now we apply the inverse quantum Fourier
transform, giving

1
N

N−1∑
x,y=0

eix(ϕ−2πy/N)|y〉|u〉.

We already know that if Nϕ/2π has an exact n-bit representation (i.e. if ϕ = 2πm/2n

with 0 ⩽ m < N) then we are guaranteed to recover this when we measure the
output |ỹ〉.

If this is not the case, then instead we can only hope for |ỹ〉 to be the best n-bit
approximation to Nϕ/2π. This means that the distance between the two can be no
more than 1/2 (otherwise |ỹ〉 would round to Nϕ/2π ± 1 instead). Rearranging this
inequality gives∣∣∣∣ϕ− 2πỹ

N

∣∣∣∣ ⩽ π

N

which, if we define δ = ϕ − 2πỹ/N , is exactly |δ| ⩽ π/N . Now we can calculate the
probability of measuring the result |ỹ〉 as

p := 1
N2

∣∣∣∣∣
N−1∑
x=0

eixδ

∣∣∣∣∣
2

= sin2(Nδ/2)
N2 sin2(δ/2)

.

Let’s see if we can find a lower bound for this probability.
First of all, for small values of θ, we know that sin θ < θ. In particular, sin(δ/2) < 0 This is from the Taylor expan-

sion sin θ ≈ θ − θ3/3! and some
real analysis. However, this is the
sort of fact that you will often see
quoted without justification, be-
cause it’s used so often.

δ/2. Secondly, we can show that sin(Nδ/2) > Nδ/π by using the fact that Nδ ⩽ π
(though here we simply provide Figure 12.3 instead of giving a proof). Thus

p >

(
2Nδ
Nδπ

)2

= 4
π2 ≈ 0.41

and so we find the best n-bit approximation to ϕ with pretty good probability.
In fact, the coefficients in these inequalities work in our favour: the further away

a result |ỹ〉 is from being the best n-bit approximation to ϕ, the lower our probability
of measuring it. This provides a way of getting good approximations with even higher
probability, and one that we can choose ourselves, by using more qubits. That is, if
we increase the number of qubits in the first register to be t, for some t > n, then we
know that with probability p = 4/π2 we will get the best t-bit approximation to ϕ. But
we’re only interested in the best n-bit approximation, and the 2t−n next-most-likely
outcomes — those that will truncate to give the same n-bit approximation — from
the t-qubit circuit are all the next highest probability ones. If one sums everything up
carefully, then we can show that the probability of not measuring one of these is

ε ⩽ 1
2(2t−n − 2)

and so, for any desired ε, we get the best n-bit approximation with probability at least
1− ε by setting t to be

t = n+
⌈

log2

(
2 + 1

2ε

)⌉
(where dxe denotes the ceiling of x, i.e. the smallest integer larger than x).
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π/2

1

θ

θ
sin θ

2θ/π

Figure 12.3: In the region 0 ⩽ θ ⩽ π/2, we can bound sin θ above and below by the
linear functions θ and 2θ/π, respectively.

12.10 How accurate is accurate enough?

We have seen that finite sets of gates can be used to approximate any unitary opera-
tion with any prescribed accuracy. But how accurate is accurate enough? Of course,
the answer depends on what we want to achieve.

Suppose we come up with a cool quantum algorithm, represented by a circuit
composed of t gates, and it solves an interesting decision problem with probability
1
2 + δ. The value of δ might be tiny, so not much can be inferred from a single run,
but as long as we can repeat the computation r times and take the majority answer
as the “right” answer, the Chernoff bound tells us that the probability of error is 0Recall Exercise 1.11.10.

bounded above by e−2rδ2
. We now want to physically implement this circuit using

our preferred universal set of gates, say {H,T, c-NOT}. If we can implement each
gate with accuracy ε/t, then we can approximate the circuit with accuracy ε, which
means that the probability of success will be 1

2 + δ ± ε. So, at the very least, we want
ε < δ/2.

12.11 Remarks and exercises

12.11.1 Operator decompositions

Analogously to how we can factor polynomials into linear parts, or factor numbers
into prime divisors, we can “factor” matrices into smaller components. Doing so of-
ten helps us to better understand the geometry of the situation: we might be able
to understand the transformation described by a single matrix as “some reflection,
followed by some rotation, followed by some scaling”. For us, one specific use of
such a “factorisation” (known formally as an operator decomposition) is in better
understanding various operator norms, as we explain in Exercise 12.11.2.

Here are three operator decompositions that are particularly useful in quantum
information theory. The second is for arbitrary operators between Hilbert spaces, the
first and third are for normal endomorphisms (i.e. normal operators from one Hilbert
space to itself).

1. Spectral decomposition. Recall Section 4.5: the spectral theorem tells us that
every normal operator A ∈ B(H) can be expressed as a linear combination of
projections onto pairwise orthogonal subspaces. We write the spectral decom-
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position of A as

A =
∑

k

λk|vk〉〈vk|

where λk are the eigenvalues of A, with corresponding eigenvectors |vk〉, which
form an orthonormal basis in H.

In matrix notation, we can write this as

A = UDU†

where D is the diagonal matrix whose diagonal entries are the eigenvalues λk, and
where U is the unitary matrix whose columns are the eigenvectors |vk〉.

2. Singular value decomposition (SVD). We have already mentioned the SVD in
Exercise 5.14.13 when discussing the Schmidt decomposition, but we recall the
details here. Consider any (non-zero) operator A ∈ B(H,H′). From this, we can
construct two positive semi-definite operators: A†A ∈ B(H) and AA† ∈ B(H′).
These are both normal, and so we can apply the spectral decomposition to both.
In particular, if we denote the eigenvalues of A†A by λk, and the corresponding
eigenvectors by |vk〉, then we see that the vectors

|uk〉 := 1√
λk

A|vk〉

form an orthonormal system in H′ (and are, in fact, eigenvectors of AA†), since

〈ui|uj〉 = 1√
λi

√
λj

〈vi|A†A|vj〉

= λj√
λi

√
λj

〈vi|vj〉

= δij .

We define the singular values sk of A to be the square roots of the eigenvalues
of A†A, i.e. s2

k = λk. These singular values satisfy

A|vk〉 = sk|uk〉

by construction, and so we can write

A =
∑

k

sk|uk〉〈vk|

which we call the singular value decomposition (or SVD). This decomposi-
tion holds for arbitrary (non-zero) operators as opposed to just normal ones,
and also for operators between two different Hilbert spaces as opposed to just
endomorphisms. In words, this decomposition says that, given A, we can find
orthonormal bases of H and H′ such that A maps the k-th basis vector of H to
a non-negative multiple of the k-th basis vector of H′ (and sends any left over
basis vectors to 0, if dimH > dimH′).

In matrix notation, we can write this as

A = U
√
DV †

where D is the diagonal matrix of eigenvalues (and so
√
D is the diagonal matrix of

singular values), and both U and V are unitary.
Geometrically, we are decomposing any linear transformation into a composition

of a rotation or reflection V †, followed by a scaling by the singular values
√
D, fol-

lowed by another rotation or reflection U . This maps the unit sphere in H onto an
ellipsoid in H′, and the singular values of A are exactly the lengths of the semi-axes
of this ellipsoid.
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A s1s2

3. Polar decomposition. Let A ∈ B(H) be a normal arbitrary operator. Since it
is an endomorphism, it is represented by a square matrix. Forgetting that A is
normal for a moment, we know that its SVD takes the form

A = U
√
A†A

=
√
AA†U

where the unitary matrix U connects the two eigenbases: U =
∑

k |uk〉〈vk|. We
shall return to this unitary U shortly.

Since A is normal, A†A = AA†, so we can define its modulus as

|A| :=
√
A†A

which gives us the polar decomposition

A = |A|U.

This is the matrix analogue of the polar decomposition of a complex number: z = reiθ.
If we decompose the eigenvalues of A as λk = rke

iθk (with corresponding eigen-
vectors |vk〉) then the spectral decomposition of A gives us

A =
∑

k

λk|vk〉〈vk|

=
∑

k

rke
iθk |vk〉〈vk|

=
∑

k

rk|uk〉〈vk|

where |uk〉 = eiθk |vk〉, so we see that the unitary U =
∑

k |uk〉〈vk| in the polar decom-
position contains all the information of the phase factors.

12.11.2 More operator norms

We have already seen, all the way back in Section 1.11.2, how the Euclidean norm 0Think how far you’ve come since
then!(from which we get the Euclidean distance) is the special case p = 2 of p-norms (also

known as `p-norms), where

‖v‖p :=

(
n∑

i=1
|vi|p

) 1
p

for a vector v = (v1, . . . , vn) ∈ Rn, and for p ∈ N. We can actually extend this
definition to include the case p =∞ by setting

‖v‖∞ := max
1⩽i⩽n

|vi|.

One particularly nice consequence of this definition is that

‖v‖1 ⩾ ‖v‖2 ⩾ . . . ⩾ ‖v‖∞

for any vector v.
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v1

v2

p
=
1

p
=
2

p
=
42

p = ∞

You might recall that we named the Cauchy–Schwartz inequality as arguably the
most useful inequality in analysis. Well it turns out that it is actually the special case
p = 2 of an inequality concerning p-norms.

Hölder’s inequality. Let p, q ∈ N ∪ {∞} be such that 1
p + 1

q = 1. Then

‖vw‖1 ⩽ ‖v‖p‖w‖q

with equality if and only if v and w are “(p, q)-linearly dependent”.

We will come back to the relevance of these p-norms shortly. For now, let us
introduce three norms (two of which we have already seen, but recall here again to
tell a more complete story) on the space of endomorphisms B(H) of a Hilbert space,
each of which can be defined neatly in terms of singular values. Note that, if A is
normal, then we its singular values are exactly the absolute values of its eigenvalues,
which usually lets us simplify the definition of the norm.

Throughout, let A ∈ B(H), with singular values sk.

1. Spectral norm. This one is so frequently used that it is often simply called the
operator norm and denoted simply by ‖ · ‖. It is the maximum length of the
vector A|v〉 over all possible normalised vectors |v〉 ∈ H, i.e.

‖A‖ := max
|v〉∈S1

H

{
|A|v〉|

}
(where S1

H is the unit sphere in H, i.e. the set of vectors of norm 1). From this
definition, one can actually show that the norm is given by the largest singular
value:

‖A‖ = max
k

sk.

2. Trace norm. This is given by the sum of the singular values of A, i.e.

‖A‖tr :=
∑

k

sk

but note that we can rewrite this using the polar decomposition (from Section
12.11.1) as simply

‖A‖tr = tr |A|.
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3. Frobenius norm. We have mentioned a few times how inner products give rise
to norms, and you might remember that we introduced an inner product on
B(H) a while ago: the Hilbert–Schmidt norm 0Here we drop the factor of 1

2 that
we sometimes included for simpli-
fying certain calculations.(A|B) := trA†B

=
∑
i,j

A?
ijBji.

The Frobenius norm is the norm induced by this inner product, i.e.

‖A‖F :=
√

(A|A)

=
√

tr(A†A)

=
√∑

i,j

|Aij |2.

Let’s study the relation between the operator norm and the trace norm first. By
definition, we see that

‖A‖tr ⩾ ‖A‖

but there is another, more subtle, inequality that they satisfy, namely

|(A|B)| ⩽ ‖A‖tr‖B‖

which is like a more general version of the Cauchy–Schwartz inequality, and is some-
times referred to as Hölder’s inequality for matrices. To derive this inequality, we
can use the SVD of A, since then

|(A|B)| = | trA†B|

=

∣∣∣∣∣tr
(∑

k

sk|vk〉〈uk|B

)∣∣∣∣∣
=
∣∣∣∑ sk〈uk|B|vk〉

∣∣∣
⩽
∑

k

sk|〈uk|B|vk〉|

⩽
∑

k

sk‖B‖

= ‖A‖tr‖B‖.

We can actually use this inequality to recover either the operator or the trace norm,
by maximising: for any fixed A (or any fixed B), we can obtain equality:

‖A‖tr = max
‖B‖=1

{(A|B)}

‖B‖ = max
‖A‖tr=1

{(A|B)}.

To see this, in the first case we can use the polar decomposition A = |A|U to see that
equality is attained by B = U ; in the second case we can use the polar decomposition
B = |B|V to see that equality is attained by A = V |v1〉〈v1|, where |v1〉 is the eigenvec-
tor of |B| with the largest eigenvalue (or, equivalently, singular value). In particular,
this gives us a variational characterisation of the trace norm which is very useful at
times:

‖A‖tr = max
U unitary

| trAU |.
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One final special case to point out is what happens if A is Hermitian. Then we can
separate the spectral decomposition into positive and negative parts, and write A as
the difference of two positive operators:

A = A+ −A−.

Then

|A| = A+ +A−

‖A‖tr = trA+ + trA−.

Now we finally return to the relevance of p-norms: it turns out that all these three
operator norms above are actually special cases of Schatten p-norms. For p ∈ N we
define the Schatten p-norm in terms of singular values sk as

‖A‖p :=

(∑
k

|sk|p
) 1

p

and we define

‖A‖∞ := max
k
|sk|

analogously to how we did for `p-norms. We then recover the trace norm, the Frobe-
nius norm, and the spectral norm by taking p = 1, 2,∞, respectively:

‖A‖1 = ‖A‖tr

‖A‖2 = ‖A‖F

‖A‖∞ = ‖A‖.

All Schatten p-norms are sub-multiplicative (‖AB‖p ⩽ ‖A‖p‖B‖p) and unitarily in-
variant (‖A‖ = ‖UAV ‖ for any unitaries U and V ).

12.11.3 Fidelity in a trace norm inequality

There is a useful inequality involving the trace norm:

tr(A−B)2 ⩽ ‖A2 −B2‖tr.

Let’s prove it!
Let λk be the eigenvalues of the operator A−B, with corresponding eigenvectors

and |uk〉. Then

tr(A−B)2 =
∑

k

λ2
k

since the trace is exactly the sum of eigenvalues. Now, for any unitary U , we have
that

‖A2 −B2‖tr ⩾ | tr(A2 −B2)U |

since ‖X‖tr = maxU unitary | tr(XU)|. If we take U =
∑

i±|uk〉〈uk|, where the signs
are chosen so that each term 〈uk|A2 −B2|uk〉 is non-negative, then

‖A2 −B2‖tr ⩾ | tr(A2 −B2)U |

=
∑

k

|〈uk|A2 −B2||uk〉|.

Writing A2 −B2 as 0This is the non-commutative ver-
sion of the identity a2 − b2 =
(a+ b)(a− b).
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A2 −B2 = 1
2

[
(A+B)(A−B) + (A−B)(A+B)

]
we see that

〈uk|A2 −B2||uk〉 = 1
2
〈uk|(A+B)(A−B) + (A−B)(A+B)|uk〉

= λi〈uk|A+B|uk〉.

Then, since λi = 〈uk|A|uk〉−〈uk|B|uk〉 is the difference of two non-negative numbers,
we have that

〈uk|A+B|uk〉 ⩾ |λi|.

Putting this all together, we obtain

‖A2 −B2‖tr ⩾
∑

k

|〈uk|A2 −B2||uk〉|

⩾
∑

k

λ2
k

= tr(A−B)2

as desired.
One particularly nice application of this inequality arises when we take A = √ρ

and B =
√
σ, since then

tr(√ρ−
√
σ)2 ⩽ ‖ρ− σ‖tr

or, after some rearrangement,

1− tr(√ρ
√
σ) ⩽ 1

2
‖ρ− σ‖tr

and we recognise tr(√ρ
√
σ) as the fidelity.

12.11.4 Hamming distance

Show that the Hamming distance (defined in Section 12.1) is indeed a metric.

12.11.5 Operator norm

Prove the following properties of the operator norm:

1. ‖A⊗B‖ = ‖A‖‖B‖ for any operators A and B
2. If A is normal, then ‖A†‖ = ‖A‖
3. If U is unitary, then ‖U‖ = 1
4. If P 6= 0 is an orthogonal projector, then ‖P‖ = 1.

Using the singular value decomposition, or otherwise, prove that the operator 0Recall Exercise 5.14.13

norm has the following two properties for any operators A and B:

5. Unitary invariance: ‖UAV ‖ = ‖A‖ for any unitaries U and V
6. Sub-multiplicativity: ‖AB‖ ⩽ ‖A‖‖B‖.

Recall that we say that V approximates U with precision ε if ‖U − V ‖ ⩽ ε.

7. Prove that, if V approximates U with precision ε, then V −1 approximates U−1

with the same precision ε.

Using the Cauchy–Schwartz inequality, or otherwise, prove the following, for any
vector |ψ〉 and any operators A and B:

8. |〈ψ|A†B|ψ〉| ⩽ ‖A‖‖B‖.
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12.11.6 Tolerance and precision

Suppose we wish to implement a quantum circuit consisting of gates U1, . . . , Ud, but
we only have available to us gates V1, . . . , Vd. Luckily, these gates happen to be pretty
good approximations to our desired gates, and the error is uniform: ‖Ui−Vi‖ ⩽ ε for
all i = 1, . . . , d for some fixed ε.

We want our approximate circuit to be within some tolerance δ of the desired
circuit: the probabilities of different outcomes of V = Vd · · ·V1 should be be within
δ of the “correct” probabilities of the different outcomes of U = Ud · · ·U1, i.e. |pU −
pV | ⩽ δ.

How small must ε be with respect to δ in order for us to achieve this? 0 Hint: recall that |pU − pV | ⩽
2‖U − V ‖.

12.11.7 Statistical distance and a special event

1. Show that, if p and q are probability distributions on the same sample space Ω,
then

d(p, q) = max
A⊆Ω
{|p(A)− q(A)|}.

2. By definition, the above maximum is realised for some specific subset A ⊆ Ω,
i.e. there exists some event (described by the set of outcomes A) that is optimal
in distinguishing p from q. What is this event?

12.11.8 Joint probability distributions

If we simultaneously sample two random variables from the same probability space,
then we obtain a joint distribution:

r(x, y) := Pr(x and y).

From this we can recover the marginals

p(x) :=
∑

y

r(x, y)

q(y) :=
∑

x

r(x, y).

So let r(x, y) be a joint probability distribution with marginals p(x) and q(y). Show
that 0Hint:

dtr(p, q) = 1 −
∑
x

min{p(x), q(x)}

⩽ 1 −
∑
x

p(x, x)

= Pr(x 6= y).

dtr(p, q) ⩽ Pr(x 6= y) ≡
∑

{x,y|x 6=y}

p(x, y).

12.11.9 Distinguishability and the trace distance

Say we have a physical system which is been prepared in one of two states (say,
ρ0 and ρ1), each with equal probability. Then, as shown in Section 12.8, a single
measurement can distinguish between the two preparations with probability at most
1
2 [1 + dtr(ρ0, ρ1)].

1. How does this probability change if the states ρ0 and ρ1 are not equally liked,
but instead sent with some predetermined probabilities p0 and p1, respectively?

2. Suppose that you are given one randomly selected qubit from a pair in the state

|ψ〉 = 1√
2

(
|0〉 ⊗

(√
2
3
|0〉 −

√
1
3
|1〉

)
+ |1〉 ⊗

(√
2
3
|0〉+

√
1
3
|1〉

))
from Exercise 8.8.1. What is the maximal probability with which we can deter-
mine which qubit (either the first or the second) we were given?
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13 Decoherence and recoherence

About the one big problem that hinders us from physically implement-
ing everything that we’ve learnt so far: decoherence. But also about
how we can start to deal with it via some elementary error correc-
tion, including the Shor [[9, 1, 3]] quantum code, which generalises
the classical three-bit repetition code.

As the adage goes, “in theory, theory and practice rarely differ; in practice, they of-
ten do”. In theory, we know how to build a quantum computer: we can start with sim-
ple quantum logic gates and try to integrate them together into quantum networks.
However, if we keep on putting quantum gates together into networks we will quickly
run into some serious problems in practice: the more interacting qubits involved, the
harder it is to prevent them from getting entangled with the environment. This un-
welcome entanglement, also known as decoherence, destroys the interference, and
thus the power, of quantum computing. To counteract this problem, we will start to
look at the idea of error correcting codes, which protect our data against unwanted
errors, but at the cost of encoding it across more ancillary qubits.

13.1 The three-qubit code

In Section 9.3 we met the notion of isometries: operators V that map one Hilbert
space to another and satisfy V †V = 1. This implies that isometries can be reversed,
or corrected: we can apply V † and end up exactly how we started.

We say that a quantum channel E : B(H)→ B(H′) is correctable if there exists
a recovery channel R : B(H′)→ B(H) such that the composition R◦ E is the
identity channel 1.

Now suppose we have isometries V1, . . . , Vn : H → H′. IfH′ is “sufficiently bigger”
than H, and if the images H′

i := Vi(H) do not overlap then we can reverse the action 0 More precisely, we say that the
H′
i “do not overlap” to mean that

the subspaces H′
i are mutually or-

thogonal

of the channel given by a statistical mixture of the Vi: we can, at least in principle,
perform a measurement onH′, defined by the partitionH′ = H′

1⊕H′
2⊕ . . .⊕H′

n, and
find out which subspace contains the output state; once we know which subspace the
input was sent to, we know which particular isometry Vk was applied by the channel;
then we simply apply V †

k .

Apart from individual unitaries or isometries, the only correctable channels
are exactly the statistical mixtures of {Vi} such that V †

i Vj = δij1, i.e. mixtures
of mutually orthogonal isometries.
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H

H1

H2

H3

H4

V1

V2

V3

V4

H′

H

H1

H2

H3

H4

V1

V2

V3

V4

H′

Figure 13.1: A visualisation of correctable (left) and non-correctable (right) channels.
Each isometry Vi, which is chosen with some probability pi, maps the original space
to a different space. If those spaces do not overlap, we can detect which one we’re
in and hence compensate (i.e. correct). If the two spaces partially coincide, however,
then there exist states for which we cannot detect which isometry occurred.

Here is a simple but important example: the three-qubit code. Take a qubit in 0 We will return to this example,
using the language of stabilisers
from Chapter 7, in Chapter 14.

some pure state |ψ〉 = α|0〉+β|1〉, introduce two auxiliary qubits in a fixed state |0〉|0〉,
and apply a unitary operation to the three qubits, namely two controlled-NOT gates:

α |0⟩+ β |1⟩

α |000⟩+ β |111⟩|0⟩

|0⟩

The result is the isometric embedding of the 2-dimensional Hilbert space of the
first qubit (spanned by |0〉 and |1〉) into the 2-dimensional subspace (spanned by |000〉
and |111〉) of the 8-dimensional Hilbert space of the three qubits. The isometric oper-
ator

V = |000〉〈0|+ |111〉〈1|

acts via

α|0〉+ β|1〉 7−→ α|000〉+ β|111〉.

This three qubit-encoding can be reversed by the mirror image circuit:

α |000⟩+ β |111⟩

α |0⟩+ β |1⟩

|0⟩

|0⟩

This isometry is just one member of a family, and we will spend the rest of this
chapter building up to the general theory, and understanding how this three-qubit
encoding is useful in error correction.

Let’s start with the following scenario. Alice constructs a quantum channel which
is a mixture of four isometries. The input is a single qubit, and the output is a dilated
system composed of three qubits. She prepares the input qubit in a state |ψ〉 and then 0Our arguments here can be easily

extended to any mixed state ρ, but
for simplicity we consider the case
of a pure state.

combines it with the two ancillary qubits which are in a fixed state |0〉|0〉. Then she
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13.2 Towards error correction

applies one of the four, randomly chosen, unitary operations to the three qubits, to
generate the following four isometries:

V00 = |000〉〈0|+ |111〉〈1|
V01 = |001〉〈0|+ |110〉〈1|
V10 = |010〉〈0|+ |101〉〈1|
V11 = |100〉〈0|+ |011〉〈1|.

The three qubits, which form the output of the channel, are given to Bob, whose
task is to recover the original state |ψ〉 of the input qubit. In this scenario, Bob, who
knows the four isometries, can find out which particular isometry was applied. He
knows that

• V00 maps H to H′
00, which is a subspace of H′ spanned by |000〉 and |111〉;

• V01 maps H to H′
01, which is a subspace of H′ spanned by |001〉 and |110〉;

• V10 maps H to H′
10, which is a subspace of H′ spanned by |010〉 and |101〉;

• V11 maps H to H′
11, which is a subspace of H′ spanned by |100〉 and |011〉.

Given that these subspaces are mutually orthogonal, and H′ = H′
00⊕H′

01⊕H′
10⊕

H′
11, Bob can perform a measurement defined by the projectors on these subspaces.

For example, if Alice randomly picked V01, then the input state |ψ〉 = α|0〉+β|1〉will be
mapped to the output state α|001〉+ β|110〉 in the H′

01 subspace. Bob’s measurement

P01 = |001〉〈001|+ |101〉〈101|

will then detect H′
01 as the subspace where the output state resides, but the measure-

ment (i.e. the corresponding projection) will not affect any state in that subspace.
Bob can now simply apply V †

01 and obtain |ψ〉.
Below is a diagram of how the four isometries are implemented. We will see how

to reverse these operations in Section 13.2.

V00 =

|ψ⟩

|0⟩

|0⟩

V01 =

|ψ⟩ X

|0⟩

|0⟩

V10 =

|ψ⟩

|0⟩ X

|0⟩

V11 =

|ψ⟩

|0⟩

|0⟩ X

13.2 Towards error correction

In Section 13.1, when Alice used a random choice of four isometries to produce a
three-qubit output, notice how we can write

V01 = (1⊗ 1⊗X)V00

V01 = (1⊗X ⊗ 1)V00

V01 = (X ⊗ 1⊗ 1)V00

and thus express all of the isometries in terms of V00. In other words, rather than
thinking of Alice as picking randomly between four different isometries, we can imag-
ine that she always picks the encoding isometry V00, and then some noisy process
randomly applies one of the four actions 1, 11X, 1X1, or X11.
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H C
encode

C1

C2

C3

E1

E2

E0

E3

H′

Correcting the isometry then corresponds to identifying which error happened,
fixing it, and then removing the encoding: a process known as decoding. This is the
format of error correction in a nutshell.

Encoding
Random
X error

Detection
& Decoding

|ψ⟩

|0⟩ X

|0⟩

Figure 13.2: Quantum error correction can be thought of as a three-step process:
encoding, transmitting through a noisy channel, and then detecting and decoding.
We will give a more accurate depiction of an error correcting diagram, explaining
what actually happens in the “detection & decoding portion” in Figure 13.7.

When we studied Pauli stabilisers in Section 7.2, we came across exactly the spaces
of this example:

++ −+

−−+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩
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The stabiliser formalism gives us a very natural way of describing the error
correcting code, along with its correction:

• the codespace (i.e. the space with no error) is defined by the two sta-
bilisers +ZZ1 and +1ZZ

• the error can be determined by measuring the value of these two stabilis-
ers; we simply have to find which of the four possible errors gives the
correct (anti-)commutation relations as specified by the measurement
outcomes ±1.

Generalising this idea further is the subject of Section 13.6.

If a set {Vx} of correctable isometries are related by

Vx = UxV0

for some set of unitaries {Ux} with U0 = 1, then an encoding operation V0
provides protection against the errors Ux.

13.3 Discretisation of quantum errors

When a quantum computer interacts and becomes entangled with its environment,
it impacts the environment in such a way that the environment maintains a physical
record of how the computer arrived at the desired output. Here, in our simplistic
diagram, we consider only two computational paths.

I
O1

O2

With decoherence present, quantum computation spills out the environment and
results in not one, but two output states:

|O1〉 := |O〉|e1〉
= “computer shows output O, environment knows that path 1 was taken”

|O2〉 := |O〉|e2〉
= “computer shows output O, environment knows that path 2 was taken”

The two final states O1 and O2 are identical if and only if |〈e1|e1〉| = 1. In this
case, the environment does not know anything about what happened during the com-
putation — there is quantum interference — and we add probability amplitudes cor-
responding to the two computational paths. In contrast, the two final states O1 and
O2 are completely different if and only if |〈e1|e2〉| = 0. Then there is only one path
to the output — there is no quantum interference — and there is nothing to add.
Of course, there are also midway cases 0 < |〈e1|e2〉| < 1 corresponding to partial
distinguishability of the final states.

If we wish to study the evolution of the qubit alone, then we can do so in terms
of density operators: it evolves from the pure state |ψ〉〈ψ| to a mixed state, which
can be obtained by tracing over the environment. We know that the state vector
|ψ〉 = α|0〉+ β|1〉 evolves as

(α|0〉+ β|1〉) |e〉 7−→ α|0〉|e00〉+ β|1〉|e11〉
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13.4 Digitising quantum errors

and we can write this as the evolution of the projector |ψ〉〈ψ|, and then trace over the
environment to obtain

|ψ〉〈ψ| 7−→|α|2|0〉〈0|〈e00|e00〉+ αβ?|0〉〈1|〈e11|e00〉
+α?β|1〉〈0|〈e00|e11〉+ |β|2|1〉〈1|〈e11|e11〉.

Written in matrix form, this is[
|α|2 αβ∗

α∗β |β|2
]
7−→

[
|α|2 αβ∗〈e11|e00〉

α∗β〈e00|e11〉 |β|2
]
.

The off-diagonal elements (originally called coherences) vanish as 〈e00|e11〉 approaches
zero. This is why this particular interaction is called decoherence.

Notice that

|ψ〉|e〉 7−→ 1|ψ〉|e1〉+ Z|ψ〉|eZ〉,

implies

|ψ〉〈ψ| 7−→ 1|ψ〉〈ψ|1〈e1|e1〉+ Z|ψ〉〈ψ|Z〈eZ |eZ〉,

only if 〈e1|eZ〉 = 0, since otherwise we would have additional cross terms 1|ψ〉〈ψ|Z
and Z|ψ〉〈ψ|1. In this case (i.e. when 〈e1|eZ〉 = 0) we can indeed say that, with prob-
ability 〈e1|e1〉, nothing happens, and, with probability 〈eZ |eZ〉, the qubit undergoes
the phase-flip Z. We can also represent this with the Kraus operators

E0 =
√
|e1〉〈e1|1

E1 =
√
|eZ〉〈eZ |Z

which can be shown to satisfy E†
0E0 + E†

1E1 = 1.
The process of decoherence is continuous. It involves the environment gradually

acquiring information about computational paths and the associated relative environ-
mental states (|e0〉 and |e1〉 in our example above), which evolve over time to become
increasingly orthogonal to one another. Despite this, we can perceive the influence
of the environment on our system of interest — a collection of qubits in a quantum
computer — in terms of discrete operations. In essence, we can digitise quantum
errors.

13.4 Digitising quantum errors

The most general qubit-environment interaction is of the form

|0〉|e〉 7−→ |0〉|e00〉+ |1〉|e01〉
|1〉|e〉 7−→ |1〉|e10〉+ |0〉|e11〉

where the states of the environment are neither normalised nor orthogonal. This
leads to decoherence(

α|0〉+ β|1〉
)
|e〉 7−→

(
α|0〉+ β|1〉

) |e00〉+ |e11〉
2

+
(
α|0〉 − β|1〉

) |e00〉 − |e11〉
2

+
(
α|1〉+ β|0〉

) |e01〉+ |e10〉
2

+
(
α|1〉 − β|0〉

) |e01〉 − |e10〉
2

.

which can be written as

|ψ〉|e〉 7−→ 1|ψ〉|e1〉+ Z|ψ〉|eZ〉+X|ψ〉|eX〉+ Y |ψ〉|eY 〉.

The intuition behind this expression is that four things can happen to the qubit:
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13.5 Recoherence

1. nothing (1)
2. phase-flip (Z)
3. bit-flip (X)
4. both bit-flip and phase-flip (Y ).

This is certainly the case when the states |e1〉, |eX〉, |eY 〉 and |eZ〉 are mutually
orthogonal, but if this is not so then we cannot perfectly distinguish between the four
alternatives. 0 We will soon stop warning that

this intuition is not entirely accu-
rate, so keep it in mind!

We can reduce quantum errors in this general scenario to just two types: bit-
flip errors X, and phase-flip errors Z.

In short, if we can correct Pauli errors then we can correct all errors.

In general, given n qubits in state |ψ〉, and an environment in state |e〉, the joint
evolution can be expanded as 0 The sum is from i = 1 to 4n be-

cause there are 4n different (ten-
sor products of) Pauli operators
acting on n qubits.|ψ〉|e〉 7−→

4n∑
i=1

Ei|ψ〉|ei〉,

where the Ei are the n-fold tensor products of the Pauli operators and the |ei〉 are the
corresponding states of the environment (which, again, are not assumed to be nor-
malised or mutually orthogonal). For example, in the case n = 5, a typical operator
Ei may look like

X ⊗ Z ⊗ 1⊗ 1⊗ Y ≡ XZ11Y.

We say that such an Ei represents an error consisting of the bit error (or X error) on
the first qubit, phase error (or Z error) on the second qubit, and both bit and phase
error (or Y error) on the fifth qubit. 0One final time: this is not entirely

accurate if the corresponding states
of the environment are not mutu-
ally orthogonal, but it gives the
right kind of intuition nonetheless.

In terms of density operators, we have a quantum channel described by the Kraus
operators Ei above

ρ 7−→
∑

i

EiρE
†
i

that acts on any input state ρ, be it mixed or pure. In particular, this channel turns
the pure state |ψ〉 into a statistical mixture of states |ψ̃i〉 = Ei|ψ〉. Note that the |ψ̃i〉
are not normalised:

pi := 〈ψ̃i|ψ̃i〉 = 〈ψ|E†
iEi|ψ〉

is exactly the probability with which the normalised version of Ei|ψ〉 appears in the
mixture. This mixture may arise if one measures the environment in the |ei〉 basis and
then forgets about the result.

13.5 Recoherence

If we could measure the environment in the |ei〉 basis without forgetting the result,
then we would know what kind of error had occurred (say, some Ek) and could then
simply restore the original state |ψ〉 by reversing the action of Ek. But the challenge
lies in our lack of control over the environment. At first glance, once our bunch of
qubits, initially in state |ψ〉, gets entangled with the environment

|ψ〉|e〉 7−→
∑

i

Ei|ψ〉|ei〉

the situation looks rather hopeless — we do not have any control over the envi-
ronment. However, there is a way around this. We can couple the qubits to an
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13.5 Recoherence

auxiliary system that we do control (an ancilla), and then attempt to transfer the
qubits–environment entanglement to a qubits–ancilla entanglement. In other words,
we prepare the ancilla in some prescribed state |a〉 and try to undo the decoherence
E using some recovery or recoherence operator R that acts as

|ψ〉|a〉 7−→
∑

k

Rk|ψ〉|ak〉.

Thus decoherence followed by recoherence acts as

RE : |ψ〉|e〉|a〉 7−→
∑

i

Ei|ψ〉|ei〉|a〉

7−→
∑
i,k

RkEi|ψ〉|ei〉|ak〉

which we can also express in a diagram, as in Figure 13.3.

S

A

N

|ψ⟩|e⟩|a⟩

S

A

N

∑
iEi|ψ⟩|ei⟩|a⟩

S

A

N

∑
i,k RkEi|ψ⟩|ei⟩|ak⟩

decoherence E recoherence R

Figure 13.3: The initial state undergoing decoherence followed by recoherence. Here
S is the system of qubits that we want to work with, N is the environment, and A
is the ancilla that we introduce. The squiggly arrow represents interactions, and the
dashed line represents entanglement.

But for this to help us, we need to end up with in a state where the ancilla and the
environment are entangled with one another, and the qubit is entangled with nothing,
i.e. a state of the form

|ψ〉 ⊗ (some entangled state of the ancilla and environment)

as shown in Figure 13.4

S

A

N

|ψ⟩ ⊗
∑

i,k λi,k|ei⟩|ak⟩

Figure 13.4: The desired outcome of the decoherence–recoherence process.

Ideally we would like this to hold for all states |ψ〉, but this turns out to be too
much to ask: as we shall see in a moment, we will have to confine our recoverable
states to those that belong to a subspace called the codespace. But then at least for
these states we expect to have∑

i,k

RkEi|ψ〉|ei〉|ak〉 =
∑
i,k

|ψ〉 ⊗ λik|ei〉|ak〉.
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13.6 The classical repetition code

The ability of Rk to perform the correction like this means that

RkEi = λik1

when acting on the codespace states |ψ〉. In turn, this means that

∑
k

(RkEj)†(RkEi) = E†
j

(∑
k

R†
kRk

)
Ei

= E†
jEi

= λ?
jkλik1

which reminds us of the hopefully now-familiar condition for being able to correct a
randomly chosen isometry.

Last but not least, note that the recoherence operator R not only allows us to
recover from the errors Ei, but also from any errors that are in the linear span of
these. Thus if the errors Ei form a basis in the matrix space — as is the case for the
Pauli matrices together with the identity — then once we design an error recovery
scheme for the Ei, we will be able to correct any error.

If a quantum error correction method corrects errors E1 and E2, then it also
corrects any linear combination of E1 and E2.

For example, in Section 13.2 we saw how the three-qubit encoding could correct
for one of the possible errors 1, X1, X2, or X3. But not only can we correct for this 0 Quite often we will write Xi

to mean “an X error on the i-th
qubit”, so that e.g.X2 = 1⊗X2 ⊗
1 . . .⊗ 1.

discrete set of errors, we can also correct for any linear combination of them, such as
R

(
X1
θ), which acts as

|ψ〉
RX1 (θ)
7−→ cos θ

2
|ψ〉+ i sin θ

2
X1|ψ〉.

In other words, the scenario where, with probability cos2 θ
2 we find that no error

occurred, and with probability sin2 θ
2 we find that the error X1 occurred and correct

it.

13.6 The classical repetition code

We have now essentially met all the concepts of quantum error correction, but every-
thing has been phrased in terms of correctable isometries. Now we need to repeat
much the same information from a slightly different perspective, including a brief
detour to introduce some concepts and methods from the classical theory of error
correction. Even though quantum problems often require novel solutions, it is always
a good idea to look at the classical world to see if there is anything equivalent there,
and, if so, how people deal with it. In this particular case, once we have digitised
quantum errors, we can see that quantum decoherence is a bit like classical noise
(i.e. bit-flips), except that we have two types of errors: these classical bit-flips, and
then the purely quantum phase-flips. But there’s one key thing that we know relat-
ing these two types of errors, namely that phase-flips can be turned into bit-flips by
sandwiching then between Hadamard transforms:

HZH = X.

This opens up the possibility of adopting classical techniques of error correction to
the quantum case. There is a vast body of knowledge out there about classical error-
correcting codes, and we can only scratch the surface here.
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13.6 The classical repetition code

Suppose you want to send a k-bit message across a noisy channel. If you choose to
send the message directly, some bits may be flipped, and a different message will likely
arrive with a certain number of errors. Let’s suppose that the transmission channel
flips each bit in transit with some fixed probability p. If this error rate is considered
too high, then it can be decreased by introducing some redundancy. For example, we
could encode each bit into three bits:

0 7−→ 000
1 7−→ 111.

These two binary strings, 000 and 111, are called codewords. Beforehand, Alice and
Bob agree that, from now on, each time you want to send a logical 0, you will encode
it as 000, and each time you want to send a logical 1, you will encode it as 111.

Here’s an example. Say that Alice wants to send the message 1011. She first
encodes it as the string

111 000 111 111

and then sends it to Bob over the noisy channel. Note that she is now not sending just
four, but instead twelve physical bits. This is more costly (in terms of time or energy,
or maybe even money), but might be worth it to ensure a more reliable transmission.
Let’s say that Bob then receives the message

110 010 101 100.

Clearly some errors have occurred! In fact, even Bob knows this, because he expects
to receive 3-bit chunks of either all 0s or all 1s. He uses the “majority vote” decoding
method:

• 110 is decoded as 1
• 010 is decoded as 0
• 101 is decoded as 1
• 100 is decoded as 0.

As we can see, if a triplet contains either zero or one errors then the decoding
returns the correct bit value, otherwise it errs. In our example, the first three triplets
are correctly decoded, but the fourth suffered two errors and is thus wrongly decoded
as 0. This whole process can be represented as

1011 encoding7−→ 111 000 111 111 noise7−→ 110 010 101 100 decoding7−→ 1010.

The noisy channel flipped 5 out of the 12 physical bits, and the whole encoding–
decoding process reduced this down to only one logical error.

We can make a simple estimate on how good this scheme will be. Assuming that
the errors are independent then, for any given triplet, 0 The assumption that the errors

are independent is very important,
but not always physically realistic!
We will re-examine to this assump-
tion a few times in Chapter 14.


no errors probability (1− p)3

1 error probability 3p(1− p)2

2 errors probability 3p2(1− p)
3 errors probability p3.

More succinctly, the probability that n errors occur is(
3
n

)
pn(1− p)3−n

where
(

m
n

)
= m!/(n!(m − n)!) is the binomial coefficient. Given that the scheme

decodes correctly exactly when we have at most one error, the net probability of
errors is just the probability that either two or three errors occur, which is

3p2(1− p) + p3.

261

https://en.wikipedia.org/wiki/Binomial_coefficient


13.6 The classical repetition code

This means that our encoding–decoding scheme actually lowers the probability of
error if and only if

3p2(1− p) + p3 <
1
2

i.e. when p < 1/2. This important number is known as the error threshold of the
code, and is a good judge of how useful a code actually is. When p is really small, we
can basically ignore the p3 term, since it is even smaller still, and claim that the error
probability is reduced from p to roughly 3p2.

000 000

001

010

100

110

101

011

111

(1− p)3

3p(1− p)2

3p2(1− p)

p3

000

111

000

001

010

100

110

101

011

111

no error

one error
correctable

two errors
detectable

three errors
not detectable

Figure 13.5: What can happen, and the respective probabilities, when we transmit
the codeword 000. With this scheme, we can correct up to one error, and detect up to
two. Note that when two errors occur, the “majority vote” correction scheme actually
gives the wrong “correction”.

In this example, we can see that if one or two errors occur, then the resulting
bit string will no longer be a valid codeword, which makes the error detectable. For
example, if the bit string 101 appears in our message, then we know that some error
must have occurred, because 101 is not a codeword, so we never would have sent it.
We can’t be certain which error has occurred, since it could have been a single bit-flip
on 111 (more likely) or a double bit-flip on 000 (less likely), but we know for sure that
one of these two went wrong. In the worst case scenario, where three bit-flips happen,
the error will be undetectable: it will turn 000 into 111 (and vice versa). This results
in what is known as a logical error, where the corrupted string is also a codeword,
leaving us with no indication that anything has gone wrong.

Below a certain error threshold, the three-bit code improves the reliability of the
information transfer. This simple repetition code encoded one bit into three bits, and
corrected up to one error. In general, there are classical codes that can encode k bits
into n bits and correct up to r errors. One more important number that we need is the
distance of such an encoding, which is defined to be the minimum number of errors
that can pass undetected (or, equivalently, the minimum Hamming distance between 0 That is, the number of bit-flips

required to move from one to the
other; recall Section 12.1.

two codewords). More generally, the distance d relates to the number of errors t that
a code can correct by d = 2t+ 1, or, equivalently, t = bd/2c.

Looking back again at Figure 13.5, we see that if exactly one or two errors occur
in our three-bit code then we can detect that an error has occurred, since we will have
a string where not all of the bits are the same, which means that it is definitely not
one of our code words. However, if three errors occur then the errors are not only
impossible to correct, but they are also impossible to detect. So the code that we have
described has n = 3, k = 1, and d = 3.

A code that encodes k bits into n bits and has a distance of d is called an
[n, k, d] code. The rate of an [n, k, d] code is defined to be R = k/n.

In an [n, k, d] code, the encoder divides the message into chunks of k bits and
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13.7 Correcting bit-flips

encodes each k-bit string into a pre-determined n-bit codeword. There are 2k distinct
codewords among all 2n binary strings of length n. The recipient then applies the
decoder, which takes chunks of n bits, looks for the nearest codeword (in terms of
Hamming distance), and then decodes the n-bit string into that k-bit codeword. For
example, in our 3-bit repetition code, we have the two codewords 000 and 111, among
all eight binary strings of length 3, as shown in Figure 13.6.

000

001 010 100

110 101 011

111

closer to 111

closer to 000

Figure 13.6: All the 3-bit strings that are within Hamming distance 1 from 000 are
below the line, and all those that are within Hamming distance 1 from 111 are above
the line. The decoder assumes that the former are corrupted versions of 000, and the
latter of 111.

13.7 Correcting bit-flips

In order to protect a qubit against bit-flips (thought of as incoherent X rotations),
we rely on the same classical repetition code as in Section 13.6, but both encoding
and error correction are now implemented by quantum operations. Let’s return to the 0 All the codes we will study have

encoding circuits that can be con-
structed out of controlled-NOT and
Hadamard gates: we are dealing
with Clifford circuits (Section 7.7).

example of the three-qubit code that we introduced in Section 13.1. We take a qubit
in some unknown pure state α|0〉 + β|1〉 and encode it into three qubits, introducing
two auxiliary qubits:

α |0⟩+ β |1⟩

α |000⟩+ β |111⟩|0⟩

|0⟩

Mathematically, this is an isometric embedding of a two-dimensional space into 0 Recall that an isometry is the
generalisation of a unitary but
where we are also allowed to bring
in additional qubits.

an eight-dimensional one. It is important to note that this is not just the classical rep-
etition code “but with qubits instead of bits” — this would be impossible to construct,
since the no-cloning theorem tells us that we can never build a circuit that enacts

α|0〉+ β|1〉 7−→ (α|0〉+ β|1〉)(α|0〉+ β|1〉)(α|0〉+ β|1〉).

Rather than repeating the qubit like this, the three-qubit code sort of “smears it out”
across three qubits, resulting in the entangled state α|000〉+ β|111〉.

Now suppose that one qubit is flipped, say, the second one. The encoded state then
becomes α|010〉 + β|101〉. Decoding requires some care: measuring the three qubits 0 There is a subtle difference be-

tween decoding and unencoding:
the latter consists of simply re-
versing the encoding process; the
former consists of using the re-
sults of measurements (the er-
ror syndrome) to perform a more
adapted “unencoding”.

directly would destroy the superposition that we are working so hard to protect. So
instead we introduce two ancilla qubits, both in state |0〉, and apply the following
circuit:
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13.7 Correcting bit-flips

|0⟩ |1⟩

|0⟩ |1⟩

α |010⟩+ β |101⟩

This decoding circuit is exactly the same as the ones for measuring the Pauli
stabilisers ZZ1 and 1ZZ (as described in Section 7.4).

Measuring the two ancilla qubits gives us what is known as the error syndrome
(or sometimes just syndrome, for short), which tells us how to correct the three qubits
(known as the data qubits) of the code. The theory behind this works as follows:

• if the first and second (counting from the top) data qubits are in the same state
then the first ancilla will be in the |0〉 state; otherwise the first ancilla will be in
the |1〉 state

• if the second and third data qubits are in the same state then the second ancilla
will be in the |0〉 state; otherwise the second ancilla will be in the |1〉 state.

So the four possible error syndromes each indicate a different scenario: 0 Again, for now we are assuming
that at most one bit-flip error oc-
curs.• |00〉: no error

• |01〉: bit-flip in the first data qubit
• |10〉: bit-flip in the second data qubit
• |11〉: bit-flip in the third data qubit.

In our example, the error syndrome is |11〉, and so we know that the first and
second qubits differ, as do the second and third. This means that the first and third
must be the same, and the second suffered the bit-flip error. Knowing the error, we
can now fix it by applying an X gate to the second qubit. The final result is the state
α|000〉 + β|111〉, which is then turned into (α|0〉 + β|1〉)|00〉 by running the mirror
image of the encoding circuit:

α |000⟩+ β |111⟩

α |0⟩+ β |1⟩

|00⟩

|00⟩

It is also important to note that the actual error correction can be implemented by
a single unitary operation Uc on the five total qubits, with

Uc =
(
|0〉〈0| ⊗ |0〉〈0|

)
⊗ (111)

+
(
|0〉〈0| ⊗ |1〉〈1|

)
⊗ (11X)

+
(
|1〉〈1| ⊗ |0〉〈0|

)
⊗ (X11)

+
(
|1〉〈1| ⊗ |1〉〈1|

)
⊗ (1X1).

We draw the general circuit for bit-flip protection in Figure 13.7, writing out this Uc

in full, denoting the error-syndrome measurement by a, b.
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|0⟩ a

|0⟩ b

α |0⟩+ β |1⟩

X error

Xa(1−b) α |0⟩+ β |1⟩

|0⟩ Xab

|0⟩ X(1−a)b

Figure 13.7: The quantised version of the classical [3, 1, 3] code. If at most one bit-
flip error occurs in the shaded region (which denotes the part where we transmit
over a noisy channel), then this circuit perfectly corrects it, resulting in the successful
transmission of the state α|0〉+ β|1〉.

It is useful to represent syndrome measurements in terms of stabilisers. For exam-
ple, a computational basis measurement is represented by the Pauli Z operator. The
parity of two qubits is represented by the observable Z⊗Z, since the Z⊗Z measure-
ment will have outcome +1 in the case of even parity and −1 in the case of odd parity
(when applied to two of the three qubits). To detect errors in a repetition encoding,
we consider the parity of all pairs of qubits in the code; in the case of the three-qubit
repetition code, we use the operators

Z ⊗ Z ⊗ 1Z ⊗ 1⊗ Z1⊗ Z ⊗ Z.

However, since Z2 = 1, it actually suffices to use only two of these, say Z ⊗ Z ⊗ 1
and 1 ⊗ Z ⊗ Z, because we can recover the last one as their product. But these two
operators are exactly generators of the stabiliser group

S = {111, ZZ1, Z1Z,1ZZ}

(where we again drop the tensor product symbol). So, in summary, measuring the
two generators of this stabiliser group gives us the error syndrome.

We can compile all the error syndromes (in the case of a single bit-flip) into a
table:

Error ZZ1 Z1Z 1ZZ

111 + + +
X11 − − +
1X1 − + −
11X + − −

Here the rows are labelled by bit-flip errors, and the columns by the parity-check
observables; we write ± to mean ±1. Note how the + and − results correspond to the
binary labels 0 and 1, and also how the Z1Z column is simply given by the product
of the other two measurement columns.

13.8 Correcting phase-flips

We have seen how the classical [3, 1, 3] code can be adapted to detect and correct for
a single quantum bit-flip, but in Section 13.4 we said that there are three possible
errors that we need to worry about: bit-flips, phase-flips, and bit-and-phase flips.
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13.9 Composing correctable channels

Having dealt with the first, we now deal with the second; finding a way to combine
these two solutions to deal with the third is the subject of Section 13.10.

It turns out that we really don’t need to do much work in order to solve the prob-
lem of single phase-flip errors if we make use of the fact that HZH = X, i.e. phase-
flips become bit-flips when sandwiched between Hadamards!

|0⟩ a

|0⟩ b

α |0⟩+ β |1⟩ H

Z error

H Za(1−b) α |0⟩+ β |1⟩

|0⟩ H H Zab

|0⟩ H H Z(1−a)b

Figure 13.8: Using the quantised [3, 1, 3] code to deal with phase-flips by sandwiching
the transmission area between Hadamards.

The encoded state that enters the transmission area affected by decoherence now
reads α|+ ++〉+ β| − −−〉, where |±〉 = (|0〉 ± |1〉)/

√
2. These are eigenstates of Z,

i.e. Z|±〉 = |∓〉, and so errors get transformed into orthogonal, and thus detectable,
states.

But just as how the circuit in Section 13.7 only protected against bit-flips, this
circuit only protects against phase-flips — now we need to find a way to combine
them.

13.9 Composing correctable channels

We have already seen that we can compose quantum channels both in sequence and
in parallel, using matrix multiplication or the tensor product (respectively). When we
compose two correctable channels, do we still get a correctable channel? Well, if {Vi}
and {Wm} are two sets of channels then

(Vj ⊗Wn)†(Vi ⊗Wm) = (V †
j Vi)⊗ (W †

nWm)

and so if the Vi and the Wm are all isometries, then so too is their parallel composi-
tion, since the above then equals δijδmn1 ⊗ 1. Similarly, if Vi : B(H) → B(H′) and
Wm : B(H′)→ B(H′′), then the composition WmVi is meaningful, and

(WnVj)†(WmVi) = V †
j W

†
nWmVi

and so if the Vi and Wm are all isometries, then so too is their sequential composition,
since the above then equals δijδmn1.

Let’s apply this to our continuing example of single-qubit error correction. Recall
the isometries

V00 = |000〉〈0|+ |111〉〈1|
V01 = |001〉〈0|+ |110〉〈1|
V10 = |010〉〈0|+ |101〉〈1|
V11 = |100〉〈0|+ |011〉〈1|.
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13.9 Composing correctable channels

from Section 13.1. If we write x to mean the complement NOT(x) of a binary string x,
then these can all be expressed as

Vx = |0x〉〈0|+ |1x〉〈1|.

We can define a related set of isometries by

Wx = (H ⊗H ⊗H)Vx

which correct for any single Z error, using the fact that HXH = Z. Then the com-
posites

(Vy1 ⊗ Vy2 ⊗ Vy3)Wx = (Vy1 ⊗ Vy2 ⊗ Vy3)(H ⊗H ⊗H)Vx

define a set of isometries that map a single qubit to nine qubits as a correctable chan-
nel.

If we look at the y1 = y2 = y3 = x = 00 case, then we can use this to define an
encoding procedure, as in Figure 13.9.

1 2

3

α |0⟩+ β |1⟩ H

|00⟩

|000⟩
H

|000⟩
H

Figure 13.9: The encoding circuit for the Shor [[9, 1, 3]] code, implementing (V00 ⊗
V00 ⊗ V00)(H ⊗ H ⊗ H)V00. The three locations marked with numbers are not part
of the circuit, but we will use them to explain how this circuit corrects for arbitrary
single-qubit errors.

What errors can this code cope with? Trivially, an X on any of the nine qubits
corresponds to a different isometry, by construction. For example, applying an X at
location 3 in Figure 13.9 is picked out by y2 = 10. In other words, each block of three
qubits behaves just as it did before.

We also know that, by construction, the code would correct for a single X error
at location 1 in the circuit. If we propagate this error through the circuit, this is the
same as a Z error in location 2, which corresponds to the isometry with x = 10, and
shows that Z errors on the first, fourth, and seventh (i.e. the first in each block of
three) qubits can be corrected. What about other Z errors? Well, let’s go back to
the subspace created by one of the Vx, say V00 which is spanned by |000〉 and |111〉.
Then the effect of a single Z error on that space is the same no matter where the Z is
applied: a Z error at location 3 has exactly the same effect as a Z error at location 2,
since it corresponds to the same isometry, and so the error can still be detected and
corrected without ever needing to know whether the error was at location 2 or location
3. This lack of knowledge means that the code is said to be degenerate.

This circuit gives a nine-qubit encoding that can correct for any single-qubit
error. The resulting code is called the Shor [[9, 1, 3]] code, where the 9 tells
us the size of the encoding, the 1 tells us the input size, and the 3 tells us the
distance (defined below).
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We will describe how the Shor [[9, 1, 3]] code provides single-qubit error correction 0We use double square brackets to
emphasise that this is a quantum,
not classical, code.

in more detail in Section 13.10.
Note that, for the Shor [[9, 1, 3]] code, operators such as Z1Z2 := Z ⊗ Z ⊗ 1⊗7 are

undetectable, but they do not change the logical state:

Z1Z2(Vy1 ⊗ Vy2 ⊗ Vy3)Wx = (Vy1 ⊗ Vy2 ⊗ Vy3)Wx.

However, operators such as X1X2X3 are undetectable and do change the logical state:

(X ⊗X ⊗X)Vyi = VyiX.

In fact, this is the smallest possible operator (said to be of weight 3, since it is built
as a tensor product of three non-trivial gates) that can cause this problem of unde-
tectable but fatal errors, which is exactly the same as saying that the Shor code has
distance d = 3.

13.10 Correcting any single error: Shor [[9,1,3]]

In Section 13.9 we derived the encoding circuit for the Shor [[9, 1, 3]] code, so now
let’s go from the top and put all the pieces together to understand how this gives an
error correction procedure for all possible single-qubit errors. 0 Although nine qubits is actu-

ally more than necessary (we can
achieve the same result with a dif-
ferent scheme that only uses five),
this code, proposed by Shor in
1995, allows us to more easily see
what’s really going on.

To start, we encode our qubit with the phase-flip code

|0〉 7−→ |+〉|+〉|+〉
|1〉 7−→ |−〉|−〉|−〉

and then we encode each of the resulting three qubits with the bit-flip code

|0〉 7−→ |0〉|0〉|0〉
|1〉 7−→ |1〉|1〉|1〉

resulting in a net effect of

|0〉 7−→ (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)/
√

8

|1〉 7−→ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)/
√

8.
(‡)

In order to understand how this code works, it is helpful to look at the complete
circuit diagram, so let’s build it up in a compositional way. Rather than drawing the
entire circuits from Sections 13.7 and 13.8 again, let’s simply draw them as consisting
of an encoding gate C and a decoding gate D, separated by a zone [t1, t2] that cor-
responds to transmission over the noisy channel. Then the bit-flip correction circuit
looks like

|ψ⟩

C D

|ψ⟩

t1 t2

and the phase-flip correction looks the same, but with Hadamard gates sandwich-
ing the transmission zone, so
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|ψ⟩

C

H H

D

|ψ⟩

H H

H H

t1 t2

Then we can nest the bit-flip correction circuit into the phase-flip correction circuit
by inserting a copy on each of the three wires in the transmission zone, giving us the
circuit that implements the encoding of Equation (‡), as shown in Figure 13.10.

|ψ⟩

C

H
C D

H

D

|ψ⟩

H
C D

H

H
C D

H

t1 t2

Figure 13.10: Nesting the two correction circuits: one copy of the bit-flip correction
circuit on each wire of the phase-flip correction circuit.

Operads.

We have already seen the idea of sequential composition compared to parallel
composition, when we talk about the difference between matrix multiplication
BA (“do A then B”) and the tensor product A⊗ B (“do A to one part and B
to the other”). Neither type of composition can deal with choices: if A and B
are of the right size, then BA (or A⊗B) is either defined or it isn’t. However,
there are some subtleties to be aware of.

For example, associativity of a composition operation tells us that we can
forget about brackets if we just have the same type of composition over and
over, since (CB)A = C(BA). It seems like every operation we ever meet is
associative (indeed, it’s even baked into the definition of what it means to be a
group), but it turns out that non-associative operations are just as interesting
as non-commutative ones. But the story doesn’t stop there! What if we want
to study “the next thing up” from associativity, whatever this might be? Or
what if we want to study operations that have more than two inputs, and
maybe even more than one output? Trying to answer questions like this leads
us to operads and their algebras.

Looking again at Figure 13.10, we see that we could have composed the
bit-flip correction circuits in a different way, placing them one after the other,
but we instead wanted to nest them. All that matters in order for us to be
able to do either one of these compositions (whether or not we can find any
use for it!) is that the number of input and output wires match up. Working
with (algebras over) operads has a similar flavour, and you will find yourself
drawing lots of little diagrams and then either putting them side-by-side or
nesting copies of one inside bits of the other in various different ways. You
might find some intriguing pictures if you search for the little cubes operad,
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or the Swiss cheese operad. One particularly nice introduction is Tai-Danae
Bradley’s “What is an Operad?”.

Now, if an X error occurs on one of the nine qubits in the circuit in Figure 13.10
during the time interval [t1, t2], it will be corrected by the corresponding inner three-
qubit repetition code that corrects for bit-flips. In fact, this scheme can tolerate up to
three bit-flip errors provided that they occur in different blocks. For example, writing Xi

0 We will explain why this con-
dition of “occurring in different
blocks” is necessary in Section
14.7.

to mean an X error on the i-th qubit, if X1, X5, and X7 all occur then they will all be
corrected, but if X1 and X2 both occur then the resulting error will not be corrected.

Next, if a Z error occurs on one of the qubits, say the first one, we know that it
will not be corrected by the inner encoding–decoding circuit (the one taking place on
the top three qubits), but it will be passed along and then corrected “one level up”,
by the outer encoding–decoding circuit (the one taking place on the first, fourth, and
seventh qubits).

Finally, what about if a Y error occurs? Well, since Y = ZX, the inner circuit will
correct the X part of the error, and the outer circuit will correct the Z part 0As per usual, any resulting global

phase doesn’t matter.So quantum error correction is indeed possible: we can remove the unwanted
effects of decoherence during transmission through a channel. However, this process
of encode–transmit–decode doesn’t really cover the practical scenario of computation,
since in reality we are constantly trying to process our data, and noise could enter at
any moment. One thus has to compute on the encoded states the whole time, whilst also
somehow ensuring that even faults occurring during an error correction cycle don’t
adversely affect the computation. This is known as fault tolerance, and studying this,
using the stabiliser formalisation of Chapter 7, is the goal of Chapter 14.

13.11 Error-correcting assumptions

Throughout this section we have been making certain key assumptions about how
errors can occur. For example, we have always assumed that all errors are indepen-
dent, and that only single-qubit errors can occur. Although this describes many simple
scenarios, it is does not do a very good job of modelling what happens in practice.
It might be the case that many-qubit errors can occur, and that once a specific error
has occurred it makes other errors more or less likely. Before we can describe fully
fault-tolerant computation, we need to be able to deal with these more complicated
scenarios, and this forms the topic of a large chunk of Chapter 14.

However, there are other assumptions that we are making that we will not discuss
in this text, because they fall out of the scope of “introductory” and instead become
the topic of specialised research in error correction and fault tolerance. One such as-
sumption is that we never have any errors affecting our ancilla qubits, so that we can
trust our error-syndrome measurements; similarly we assume that when we actually
come to apply the error correction, we can do so in an error-free environment. An-
other assumption is something more “implementation-focused”, namely that we are
correctly operating the measurement devices, and that they are well-calibrated, oth-
erwise we run into the problem of measurement errors. Often combined with this
is the problem of state preparation — how do we know that we really are preparing 0 The combination of state prepa-

ration and measurement errors is
sometimes called SPAM. This can
be dealt with in various ways, ap-
pealing to the fact that their effect
does not get worse as circuit depth
increases since these problems are
located at the very beginning and
very end of the circuit.

the state that we call |0〉? Such worries, and many more besides, are important if we
wish to develop a truly robust theory of error correction.

13.12 Remarks and exercises

13.12.1 Decoherence-free subspaces

Which of the following sets of isometries are correctable?
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1. {V0, V1}, where

V0 = |00〉〈0|+ |11〉〈1|

V1 = 1√
2

[
(|01〉+ |10〉)〈0|+ (|01〉 − |10〉)〈1|

]
.

2. {V0, V1}, where

V0 = |00〉〈0|+ |11〉〈1|

V1 = 1√
2

[
(|01〉+ |10〉)〈0|+ (|00〉 − |11〉)〈1|

]
.

3. {U⊗4V0 | U unitary}, where

V0 = 1
2

[
(|01〉 − |10〉)(|01〉 − |10〉)

]
〈0|.

+ 1√
12

[
2|0011〉+ 2|1100〉 − (|01〉+ |10〉)(|01〉+ |10〉)

]
〈1|.

13.12.2 Repetition encoding and majority voting failure

Consider encoding a single classical bit as 2k + 1 bits using a repetition code, and
then decoding with majority voting. If during the transmission process between en-
coding and decoding each bit is flipped with independent probability p, what is the
probability of an error on the logical bit after the encoding–decoding process?

13.12.3 Correcting Pauli rotations with three qubits

We protect an unknown single-qubit state α|0〉+ β|1〉 against bit-flip errors by encod-
ing it with the three-qubit repetition code:

|ψ〉 = α|000〉+ β|111〉.

An error of the form (cos θ)1+(i sin θ)X occurs on the first qubit during transmission.
When we perform the error syndrome measurements, what are the possible outcomes,
and what are the corresponding output states?

Conclude that the standard error-correcting protocols that we have discussed will
also correct for this type of error.

13.12.4 More on Shor [[9,1,3]]

1. Give the logical codewords |0L〉 and |1L〉 for the Shor [[9, 1, 3]] code. 0 That is, the states corresponding
to the encoding of |0〉 and |1〉.

2. What is the smallest number of single-qubit operations needed to convert |0L〉
into |1L〉?

3. Can you identify the stabilisers and the logical operators XL and ZL for this
code? Note that these may not be unique. 0That is, the operatorsXL andZL

that behave on |0〉L and |1〉L ex-
actly how X and Z behave on |0〉
and |1〉. Hint: start from the encod-
ing circuit with the eight ancillas all
prepared in state |0〉; what are their
stabilisers? Recall that the encoding
operation is a Clifford circuit.

4. Write a table of the syndromes for all single-qubit X or Z errors on this code,
where the columns are labelled by the single-qubit error, and the row by the
corresponding stabiliser.

5. How can we detect and correct a Y error occurring on the first qubit?

6. If an error of the form
√

1− p1 + i
√
pY occurs on the first qubit, what are the

different possible outcomes of measurement?
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7. Assume that there is some environment, initially in state |e〉. Decoherence oc-
curs on the qubit, transforming it via

|0〉|e〉 7−→ |0〉|e00〉
|1〉|e〉 7−→ |0〉|e11〉.

Show that, if we use the Shor [[9, 1, 3]] code and this decoherence only affects
the first qubit in transmission, then we can correct for the resulting error.

13.12.5 Distillation for Bell pairs

Alice wants to send m qubits of information to Bob. She can send quantum states, but
only through a transmission channel that induces errors, though she can send classical
information perfectly. Bob cannot send messages (neither quantum nor classical) to
Alice, but both of them can perfectly implement quantum logic gates.

To send her m qubits in spite of the noise, Alice might encode them in an n-qubit
error correcting code.

The process by which a set of N noisy Bell pairs is converted into a small
number M of perfect Bell pairs is known as distillation. This occurs at a rate
D1 = M/N , which is often considered in the limit of large N . The subscript 1
denotes that this is one-way distillation, where only Alice can send messages.

1. Assuming knowledge of the optimal code (i.e. one that is guaranteed to succeed
and is as small as possible), Alice could transmit encoded halves of Bell pairs,
which Bob could then decode. What is a bound on the rate at which Alice and
Bob can distill Bell pairs through this channel?

2. Alternatively, Alice could send Bob unencoded halves of Bell pairs, which they
then distill to create a smaller number of perfect Bell pairs which Alice can then
use to teleport the desired information. Assuming knowledge of the optimal dis-
tillation procedure (i.e. one that maximises D1), how does this protocol bound
the distillation rate?

13.12.6 Composing quantum codes

Consider two quantum codes: C1 is an [[n1, 1, d1]] code, and C2 is an [[n2, 1, d2]] code.
We decide to encode a qubit |ψ〉 by first encoding it into n1 qubits using C1, and then
encoding each of those resulting qubits into n2 qubits using C2. The overall effect is
an encoding into the composite code C2C1.

1. How many physical qubits are involved in the encoding of a single logical qubit
of the new code?

2. What is the distance of the new code?
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14 Quantum error correction

About more classical error correction and the Hamming codes, how
they generalise to quantum codes called CSS codes, including the
Steane [[7,1,3]]-code. Also about computing in the presence of er-
rors: logical states, logical operators, and error families — all via
the formalism of stabilisers — and the transversal gates that we can
implement to act on them.

We have seen a way of dealing with the computational errors introduced by the
physical problem of decoherence, namely the Shor [[9, 1, 3]] code, but this is just the
start of the story. There is a vast body of work on classical error correction, so it’s
sensible to ask if we can adapt this to help us in the world of quantum computation. As
we shall see, we can actually use quite a lot of the theory of classical error-correction
codes, and in doing so we will start to really make use of the stabiliser formalism
introduced all the way back in Chapter 7. But note that this still isn’t the end of the
story: our goal is so-called fault-tolerant computation, which we come to in Chapter
15.

14.1 The Hamming code

The challenge in designing efficient error-correcting codes resides in the trade-off
between rate and distance (introduced in Section 13.6). Ideally, both quantities should
be high: a high rate signifies low overhead in the encoding process (i.e. requiring only
a few redundant bits), and a high distance means that many errors can be corrected.
So can we optimise both of these quantities simultaneously? Unfortunately, various
established bounds tell us that there is always a trade off, so high-rate codes must
have low distance, and high-distance codes must have a low rate. Still, there is a lot
of ingenuity that goes into designing good error-correction codes, and some are still
better than others!

Before looking at quantum codes in more depth, we again start with classical
codes. For example, in Section 13.6 we saw the three-bit repetition code, which
has a rate of R = 1/3 and distance 3. However, the Hamming [7, 4, 3] code has the 0 In the late 1940s, Richard

Hamming, working at Bell Labs,
was exasperated by the fact that
the machines running his punch
cards (in these heroic times of
computer science, punch cards
were the state of the art data stor-
age) were good enough to notice
when there was an error (and halt-
ing) but not good enough to know
how to fix it.

same distance, but a better rate of R = 4/7 > 1/3. Figure 14.1 show diagrammatic
representations of this Hamming code, which we will now study further.

p1

p2 p3

d1 d2

d3

d4

p1

p2 p3

d1 d2

d3

d4

Figure 14.1: Left: The Venn diagram for the Hamming [7, 4, 3] code. Right: The
plaquette (or finite projective plane) diagram for the same code. In both, di are
the data bits and the pi are the parity bits. The coloured circles (resp. coloured
quadrilaterals) are called plaquettes.
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14.1 The Hamming code

The Fano plane.

We say that the plaquette diagram in Figure 14.1 could also be called a finite
projective plane diagram because of how it resembles the Fano plane, which
is the projective space of dimension 2 over the field with 2 elements.

In fact, there is more than a mere visual similarity between these two
diagrams: we will soon introduce the formal definition of a linear code, and
there is a special family of these known as projective codes, which are those
such that the columns of the generator matrix (another character who we shall
soon meet) are all distinct and non-zero.

Projective codes are particularly interesting because they allow us to ap-
ply geometric methods to study the properties of the code. For example, the
columns of the parity check matrix of a projective code correspond to points in
some projective space. Furthermore, since the geometry in question concerns
finite dimensional spaces over finite fields, we end up coming across a lot of
familiar (and useful) combinatorics. This is partially due to the fact that finite
geometry can be understood as an example of an incidence structure.

Both diagrams in Figure 14.1 describe the same situation, but although the right-
hand one is useful for understanding the geometry hidden in the construction and
allowing us to generalise to create new codes, and is thus the one that we will tend to
use, the Venn diagram on the left-hand side is maybe more suggestive of what’s going
on.

The idea is that we have a four-bit string d1d2d3d4 consisting of the four data bits,
and we encode into a seven-bit string d1d2d3d4p1p2p3 by appending three parity bits 0Sometimes you will see the Ham-

ming [7, 4, 3] code referred to sim-
ply as the seven-bit Hamming
code, the [7, 4, 3] code, or even
just the Hamming code.

p1, p2, and p3, which are defined by

p1 = d1 + d2 + d4 mod 2
p2 = d1 + d3 + d4 mod 2
p3 = d2 + d3 + d4 mod 2.

You can hopefully see how the triangular diagram in Figure 14.1 tells us which data
bits are used in defining each parity bit: we take the sum of all data bits in the same
plaquette (one of the three coloured quadrilaterals) as the parity bit.

We can also express this encoding in matrix notation, defining the data vector d
by

d =


d1
d2
d3
d4


and the generator matrix G by 0 Many sources define G to be the

transpose of what we use here,
but this is just a question of con-
vention. Because of this, we’ll be
dealing with the column (not row)
spaces of matrices, also known as
the range.274
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14.1 The Hamming code

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1


The vector space spanned by the columns of the generator matrix G is known as

the codespace of the code, and any vector in this space is known as a codeword.
The encoding process is then given by the matrix G acting on the vector d. Indeed,

since the top (4 × 4) part of G is the identity, the first four rows of the output vector
Gd will simply be a copy of d; the bottom (3× 4) part of G is chosen precisely so that
the last three rows of Gd will be exactly p1, p2, and p3. In other words,

Gd =



d1
d2
d3
d4
p1
p2
p3


=


d
p1
p2
p3

 .

By construction, the sum of the four bits in any single plaquette of the code sum
to zero. For example, in the bottom-left (red) plaquette, 0 Since we are working with clas-

sical bits, all addition is taken
mod 2, so sometimes we will ne-
glect to say this explicitly.

p2 + d1 + d3 + d4 = d1 + d3 + d4 + d1 + d3 + d4

= 2(d1 + d3 + d4)
= 0

and the same argument holds for the other two plaquettes. This incredibly simple fact
is where the power of the Hamming code lies, since it tells the receiver of the encoded
string a lot of information about potential errors.

Let’s consider a concrete example. Say that Alice encodes her data string d1d2d3d4
and sends the result Gd to Bob, who takes this vector and looks at the sum of the bits
in each plaquette, and obtains the following: 0 We don’t write the values of the

bits, only the sums of the bits in
each plaquette. This is because we
don’t need to know the value of
the bits in order to know where
the error is, only the three sums!

p1

p2 p3

d1 d2

d3

d4

0 1

1

If we make the assumption that at most one error occurs then this result tells us 0 This assumption is crucial here,
and we investigate what happens
if we drop it in Section 14.7.

exactly where the bit-flip happened: it is not in the bottom-left (red) plaquette, but
it is in both the top (blue) and bottom-right (yellow) plaquettes. Looking at the
diagram we see that it must be d2 that was flipped, and so we can correct for this
error by simply flipping it back before unencoding (where the unencoding process is
given by simply forgetting the last three bits of the received string).

We can describe the error location process in terms of matrices as well, using the
parity-check matrix H, given by 0Here is yet another H, to go with

the Hadamard and the Hamilto-
nian. . .

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
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Note that the rows of H are exactly the coefficients of the parity-check equations for
each plaquette, where we order them top–left–right (blue–red–yellow). For example,
to get the sum corresponding to the bottom-left (red) plaquette, we need to sum the
first, third, fourth, and sixth bits of the encoded string d1d2d3d4p1p2p3, and these are
exactly the non-zero entries of the second row of H. The columns of the parity-check
matrix H are known as the error syndromes, for reasons we will now explain

The parity-check matrix H is defined exactly so that 0Recall that codewords are exactly
those vectors of the form Gd for
some data vector dHc = 0 ⇐⇒ c is a codeword.

Now we can see a bit more into how things work, since linearity of matrix multiplica-
tion tells us that, if a receiver receives c + e where e is the error,

H(c + e) = Hc +He
= He.

Decoding the message then consists of finding the most probable error e that yields
the output He. If e is a single bit-flip error, then He is exactly a column of H, which
justifies us describing the columns as error syndromes. We can construct a table
describing all of the possible error syndromes, and which bit they indicate for us to
correct:

Syndrome 000 110 101 011 111 100 010 001

Correction - d1 d2 d3 d4 p1 p2 p3

The above construction of the Hamming [7, 4, 3] code can be generalised to result
in a Hamming [2r − 1, 2r − r − 1, 3] code for any r ⩾ 2, where each column of the 0 How do we know that the dis-

tance is always 3? Well, there are
triples of columns in the parity-
check matrix that, when added to-
gether, give all zeros. This means
that there are sets of 3 errors such
that, if they all occur together, the
syndrome will be zero, and so the
distance is no more than 3. Mean-
while, all the columns are distinct,
so no pair of columns add together
trivially, which means that the dis-
tance must be greater than 2.

parity-check matrix is a different binary string, excluding the string of all 0 bits. It’s
noteworthy that only a logarithmic number of parity checks are necessary to correct
all single-bit errors. However, there are some downsides to Hamming codes. Although
the rate R = (2r − r − 1)/(2r − 1) approaches 1 as r → ∞, Hamming codes are
impractical in highly noisy environments because they have a fixed distance of 3.

Double-bit errors in the Hamming code.

Although the Hamming [7, 4, 3] code can only deal with single-bit errors, it can
be extended to an [8, 4, 4] code, at least detecting double-bit errors, by adding
a single extra parity bit p4, given by taking the sum of all the other seven bits:

p1

p2 p3

p4

d1 d2

d3

d4

How does this work? Well, let’s assume that up to two bit-flip errors could
occur. The decoding process then starts by looking at this new parity bit p4 in
the received string and seeing if it is indeed equal to the sum of all the other
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14.1 The Hamming code

bits, saying that it is “correct” if so, and “incorrect” if not. If p4 is incorrect,
then there has been a single-bit error, and we can just look at the rest of the
string d1d2d3d4p1p2p3 and apply the previous Hamming [7, 4, 3] code decoding
process, with the caveat that if this tells us that no errors have occurred, then
it must be the case that the single-bit error actually flipped the parity bit p4
itself. If p4 is correct, then there has either been no error or a double bit-flip
error; to see which is the case we can measure the Hamming [7, 4, 3] code error
syndrome of d1d2d3d4p1p2p3, and this will tell us the XOR of the two bit-flip
locations; if this is 0 then either no error has occurred or two errors affected
the same bit, cancelling each other out.

Before moving on, it will be useful to introduce another common way of diagram-
matically representing parity-check matrices called a Tanner graph. This is a bipartite
graph consisting of two types of nodes: the codeword (or data) nodes (one for each 0 A graph (which is a collection of

nodes and edges between some of
them) is bipartite if the nodes can
be split into two sets such that all
the edges go from one element of
the first set to one element of the
second.

bit of the codeword, drawn as circles), and the syndrome nodes (one for each bit of
the syndrome, drawn as squares). The edges in the Tanner graph are such that the
parity-check matrix H is exactly the adjacency matrix of the graph, i.e. the matrix
that has a 1 in the (i, j)-th position if the i-th syndrome node is connected to the j-th
codeword node, and a 0 otherwise.

d4

d1 d2

d3

p1

p2 p3

s1

s2 s3

Figure 14.2: The Tanner graph for the Hamming [7, 4, 3] code. Comparing this to
the plaquette diagram in Figure 14.1, we see that we simply replace plaquettes by
syndrome nodes (hence our choice of colours). It is not immediately evident that this
graph is bipartite, but try drawing it with all the syndrome nodes in one row and all
the data nodes in another row below to see that it is.

One particularly useful aspect of Tanner graphs is how simple it is to convert
to and from the corresponding parity-check quantum circuits. There is a syndrome
node for each ancilla qubit, and a data node for each data qubit; there are paths
between syndrome and data nodes whenever there is a controlled-NOT between the
corresponding qubits. We show a simple example in Figure 14.3.
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s1

s2

|0⟩

|0⟩

|ψ⟩

d1

d2

d3

s1

s2

Figure 14.3: Left: The quantum circuit for a parity-check operation. Right: The corre-
sponding Tanner graph.

14.2 Linear codes

Hamming codes are special cases of a larger family of codes called linear codes:
one in which the codewords form a vector space. These are constructed by judicious
choices of the generators matrices or parity-check matrices (since one determines the
other), and can offer different trade-offs between the code rates and distances. We
have already seen the example of the Hamming [7, 4, 3] code, but let’s state the general
framework a bit more abstractly.

An [n, k, d] linear code C is described by two matrices:
• The generator matrix G, which is an (n× k) matrix

G =
[

1k×k

P

]
for some ((n− k)× k) matrix P . The columns of G are codewords, and
and form a basis for the codespace range(G).

• The parity-check matrix H, which is an ((n− k)× n) matrix

H =
[
Q 1(n−k)×(n−k)

]
for some ((n−k)×k) matrixQ. The columns ofH are error syndromes.

The matrices G and H have to satisfy one of the two equivalent conditions

range(G) = ker(H) or range(HT ) = ker(GT ).

We can ensure this by taking Q = −P (see Exercise 14.11.4).

One last piece of the puzzle that we need to understand is the notion of dual
codes. We will write range(G) to mean the vector space spanned by the columns of
the matrix G. Given a code C = (G,H) expressed in terms of its generator matrix and 0 Usually, for linear codes, people

talk of the code C as being equal
to the codespace, i.e. the span of
the columns of G. For now, how-
ever, it is notationally simpler to
denote a code by these two key
matrices.

parity-check matrix, we know that the columns of G span the kernel of H, i.e. that
range(G) = ker(H). Why is this? Well, because this is equivalent to saying that a
vector is in the span of the columns of G exactly when it is of the form Gd for some
data vector d, i.e. exactly when it is a codeword, and we have already shown this
above. In particular then,

H ·G = 0

(which merely says that range(G) ⊆ ker(H)).
But, taking the transpose of the above equality, we see that

GT ·HT = 0
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and so we can define a code C⊥ = (HT , GT ), whose codewords are exactly the 0 This tells us that range(HT ) ⊆
ker(GT ), but we can show that
this is an equality using the fact
that range(G) = ker(H) is an
equality.

columns of HT , i.e. the rows of H. This is known as the dual code of C. Since
G has n rows and k columns, and H has n − k rows and n columns, we see that
the dimension of the codespace of C (i.e. the span of the columns of G) and the
dimension of the codespace of C⊥ (i.e. the span of the rows of H) must sum to n. In
fact, if C is an [n, k, d] code, then C⊥ is an [n, n − k, d′] code, where d′ is not usually
related to d in any obvious way. A nice example is the Hamming [7, 4, 3] code, whose
dual is a [7, 3, 4] code known as the shortened Hadamard code.

Given a code C = (G,H), its dual code is C⊥ = (HT , GT ).

It is immediate that (C⊥)⊥ = C, but it is interesting to ask about the relation-
ship between C and C⊥. Then we say that a code is weakly self-dual (or self-
orthogonal) if range(G) ⊆ range(HT ), and self-dual if range(G) = range(HT ). In
other words, a code is weakly-self dual if its codespace is a subspace of the codespace
of its dual, and self-dual if these two codespaces are actually equal. We said above
that dim range(G) + dim range(HT ) = n, so we see that for a code to be self-dual it
must be the case that n is even, but this is only a necessary condition, not a sufficient
one!

14.3 Quantum codes from classical

We would like to use the insights gained from our study of classical codes to help us
build quantum codes. Let’s start with a classical [n, k, d] code (such as the Hamming
[7, 4, 3]), with parity-check matrix H and generator G. Each row r of H is a binary
string xr = xr,1xr,2 . . . xr,n, where xi,j is the (i, j)-th element of H. For 1 ⩽ r ⩽ n, we
define a stabiliser generator

Gr := Xxr
:= ⊗n

j=1X
xr,j .

For example, in the case of the Hamming [7, 4, 3] code, we have

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
so the three rows define three generators

G1 = X1101100 = XX1XX11
G2 = X1011010 = X1XX1X1
G3 = X0111001 = 1XXX11X.

Now consider a state |ψ〉 that is stabilised by these generators, i.e. such that

Gr|ψ〉 = |ψ〉.

What happens if a Z error occurs on a particular qubit: what measurement results do
we get when we measure the stabilisers? Well, writing Zj to mean a Z error on the
j-th qubit, as usual,

GrZj |ψ〉 = (−1)xr,jGr|ψ〉
= (−1)xr,j |ψ〉.

So the measurement outcome directly corresponds to the (r, j)-th entry xr,j of the
parity check matrix. Generally, if this Zj error occurs, then measuring for all rows r
will give measurement outcomes that directly correspond to the j-th column of the
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14.3 Quantum codes from classical

parity check matrix. This is just the same lookup table as in the classical case: this
codespace is a distance d error correcting code for single Z errors. Using the Hamming
[7, 4, 3] code as an example again, we get the following table of error syndromes,
where we write ± to mean ±1:

Error G1 outcome G2 outcome G3 outcome

none + + +
Z1 − − +
Z2 − + −
Z3 + − −
Z4 − − −
Z5 − + +
Z6 + − +
Z7 + + −

So if we measure the three stabilisers and get the measurement sequence (−1, 1, 1)
then the corresponding bit string (1, 0, 0) in the Hamming [7, 4, 3] code tells us that
there was an error on p1, i.e. a Z5 error.

We have used a classical code to help us correct for Z errors in the quantum case.
If we take a second classical code, with parameters [n, k′, d′] and parity-check matrix
H ′, and use it to define Z-type stabilisers G′

r = Zxr then we will have a distance d′

protection against X errors. However, we cannot simply pick the two classical codes
arbitrary: if the scheme is the work, then the X-type and Z-type stabilisers must
actually be stabilisers, i.e. they must commute.

The challenge in creating quantum error-correction codes often lies in finding
good commuting sets of stabilisers.

How can we tell if this happens? Well, if x is a row of H, and z a row of H ′,
then the we need the number of positions i ∈ {1, . . . , n} such that xi = zi = 1 to
be even, as these are the ones that will give operators that individually anticommute
(XZ = −ZX). In notation, this is the same as asking that

x · z ≡ 0 mod 2.

This is the same as saying that z, which is a row of H ′, must be a codeword of the
first code: by definition of the parity-check matrix H, we need that Hz = 0. Applying
this reasoning to all rows z, we see that we need

H ·H ′T = 0

or, in other words,

range(H ′T ) ⊆ ker(H).

But we know that range(G) = ker(H), and so this is equivalent to asking for

range(H ′T ) ⊆ range(G).

We can figure out some key properties of combining an [n, k, d] code (G,H) for X-
stabilisers and an [n, k′, d′] code (G′,H ′) for Z-stabilisers without too much difficult.
Since our first code encodes k bits, the generator G has k rows, and the parity-check
matrix H has n−k rows. Thus there are n−k of the X-type generators, and n−k′ of
the Z-type generators; in total there are 2n−(k+k′) generators. Since each generator
halves the dimension, the dimension of the Hilbert space defined by the stabilisers is

2n−2n+k+k′
= 2k+k′−n
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14.3 Quantum codes from classical

i.e. it encodes k+ k′−n qubits. The combined code has a distance k against Z errors,
and k′ against X errors; since the two types of errors are correctly independently, the
total distance is simply min(d, d′). In summary then, we have created an

[[n, k + k′ − n,min(d, d′)]]

quantum error-correction code, and its decoding is well understood based on the clas-
sical decoding methods applied independently for X errors and Z errors. This general
construction of quantum error correcting codes is known as the CSS construction, for
its originators Robert Calderbank, Peter Shor, and Andrew Steane.

Given an [n, k1, d1] code C1 = (G1,H1) and an [n, k2, d2] code C2 = (G2,H2)
such that range(HT

2 ) ⊆ range(G1), the CSS code CSS(C1, C2) constructed as
above is an [[n, k1 + k2 − n,min(d1, d2)]] code.

As always, one needs to be careful of conventions. Many sources define a code to
be the codespace rangeG itself instead of the pair (G,H), and usually also replace C2
with C2

⊥ in the statement of the CSS construction. 0 In particular, what we have de-
fined would often be called the
CSS construction of C1 over C2

⊥

(instead of over C2).

Before moving on, let’s look at the remaining details of applying the CSS construc-
tion to the Hamming [7, 4, 3] code. Let C1 = C2 = (G,H) be the Hamming [7, 4, 3]
code with G and H as in Section 14.1. To apply the CSS construction, we need to
check that range(HT

2 ) ⊆ range(G1). Since C1 = C2, this is simply asking that the
Hamming [7, 4, 3] code be weakly self-dual, i.e. that

range(HT ) ⊆ range(G)

which can be checked to be true by hand. This means that we can use the Hamming
[7, 4, 3] code to define both our X-type and Z-type generators: using the notation of
Section 7.2, the group of generators is generated by

+ X X 1 X X 1 1
+ X 1 X X 1 X 1
+ 1 X X X 1 1 X
+ Z Z 1 Z Z 1 1
+ Z 1 Z Z 1 Z 1
+ 1 Z Z Z 1 1 Z

The result is a [[7, 1, 3]] code, generally attributed to and thus known as the Steane
code, or simply the seven-qubit code, that encodes one logical qubit across seven
physical ones, and that is able to correct for any single-qubit Pauli error. We can
visualise the Steane code using its Tanner graph, as in Figure 14.4, but we will return
to a proper in-depth study of this code in Section 14.9.
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d4
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p2 p3
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s1
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Figure 14.4: The Tanner graph of the Steane code. You can think of this graph as tak-
ing two copies of the Hamming [7, 4, 3] code Tanner graph and gluing them together
at all of the data nodes. For any CSS code there are two types of “parity checks”: one
for detecting X errors (solid lines), and one for Z errors (dashed lines).

Not all quantum codes arise from combining classical ones like this, and even for 0 For example, the five-qubit
code, which is the smallest code
that can correct for all possible
single-qubit errors, is demonstra-
bly not a CSS code, as can be
shown by the non-existence of
something called a transversal
controlled-NOT gate (we discuss
this in Section ??).

those that do, working with the generator and parity-check matrices can often be
cumbersome. Indeed, a truly quantum code will not have a single one of each, since
this is not sufficient to deal with the purely quantum phenomena of superposition.
For example, as the Tanner graph in Figure 14.4 shows, we have two parity check
matrices in the case of CSS codes. When working with truly quantum codes, the
stabiliser formalism really becomes much more useful — our next aim is to justify this
with some examples and explanation.

14.4 Logical operators . . .

Here we are going to use the abstract group theory that we developed back in Sections
7.5 and 7.6, but there are other ways of explaining this material. In Section @(logical-
operators-differently) we tell the same story from a different point of view, so if you find
this section confusing then don’t worry — you can always come back to it after reading
the other one! It’s always a good idea to have multiple viewpoints.

We have been slowly building up towards constructing quantum error-correction
codes using the stabiliser formalism, but there is one major detail that we have yet to
mention. You will perhaps have noticed that we haven’t written out what the stabiliser
states actually are, nor what the encoding circuits look like. There is a simple reason
for this: at this point, we don’t actually know! There’s a little more work to be done —
the stabilisers have provided us with a two-dimensional space, but if we have |0〉 and
|1〉 to encode, how are they mapped within the space? So far, it’s undefined, and there
is a lot of freedom to choose, but the structures provided by group theory are quite
helpful here in providing some natural choices. Furthermore, better understanding
these structures is the first step towards figuring out how to upgrade from simple
error correction to fault-tolerant computation. We’re going to turn back all the way to
Sections 7.5 and 7.6, where we discovered how to think about normalisers of stabiliser
groups inside the Pauli group. Let’s start with a brief recap.

The n-qubit Pauli group Pn consists of all n-fold tensor products of Pauli matrices
1, X, Y , and Z, with possible global phase factors ±1 and ±i. Given an operator s ∈
Pn, we say that it stabilises a (non-zero) n-qubit state |ψ〉 if s|ψ〉 = |ψ〉, i.e. if it admits
|ψ〉 as an eigenstate with eigenvalue +1. We showed that the set of all operators that
stabilise every state in a given subspace V form a group, called the stabiliser group;
using a little bit of group theory, we characterised all possible stabiliser groups by
showing that they are exactly the abelian subgroups of Pn that do not contain −1.
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Then we looked at the group structure of the Pauli group, and how any stabiliser
group S sits inside it. It turned out that the normaliser

N(S) = {g ∈ Pn | gsg−1 ∈ S for all s ∈ S}

of S in Pn, and the centraliser

Z(S) = {g ∈ Pn | gsg−1 = s for all s ∈ S}

of S in Pn actually agree, because of some elementary properties of the Pauli group.
Furthermore, we showed that the normaliser (or centraliser) was itself normal inside
the Pauli group, giving us a chain of normal subgroups

S / N(S) / Pn.

This lets us arrange the elements of Pn into cosets by using the two quotient groups

N(S)/S and Pn/N(S).

How does this help us with our stabiliser error-correction codes? Let’s look first at the
former: cosets of S inside its normaliser N(S).

If |ψ〉 ∈ VS is a state in the stabilised subspace, then any element g ∈ S always 0 For us here, the stabilised sub-
space VS is exactly the codespace,
and the stabilisers generating S
are exactly the elements Gr ∈ Pn
constructed from the rows of H as
at the start of Section 14.3.

satisfies

g|ψ〉 = |ψ〉

whereas any element g ∈ N(S) \ S merely satisfies

g|ψ〉 ∈ VS

and, for any such g, there are always states in VS that are not mapped to themselves.
However, if we look at cosets of S inside N(S) then we discover an incredibly useful
fact: all elements of a given coset act on |ψ〉 in the same way. To see this, take two
representatives for a coset, say gS = g′S for g, g′ ∈ N(S). By the definition of cosets,
this means that there exist s, s′ ∈ S such that gs = g′s′. In particular then,

gs|ψ〉 = g′s′|ψ〉

but since s, s′ ∈ S and |ψ〉 ∈ VS , this says that

g|ψ〉 = g′|ψ〉

as claimed.
Since the cosets of S inside N(S) give well defined actions on stabiliser states,

preserving the codespace, we can treat them as operators in their own right.

The cosets of S inside N(S) are called logical operators, and any representa-
tive of a coset is an implementation for that logical operator.

Let’s try to understand this in the context of an example: the three-qubit code from
Section 13.1. The diagram from Section 7.2 was useful in describing this example, so
we repeat it as Figure 14.5 below.
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C =++ C1 =−+

C2 =−−C3 =+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩

Figure 14.5: The stabiliser group S = 〈ZZ1,1ZZ〉 bisects the Hilbert space of three
qubits into four equal parts, and gives the stabilised subspace VS which is spanned by
|000〉 and |111〉.

To use the terminology of error-correction codes, we are taking our codespace to
be 0We want to encode a single qubit,

which lives in a two-dimensional
space (spanned by |0〉 and |1〉),
so it makes sense that we want
our codespace to also be two-
dimensional.

C = 〈|000〉, |111〉〉

which is exactly the stabiliser space VS of the stabiliser group

S = 〈ZZ1,1ZZ〉

and the total eight-dimensional Hilbert space of three qubits is decomposed into four
mutually orthogonal two-dimensional subspaces C ⊕ C1 ⊕ C2 ⊕ C3 as shown in Figure
14.5. Since we have chosen a specific basis for each of these subspaces, we should
give things a name.

The (orthogonal) basis vectors of the codespace C = VS are called logical
states, and are usually taken to be the encodings of |0〉 and |1〉.

In general, the logical states will be superpositions of states, but we still sometimes 0 Note that the logical states for
the three-qubit code are actually
not superpositions. This reflects
the fact that this code is really
just a classical repetition code —
it only protects against one type of
error — embedded into the quan-
tum world.

refer to them as codewords.
In our example of the three-qubit code, we have the two logical states logical 0

and logical 1, which we denote by

|0〉L := |000〉
|1〉L := |111〉.

The justification for these names is twofold: firstly, |0〉L is exactly the encoding of |0〉,
the “actual” zero state; and secondly, this state |0〉L will behave exactly as the zero
state should when acted upon by the logical operators. For example, the operator X
sends |0〉 to |1〉, so the logical X should send the logical |0〉 to the logical |1〉. Let’s
make this happen!

The normaliser of S inside P3 is

N(S) = {1, XXX,−Y Y Y,ZZZ} × S

which we have written in such a way that we can just read off the cosets: there are
four of them, and they are represented by 1, XXX, −Y Y Y , and ZZZ. These four
(implementations of) logical operators all get given the obvious names:

1L := 1
XL := XXX

YL := −Y Y Y
ZL := ZZZ
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14.5 . . . and error families

But note that these are not necessarily the smallest weight implementations! For
example, any single Zi (i.e. a Z acting on the i-th qubit) will have the same logical
effect as ZZZ, as we can see by looking at how it acts on the logical states:

Z1|1〉L = Z11|111〉
= −|111〉
= ZZZ|111〉
= ZZZ|1〉L.

In contrast, XXX is the smallest weight logical X implementation. The natural
question to ask is then how to find all the implementations, but this is answered
by going back to the very definition of them as coset representatives: if P is some
implementation of a logical operator, then so too is SP for any S ∈ S. In the example
above, we see that Z1 = Z11 is exactly 1ZZ · ZZZ. Because of this, we should
really write something like ZL = ZZZS, or ZL = [ZZZ], to make clear that ZZZ
is just one specific representation of ZL, but you will find that people often conflate
implementations with the logical operators themselves and simply write ZL = ZZZ.

Generally, for any CSS code encoding a single qubit into n-qubits, we define the
logical X and logical Z operators to be the (equivalence classes of) the tensor prod-
ucts of all X operators or all Z operators (respectively), i.e.

XL := X⊗n

ZL := Z⊗n.

Even more generally, for any [[n, k, d]] code constructed from a stabiliser S, it will
be the case that N(S)/S ∼= Pk. 0Proving this is a bit of a task!

Just a warning before moving on: this discussion might make logical states sound
pointlessly simple — logical 0 is just given by three copies of |0〉, so what’s the point?
But this apparent simplicity is due to the fact that the three-qubit code is somehow
not very quantum at all (these logical states are not superpositions), and in general
things get a lot more complicated. For example, even with the three-qubit code, we
shall see in Section ?? that

|+〉L 6= |+++〉

where, as per usual, |+〉 = H|0〉 = (|0〉+ |1〉)/2.

14.5 . . . and error families

The quotient group N(S)/S gave us logical operators, so the next thing to ask is what 0 Recall that the elements of the
quotient group G/H are exactly
the cosets of H / G.

we get from the quotient group Pn/N(S).

The cosets of N(S) inside Pn are error families on the codespace VS . The
individual elements of any error family (i.e. the elements of Pn) are called
physical errors.

Again, we can write P3 in such a way that we can immediately read off the cosets:

P3 = {1, X11,1X1,11X} ×N(S)× {±1,±i}.

Ignoring the phases, the three (non-trivial) error families are single bit-flips: [X11], 0 We sometimes denote the coset
P ·N(S) simply by [P ], just to save
space.

[1X1], and [11X]; these error families Xi map the codespace C to the subspace Ci, as
shown in Figure 14.6.
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C C1

C3 C2

X11

1X111X

Figure 14.6: The single bit-flip error family Xi maps the codespace C to the subspace
Ci, e.g. X2|000〉 = |010〉 ∈ C2.

These errors also let us understand how the structure of the codespace is mirrored
across each of the cosets. In other words, we picked C to be our codespace, but what
if we had instead picked C1? Well, we would get exactly the same code, just expressed
in a different way, and this “different way” is described entirely by the error family
[X11]. What we mean by this is the following: 0Recall that conjugation expresses

a change of basis: given an in-
vertible (n × n) matrix B, we can
turn a basis {v1, . . . , vn} into a
new basis {Bv1, . . . , Bvn}, and to
write any operator A in this new
basis we simply calculate BAB−1

(“undo the change of basis, apply
A, then redo the change of basis”).

• We can write C1 as the stabiliser space of S conjugated by X11, i.e.

(X11)〈ZZ1,1ZZ〉(X11)−1 = 〈(X11)(ZZ1)(X11)−1, (X11)(1ZZ)(X11)−1〉
= 〈−ZZ1,1ZZ〉

and, indeed, |100〉 and |011〉 are both stabilised by this group.
• The logical states of C1 are, by definition as our chosen basis, the elements |100〉

and |011〉, but note that these are exactly the images of the logical states of C
under the error X11, i.e.

|0〉L,1 := |100〉 = X11|000〉
|1〉L,1 := |011〉 = X11|111〉

• The logical operators on C1 are the logical operators on C conjugated by X11,
i.e

XL,1 := (X11)(XXX)(X11)−1

= XXX

ZL,1 := (X11)(ZZZ)(X11)−1

= −ZZZ

and, indeed, XL,1 and ZL,1 behave as expected on the new logical states, i.e.

XL,1 : |0〉L,1 7−→ |1〉L,1

|1〉L,1 7−→ |0〉L,1

ZL,1 : |0〉L,1 7−→ |0〉L,1

|1〉L,1 7−→ −|1〉L,1

as you can check by hand.

All in all, the chain of normal subgroups

S / N(S) / Pn

really does describe the full structure of the code: logical states, logical operators,
and error families.
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C C1

C2
C3

1
1

1
1

⟲
⟲

⟲
⟲

codespaces stabilisers ◁ normalisers ◁ Paulis

logical operators error families

Figure 14.7: A visualisation of how the stabilisers, normalisers, and arbitrary Pauli op-
erators act on the codespace decomposition: stabilisers act as the identity, normalisers
move each subspace around within itself, and Pauli operators swap subspaces around
between one another.

But this stabiliser formalism introduces some new ambiguity. In Section 14.3,
we saw how measuring the three ancilla qubits in the Hamming [7, 4, 3] code gave
us an error syndrome that we could use to determine on which qubit a Z-error had
occurred, and back in Section 13.7 we saw the analogous error-syndrome setup for
the three-qubit code. However, the stabiliser formalism is much more general: it
makes no assumptions that only single-qubit errors can occur. This means that error
syndromes will now only tell us which error family has occurred, not which specific
physical error like they did before. At first, this seems like a definite downgrade from
our previous theory — the actual errors that affect our circuits are still the physical
errors, but now we have no way of knowing which one occurred, only which family
it lives in! How are we to pick which coset representative to apply in order to correct
the error?

As you might expect, the story is not yet over. Depending on the specifics of the
scenario, sometimes knowing the error family is enough to be able to correct not just
one physical error, but many. In order to give a more precise explanation, we need to
take a step back and look at the scenarios that we’re actually trying to model — we
do this in Section 14.7.

14.6 Logical operators (a different approach)

We have said a few times now that the main challenge in finding good quantum
error-correction codes often lies in finding “good commuting sets of stabilisers”, so
let’s take this seriously and try to rediscover the definitions from Sections 14.4 and
14.5 by starting with just commutativity.

Again, we already know that the Pauli matrices provide a useful basis with respect
to which we can decompose the effects of any quantum channel, so we should care- 0 “Correct the Paulis and you cor-

rect them all.”fully understand how the Pauli operators P ∈ Pn interact with any error-correcting
code. For this, we introduce the notation

c(P, σ) :=

{
0 if P and σ commute
1 if P and σ anticommute

for any Pauli operators P, σ. A particularly nice thing about this choice of definition
(as opposed to taking c(P, σ) ∈ {±1}, say) is that we can write

Pσ = (−1)c(P,σ)σP.
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Furthermore, this function has a nice relation on products: writing ⊕ to mean addi-
tion mod 2, we can see that

c(P, στ) = c(P, σ)⊕ c(P, τ)

which reminds us of the fact that two anticommuting operators multiplied together
produce a commuting operator.

Now fix some stabiliser group S = 〈g1, . . . , gn−k〉. We define the error syndrome 0 We saw in Section 14.3 that an
[n, k, d] code had n − k stabiliser
generators, so we preemptively la-
bel our generators from 1 to n−k.

eP of a Pauli operator P to be the vector of all the values c(P, gi), i.e.

eP =
(
c(P, g1), . . . , c(P, gn−k)

)
.

It follows from the the above relation of how c(P,−) turns products into sums that

eP σ = eP ⊕ eσ.

The set of Pauli operators that have zero syndrome are special, and form a set
known as the normaliser:

N(S) :=
{
P ∈ Pn | c(P, σ) = 0 for all σ ∈ S

}
.

Since all elements of the stabiliser S commute with one another, we know that S ⊆
N(S), but in general the normaliser is strictly larger. Now, by the definition of the
normaliser and the multiplicative property of c(P,−), if some Pauli operator P has a
particular error syndrome eP then Pσ has the same error syndrome for any σ ∈ N(S).
This lets us gather together the Pauli operators into sets, which we call the error
cosets, consisting of those Pauli operators which all have the same error syndrome.
By the above, these can be described by some representative operator P , along with
all other Pσ for σ ∈ N(S), since the only way for P and Q to have the same error
syndrome is for them to satisfy Q = Pσ for some σ ∈ N(S).

Now for some counting. Since an error syndrome is exactly an n-bit string, there
are 2n−k possible different error syndromes. Each error coset is, by construction, of
size |N(S)|. All together, the error cosets contain every single Pauli operator, of which
there are 4n. With this, we can calculate the size of the normaliser:

N(S) = 4n/2n−k = 2n+k.

So the Pauli group is subdivided into error cosets by the normaliser, and every 0 We called these error families in
Section 14.5.Pauli in the same coset has the same error syndrome. If we perform a syndrome

measurement after passing through some noisy channel and get the result e, then the
effect of the channel is collapsed to being a linear combination of the terms inside the
error coset corresponding to the error syndrome e. By applying any element of that
error coset, we are mapped back to the normaliser.

In fact, there is further substructure within the normaliser, and this is also reflected 0 We will see that this structure
is exactly that of a subgroup, and
that it will be sufficient to just
look at the values on the genera-
tors when defining the logical syn-
drome.

in each error family. Given a Pauli operator P ∈ N(S) in the normaliser, we define its
logical syndrome to be the vector `P of all the values c(P, σ), where σ ranges over
N(S). Note that, for any τ ∈ S, we have `P = `P τ . Again, this splits the normaliser
Pauli operators into sets, which we call the logical cosets, each being defined by
having the same logical syndrome.

The error cosets divide up the Pauli group, with the normaliser as one specific
example; the logical cosets divide up the normaliser, with the stabiliser as one
specific example — see Figures 7.2 and 14.7.

Each operator that’s in the normaliser but not in the stabiliser preserves the codespace
(because it doesn’t change the error syndrome), but it must do something non-trivial
inside the codespace (because it’s not in the stabiliser). It thus acts on the logical,
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14.6 Logical operators (a different approach)

encoded, qubits, and so we call it a logical operator. Moreover, these logical op-
erators either commute or anticommute with one another. This should remind you
of the Pauli operators themselves, and, indeed, we choose to associate these logical
operators with logical Pauli operators. Which are which? Well, the choice is still
arbitrary, as long as we get the relative commutation properties correct: it should be
the case that c(ZL, XL) = 1, for example. In the case of a CSS code, there are al-
ways Z-type representatives that we can choose to take as the logical Z, and X-type
representatives for the logical X.

Let’s do some more counting. Since each logical coset is of size |S| = 2n−k, there
must be |N(S)|/|S| = 4k logical cosets, each corresponding to one of the 4k logical
Pauli operators on k qubits, and each described uniquely by a logical syndrome vector
`, and in such a way that every possible value of ` is accounted for. However, recall
that `P = `P τ for any τ ∈ S. This means that we don’t need to record all the
commutation values, but only a set of 2k many values, so that ` ∈ {0, 1}2k. All in
all, we can choose any linearly independent set of values we want for the generators,
as long as we recall that any operator will commute with itself, and we require the
symmetry c(σ, τ) = c(τ, σ). For example, we could take

`1
`2
...
`2k

 =
[
0 1
1 0

]⊕k

which would naturally select pairs (`2n−1, `2n) as having the correct commutation
relations necessary for them to act as logical Z and logical X for the n-th logical
qubit.

Logical operators specify how to split the codespace, and are representatives
of the logical cosets. In particular, the ±1 eigenstates of ZL define the logical
codewords. Generically, these codewords are superpositions of basis states.

We emphasise out one final important point before returning to the example of
the three-qubit repetition code.

While we can measure the error syndrome (since all the stabilisers commute),
we cannot measure the logical syndrome (since not all the logical operators
commute). Indeed, we must not even try — measuring just one such value is
equivalent to performing a measurement of the logical qubit, destroying the
superposition of the very state with which we’re trying to compute!

So, back to the example of the three-qubit code from Section 13.1. Recall that 0 Here we’re going to repeat some
things that we already said in Sec-
tions 14.4 and 14.5.

the stabilisers are generated by ZZ1 and 1ZZ. The normaliser is the set of Pauli
operators that commute with all these stabilisers, which we can succinctly write as

N(S) = 〈ZZ1,1ZZ〉 × {1, XXX, Y Y Y,ZZZ}

which already depicts the structure of the logical cosets: they are represented by
XXX, Y Y Y , and ZZZ. Using these representatives, we can evaluate the commuta-
tion properties:

c(−,−) XXX Y Y Y ZZZ

XXX 0 1 1
Y Y Y 1 0 1
ZZZ 1 1 0
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From this we can see that any pair of these will work as the logical generators ZL

and XL, since they all satisfy the required property of c(ZL, XL) = 1 and c(ZL, ZL) =
c(XL, XL) = 0. In other words, although it’s “natural” to define ZL := ZZZ and
XL := XXX, we could just as well decide to set ZL := XXX and XL = Y Y Y !

14.7 Error-correcting conditions

We can summarise the notion of a stabiliser code that we have defined rather suc-
cinctly: everything is determined by picking a stabiliser group, i.e. an abelian sub-
group S of the Pauli group Pn that does not contain −1. From this, we define the
codespace to be the stabiliser subspace VS , the codewords to be a choice of basis vec-
tors, the logical operators to be the cosets of S / N(S), and the error families to be
the cosets of N(S) / Pn.

By setting up some ancilla qubits and constructing appropriate quantum circuits, 0 We will see these circuits soon,
starting in Section 14.9.we can enact any logical operator in such a way that we also measure an error syn-

drome, which points at a specific error family. But unlike in our study of the Steane
code in Section 14.3, we can no longer simply apply the corresponding operator to
fix the error, because the error is a whole coset — it contains many individual Pauli
operators.

To fix an example to keep in mind, we return yet again to the three-qubit code.
In Figure 14.8 we draw a diagram grouping together all the elements of P3 into the
coset structure induced by S = 〈ZZ1,1ZZ〉. This is analogous to the diagrams that
we saw back in Exercise 7.8.2, but with the simplification of ignoring phase. 0 Formally, we can think of ig-

noring phase as looking at the
quotient of P3 by the subgroup
〈±1,±i〉, which results in an
abelian group.

N(S)

(X11) ·N(S)

(1X1) ·N(S)

(11X) ·N(S)

S
(XXX) · S
(Y Y Y ) · S
(ZZZ) · S

1 ZZ1 1ZZ Z1Z

XXX Y Y X XY Y Y XY

Y Y Y XXY Y XX XYX

ZZZ 11Z Z11 1Z1

X11 Y Z1 XZZ Y 1Z

1XX ZYX 1Y Y ZXY

ZY Y 1XY ZXX 1Y X

Y ZZ X1Z Y 11 XZ1

1X1 ZY 1 1Y Z ZXZ

X1X Y ZX XZY Y 1Y

Y ZY X1Y Y 1X XZX

ZY Z 1XZ ZX1 1Y 1

11X ZZX 1ZY Z1Y

XX1 Y Y 1 XY Z Y XZ

Y Y Z XXZ YXZ XY 1

ZZX 11Y Z1X 1ZX

Figure 14.8: The entire group P3 with the coset structure induced by the stabiliser
group S = 〈ZZ1,1ZZ〉. Note that we are ignoring global phase.

As we can see by looking at Figure 14.8, if we somehow measure an error syn-
drome pointing to the error family [X11], for example, then there are 16 possible
errors that could have occurred! We said that the stabiliser formalism would be better
than our previous approach, so why do things seem so much worse now? Well, we are
forgetting one key assumption that we made before that we have yet to impose in the
stabiliser formalism: up until now, we have only studied single-qubit errors. Thinking
back to our introduction of the three-qubit code in Section 13.1, we were specifically
trying to deal with single bit-flip errors, i.e. only X11, 1X1, and 11X (as well as the
trivial error 111, which we must not forget about, as we shall see). If we look back
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14.7 Error-correcting conditions

at Figure 14.8 with this in mind, we notice something particularly nice: each of these
single X-type errors lives in a different error family, and each error family contains
exactly one of these errors.

In other words, if we assume that only single bit-flip errors can occur, then the
stabiliser formalism describes errors in exactly the same way as before, since the
error families are in bijection with the physical errors. But here is where the power
of the stabiliser formalism can really shine through, since it allows us to understand
what type of error scenarios our code can actually deal with in full generality. That
is, rather than thinking about a code as something being built to correct for a specific
set of errors, the stabiliser formalism lets us say “here is a code”, and then ask “for
which sets of errors is this code actually useful?”. The answer to this question lies in
understanding how any set of physical errors is distributed across the error families,
and we can draw even simpler versions of the diagram in Figure 14.8 to figure this
out.

Returning to the scenario where we assume that only single bit-flip errors can
occur, we can mark the corresponding physical errors in Figure 14.8 — namely 1,
X11, 1X1, and 11X — with a dot. We do this in Figure 14.9, which is the first of
many more diagrams of this form, which we call error-dot diagrams. Although we
are working with the specific example of the three-qubit code in mind, these diagrams
are meant to be understood more generally as applying to any stabiliser code. As we
shall soon see, we don’t really need to worry about making sure that we have the right
number of rows in each small rectangle (i.e. the right number of cosets of S inside
N(S)), and in some sense we don’t even really need to worry about what the physical
errors are.

•

•

•

•

Figure 14.9: All specific X-type errors of weight at most 1 from Figure 14.8, each
marked by a dot. The four cosets corresponding to N(S) / Pn are the error families,
and we informally refer to the (copy of the) four cosets corresponding to S / N(S) as
rows.

As we said above, if each error family (i.e. coset) contains exactly one physical
error (i.e. Pauli operator), then we already know how to apply corrections based on
the error-syndrome measurements. In terms of the diagram in Figure 14.9, this rule
becomes rather simple: if each error family contains exactly one dot, then we can error
correct.

But can we say something more interesting than this? Well, let’s consider what
happens if we have a diagram that looks like this:
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•

• •

•

•

That is, we’re considering a scenario where there are two possible physical errors
that can occur for a physical error syndrome. In the example of the three-qubit code,
we’re looking at the scenario where any single bit-flip error can occur, but also the
operator Y Z1 might affect our computation, enacting a bit-phase-flip on the first
qubit and a phase-flip on the second. What would then happen if we measured the
error syndrome |01〉? We know (from Section 13.7) that this corresponds to the error
family [X11], but both X11 and Y Z1 live in this coset, so we’re back to the question
posed at the end of Section 14.5: how do we pick which operator to use to correct
the error?

Here’s the fantastic fact: in this case, it doesn’t matter! Say we pick X11, but the
physical error that had actually affected our qubits, originally in some encoded state
|ψ〉, was Y Z1. Then by applying the “correction” X11 our qubits would be in the
state

(X11)(Y Z1)|ψ〉 = (ZZ1)|ψ〉

(where, once again, we ignore global phases). But |ψ〉 is, by construction, some
codeword, which exactly means that it is stabilised by ZZ1, and so

(X11)(Y Z1)|ψ〉 = |ψ〉.

We can fully generalise this to improve upon the previous rule: if all the dots in any
given error family are all in the same row, then we can perfectly error correct.

To prove this, we just return to the definition of cosets and the properties of the
Pauli group. If two physical errors P1 and P2 are in the same row inside some family 0 This is one of those arguments

where it’s easy to get lost in the
notation. Try picking two physical
errors P1 and P2 in the same row
somewhere in Figure 14.8 and fol-
lowing through the argument, fig-
uring out what E, P , P ′

1, and P ′
2

are as you go.

E ·N(S), then by definition they both come from the same coset P · S, i.e.

P1 = EP ′
1

P2 = EP ′
2

where P ′
1, P

′
2 ∈ P · S. Then EP corrects both P1 and P2, since (again, we ignore

global phase, which means that Pauli operators commute)

(EP )Pi = (EP )(EP ′
i )

= E2PP ′
i

= PP ′
i ∈ S

because Pauli operators square to 1, and P ′
i ∈ P · S.

We also get the converse statement from this argument: if any family contains dots
in different rows, then we cannot error correct. This is because we need EP to correct
for some errors, and some different EP ′ to correct for others, and we have no way
of choosing which one to correct with when we measure the error syndrome for E
without already knowing which physical error took place. 0Just to be clear, if we knew which

physical errors took place, then we
wouldn’t have to worry about er-
ror correction at all, because we’d
always know how to perfectly re-
cover the desired state. And re-
member that we can’t measure to
find out which physical error took
place, since this would destroy the
state that we’re trying so hard to
preserve!

So is this the whole story? Almost, but one detail is worth making explicit, con-
cerning maybe the most innocuous looking error of all: the identity error family.
Consider a scenario like the following:
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•

• • •

In the case of the three-qubit code, this corresponds to the possible physical errors
being single phase-flips Z11, 1Z1, and 11Z. But here we see how misleading it is
to omit mention of the identity error 111, because the single phase-flips all live in
the same N(S) coset as 111, but different S cosets. That is, they are in the same
error family, but a different row. By our above discussion, this means that we cannot
correct for these errors — indeed, if we measure the error syndrome corresponding
to “no error”, then we don’t know whether there truly was no error or if one of these
single phase-flips happened instead. To put it succinctly, we nearly always make the
assumption that no errors at all might occur, which is exactly the same as saying that
the trivial error 1 might occur. This means that we cannot correct for any errors that
are found in the normaliser of S but not in S itself. Although this is technically a
sub-rule of the previous rule, it’s worth pointing out explicitly.

An error-dot diagram describes a perfectly correctable set of errors if and only
if the following two rules are satisfied:

1. In any given error family, all the dots are in the same row.
2. Any dots in the bottom error family are in the bottom row.

(The second rule follows from the first as long as the scenario in question
allows the possibility for no errors to occur.)

Of course, we can state these conditions without making reference to the dot-
error diagrams, instead using the same mathematical objects that we’ve been using
all along. Proving the following version of the statement is the content of Exercise
14.11.12.

Let E ⊆ Pn be a set of physical errors such that 1 ∈ E . Then the stabiliser code
defined by S can perfectly correct for all errors in E if and only if

E†
1E2 6∈ N(S) \ S

for all E1, E2 ∈ E .
Sometimes we might not specify that 1 ∈ E , but this is always meant to be

assumed. In other words, the error correction scenario specified by E is the
following: any one single operator in E could affect our state, or no error at all
could happen. In particular, we are not considering that multiple errors could
happen; if we want to allow for this, then we should do something like replace
E with the group that it generates.

You might notice that we’ve been sometimes been saying “perfectly correctable”
instead of just “correctable”. This is because there might be scenarios where we are
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happy with being able to correct errors not perfectly, but instead merely with some
high probability.

These dot-error diagrams are also able to describe more probabilistic scenarios.
We have been saying “single-qubit errors”, but we could just have well have been
saying “lowest-weight errors”, and then the assumption that errors are independent
of one another means that higher-weight errors happen with lower probability. But
the stabiliser formalism (and thus the error-dot diagrams) don’t care about this “inde-
pendent errors” assumption! What this means is that we could refine our diagrams:
instead of merely drawing dots to denote which errors can occur, we could also label
them with specific probabilities. So we could describe a scenario where, for example,
one specific high-weight error happens annoyingly often.

One last point that is important for those who care about mathematical correctness
concerns our treatment of global phases. We do need to care about global phases in 0 We are being slightly informal

with the way we draw these dot-
error diagrams: cosets of S it-
self inside Pn don’t make sense,
as we’ve said, because S is gener-
ally not normal inside Pn. Also,
when we quotient by {±1,±i} (by
drawing just a single sheet, in-
stead of four as in the diagrams
in Exercise 7.8.2), we make P
abelian, and this makes the nor-
maliser no longer the actual nor-
maliser.

order to perform error-syndrome measurements, but once we have the error syndrome
we can forget about them. In other words, we need the global phase in order to pick
the error family, but not to pick a representative within it.

14.8 Code distance and thresholds

Given an error model in which, in principle, all Pauli errors are possible but low-
weight errors are more likely than the high-weight errors, it makes perfect sense to

0 Recall that the weight |P | of a
Pauli operator P = P1 ⊗ . . .⊗ Pn
is the number of non-identity Pi.
For example, 111 has weight 0,
Z11 and 1X1 have weight 1, and
XXX has weight 3.

look for an error correcting a code which can perfectly correct errors with weight at
most t for some “good” value of t. Such a code will fail will with probability roughly
equal to the total probability of any error of weight larger than t occurring. This
probability of failure is called the logical error probability. The goal of quantum
error correction is to use all the tricks we have discussed so far (and many more) to
realise logical qubits with logical error rates below the error rate of the constituent
physical qubits.

As in the case of classical codes, the distance of a quantum code is defined as the
minimum weight error that can go undetected by the code. In other words, it is the
minimum weight Pauli operator than can transform one codeword state into another.
But as we’ve seen, all such operators are in N(S) \ S, which means that

d = min
P ∈N(S)\S

|P |.

Now our goal is less ambitious: we are not aiming to correct all possible Pauli errors,
but only those of weight at most t, where t satisfies d = 2t + 1. So how can a code
with distance d do this?

Firstly, note that, if we take a product of two errors Ei and Ej , each of weight
at most t, then the resulting Pauli operator EiEj will have weight at most 2t, and
by definition 2t < d. Therefore the product of these errors can never be a logical
operator, since the logical operators in N(S) \ S have weight at least d. Thus if one of
these errors Ei occurs and our decoding procedure picks another error Ej that gives
rise to the same syndrome (i.e. that belongs to the same error family) and applies the
latter to the encoded qubits, then we know that EiEj 6∈ N(S) \ S, which means that
EiEj ∈ S acts as the identity on the codespace.

Needless to say, from the perspective of code distance alone, the larger the value of
d the better we can correct for more errors. For this, we need the logical errors (i.e. the
logical operations on the codespace L ∈ N(S)\S) to have the largest possible weight
— by our assumptions about our error model, these occur with low probability, and
thus keep the logical error probability low.

The threshold theorem for stabiliser codes asserts that if the physical error prob-
ability p of individual qubits is below a certain threshold value pth then increasing the
distance of the code will decrease the logical error probability. This principle implies
that quantum error-correction codes could theoretically suppress the logical error rate
indefinitely. However, if the physical error rate p is greater than the threshold value
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14.9 Encoding circuits

pth, then quantum encoding actually becomes counterproductive. So the threshold
value serves as a critical experimental benchmark for quantum computing experi-
ments, since achieving it is essential for the feasibility of quantum error correction.
We will return to the threshold theorem in more detail in Chapter 15.

As of 2024, the upper bound for this threshold value is approximately pth = 0.1. 0 Giving precise numbers is pre-
carious due to the rapid advance-
ments in quantum error correction
technology.14.9 Encoding circuits

The previous sections have set up a lot of abstract theory about stabiliser codes, so
now let’s take some time to look at more concrete aspects, such as the quantum
circuits that actually let us build these codes “in practice”.

At the end of Section 14.3 we showed that the CSS construction could be applied
to the Hamming [7, 4, 3] code over itself to obtain the so-called Steane [[7, 1, 3]] code,
which has generators G1, . . . , G6 given by the rows in the matrix 0 Note that this matrix is just like

two copies of the generator ma-
trix for the Hamming [7, 4, 3] code
stacked on top of one another: the
first with X-type stabilisers, and
the second with Z-type stabilisers.


X X 1 X X 1 1
X 1 X X 1 X 1
1 X X X 1 1 X
Z Z 1 Z Z 1 1
Z 1 Z Z 1 Z 1
1 Z Z Z 1 1 Z


and codespace given by the corresponding stabiliser space C = VS , where S =
〈G1, . . . , G6〉.

Now, what are the logical states for this code? Well, by definition they should be
basis states for the stabiliser space V〈G1,...,G6〉, but the “real” motivation for them is
that they should just be the encodings of |0〉 and |1〉 in the code. So the question
becomes just how do we actually encode states with a code described by the stabiliser
formalism? But it turns out that we have already secretly answered this question in
Exercise 7.8.5: the projector onto the ±1-eigenspace of any Gi is given by 1

2 (1±Gi).

Given stabiliser generators G1, . . . , Gs, the projector onto the stabiliser space
V〈G1,...,Gn〉 (i.e. the encoding for the corresponding stabiliser code) is given by

s∏
i=1

1
2

(1 +Gi).

In other words, we want to define 0This state is not normalised, since
it’s given by a bunch of projec-
tions one after the other, but we
won’t worry about this until we
first make some simplifications.

|0〉L := 1
26

( 6∏
i=1

(1 +Gi)

)
|0〉⊗7

since this will be in the +1-eigenspace of all of the Gi, which is exactly the stabiliser
space V〈G1,...,G6〉. Similarly, we set

|1〉L := 1
26

( 6∏
i=1

(1 +Gi)

)
|1〉⊗7.

One thing to note is that the order of the product over the Gi doesn’t matter
here: by design, every stabiliser generator commutes with every other, since they 0 We need all the generators to

commute in order for the simulta-
neous +1-eigenspace to exist!

“overlap” (i.e. have non-identity terms) in an even number of positions, so any −1
signs arising from anticommutativity will cancel out with one another. So for |0〉L,
when we expand out the product

∏
i(1 + Gi), we can simply move all the Z-type

terms to the right and then forget them, since Z acts trivially on |0〉.
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This means that we’re left with only theX-type terms, and there are eight of these: 0 If you look up the codewords
for the Steane code elsewhere, you
might find different expressions,
but this is simply an artifact of ex-
pressing the parity check matrix of
the Hamming code in a different
basis. Note also that here we have
normalised the state.

|0〉L := 1√
23

(
1 +G1 +G2 +G3

+G1G2 +G1G3 +G2G3 +G1G2G3
)
|0000000〉

= 1√
8
(
|0000000〉+ |1101100〉+ |1011010〉+ |0111001〉

+|0110110〉+ |1010101〉+ |1100011〉+ |0001111〉
)
.

You can check by hand that this superposition is indeed invariant under each of theGi.
Now, we could perform a similar calculation for |1〉L, but since we have a CSS code
we already know that XL = X⊗7 is an implementation for the logical X operator, so
we can simply use this:

|1〉L := XL|0〉L

= 1√
8
(
|1111111〉+ |0010011〉+ |0100101〉+ |1000110〉

+ |1001001〉+ |0101010〉+ |0011100〉+ |1110000〉
)
.

We know what the logical states are, and by the previous discussions we also know
what the logical operators are: cosets of 〈G1, . . . , G6〉 within its stabiliser in P7. For
example, not only is X⊗7 an implementation of XL, but so too is 11X11XX. 0 You can check this by hand:

see that 11X11XX sends |0〉L to
|1〉L.

So how can we actually access these logical states in order to do computation
with them? In other words, we need to design an encoding circuit that allows us to
prepare the states |0〉L and |1〉L so that we can then perform computation on them.
As above, we will be able to neglect the Z-type stabilisers, because we’re working in
the computational basis. More specifically, since |0〉 and |1〉 live in the ±1-eigenspace
for Z, we don’t need to further project them to the stabiliser spaces of the Z-type
stabilisers; we start with a basis in the stabiliser space for ±Z, and when we encode
we obtain a basis in the stabiliser space for S and ±ZL. This sort of duality always
happens for CSS codes, and note that the choice of X versus Z isn’t “special” — if
we switch to the |±〉 basis then it would suffice to measure Z-type stabilisers, since
we are already in the ±1-eigenspace for X. If this seems confusing, then don’t worry:
look at the circuits below, follow the evolution of the input state through them, and
then see what would happen if you did the same thing after adding the gates for the
three missing Z-type stabilisers as well. You will see that (up to a possible global
phase) nothing changes.

Inspired by the classical Hamming [7, 4, 3] code, we can think of the last three
qubits in our seven-qubit encoding as the parity-check qubits, and read off the layout
of the circuit from the parity-check matrix: the (3×3) identity submatrix corresponds
to the controls. This gives us the encoding circuit in Figure 14.10.
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|0⟩⊗7

X X

|0⟩L

X X

X X

X X X

H

H

H

Figure 14.10: One possible encoding circuit for the Steane code, requiring no ancilla
bits.

14.10 Encoding arbitrary states

The encoding circuit in Figure 14.10 describes a unitary operation (it has no measure-
ments), and its particularly compact form makes it very useful for certain complexity-
theoretic calculations, but it has one major drawback: it is not itself protected against
errors! If we are trying to design things for the real world, where qubits can undergo
decoherence, then we should compensate for this in all our quantum computation,
including the circuits we use to prepare states. We have already done the hard work 0 If you want people to be able to

stay dry if it’s raining, then you
might build a tunnel from location
A to location B so that they can
use this for cover. But this isn’t
going to stop people from getting
wet on their (necessary) journey
from their home to location A!

for this though, in Section 7.4, when we constructed circuits to project onto Pauli
stabiliser spaces. This gives us the encoding circuit in Figure 14.11.
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|0⟩⊗3

H H

H H

H H

|0⟩⊗7

X X Z

|0⟩L

X X Z

X X Z

X X X Z

X Z

X Z

X Z

Figure 14.11: Another possible encoding circuit for the Steane code, which uses three
ancilla bits for error correction when encoding arbitrary states, but is non-unitary
(since it involves measurement). The measurements of the ancilla bits can be used to
apply the necessary Z-type corrections.

The three measurements in the encoding circuit in Figure 14.11 allow us to correct
for any single-qubit error in the encoding process, just as we did in Section 7.4, using
the lookup table from Section 14.3. If we measure (+++), then no error has occurred,
but if we measure, say, (− + +), then we know that the error Z5 has affected our
encoding, and so we must correct for this. Of course, as we now know from Section
14.7, what it means to correct for the Z5 error depends on which errors can possibly
occur. If we make the usual assumption that only errors of weight 1 (i.e. single-qubit
errors) can occur, then the Z5 error is exactly that: a phase-flip on the fifth qubit.

So now we have seen two circuits for encoding the logical 0 state, but what about
if we want to encode an arbitrary state? That is, we already have some qubit in
an interesting state |ψ〉 and we want to use the Steane code to protect it against 0What we say here can be applied

to other stabiliser codes, but we
stick with the Steane code to make
it easier to look at specific exam-
ples.

decoherence.
Before we look at this question, it’s important to mention something about prac-

tical use here. As is often the case, a chain is only as strong as its weakest link, and
the process of encoding a single qubit into seven qubits is a particularly error-prone
process. In practice, it is much more desirable to start with logical 0 and then do all of
our computation, knowing that we are already in the “protected” world of a stabiliser
code.

We know that all the X-type stabilisers for the Steane code have an even number
of X terms in them, and so will commute with any implementation of the logical
X operator XL. Since the (bottom register of the) encoding circuit in Figure 14.11
simply applies the X-type stabilisers to |0〉⊗7, we can use this commutativity. Indeed,
by construction of the logical operators and the logical states, we know that encoding
|0〉⊗7 to |0〉L and then applyingXL gives us the state |1〉L. But then the commutativity
of XL with the X-type stabilisers tells us that we also obtain |1〉L if we first apply XL

to |0〉⊗7 and then encode. Symbolically, writing E to mean the operation of applying
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the encoding circuit,

|1〉L = XL|0〉L
= XLE|0〉⊗7

= EXL|0〉⊗7

where we can pick any implementation ofXL that we like, such asX⊗7 or 11X11XX.
This tells us that there are two ways of obtaining |1〉L from |0〉L:

1. apply XL and then encode
2. encode and then apply XL.

Now let’s generalise this, replacing the XL with a controlled version, controlled
exactly by the state |ψ〉 that we wish to encode. If |ψ〉 = α|0〉+ β|1〉, then we want to
construct the logical state

|ψ〉L := α|0〉L + β|1〉L.

Let’s look at the first option from above: applying XL and then encoding. For a
simpler circuit, we can use the low-weight implementation 11X11XX of XL, so that
we prepare the state

α|0〉L + β|1〉L = α|0000000〉+ β|0010011〉

and then feed this into the encoding circuit from before. This gives us the circuit in
Figure 14.12.

unprotected

|0⟩⊗3

H H

H H

H H

|0⟩ X X Z

|ψ⟩L

|0⟩ X X Z

|ψ⟩ X X Z

|0⟩ X X X Z

|0⟩ X Z

|0⟩ X X Z

|0⟩ X X Z

Figure 14.12: Preparing the logical version |ψ〉L of an arbitrary state |ψ〉 in a way that
allows us to correct for any single-qubit errors in the encoding process, but not the
preparation process (highlighted in red).
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To repeat ourselves, the very first step of this circuit that enacts

|0〉|0〉|ψ〉|0〉|0〉|0〉|0〉 7−→ α|0000000〉+ β|0010011〉

(where |ψ〉 = α|0〉 + β|1〉) is not protected by any error correction scheme. If |ψ〉 is
some easily reproducible state, like |0〉, then we don’t really mind so much, since we
could instead use a circuit where all seven qubits are initially in state |ψ〉, avoiding
this problem altogether. But if |ψ〉 is the outcome of some previous computation, or 0 Thanks to the no-cloning theo-

rem (Section 5.9), we know that
there is no way of getting around
this problem of only having one
copy of the state |ψ〉 that will work
for any possible input — only if
|ψ〉 is something already known.
So the preparation part of the cir-
cuit doesn’t clone the input state,
but instead “smears it out” across
three qubits instead of one, just
like we mentioned in Section 13.7.

just a state that we don’t have complete knowledge of, then we will always be faced
with some uncertainty — did this preparation part of the circuit undergo an error
or not? These sorts of problems are avoided if we can design truly fault-tolerant
computational systems, instead of relying on mere error correction.

Now let’s look at the second option from before: encoding and then applying XL.
Imagine that we were able to construct the following circuit:

|ψ⟩ |0⟩

|0⟩L XL |ψ⟩L

This would transfer the state |ψ〉 = α|0〉+ β|1〉 into a logical version |ψ〉L, since it
enacts the transformations

(α|0〉+ β|1〉)|0〉L 7−→ α|0〉|0〉L + β|1〉|1〉L
7−→ |0〉(α|0〉L + β|1〉L).

But what do we actually mean by this circuit? We haven’t defined controlled-XL, nor
what it means for a c-NOT to be controlled by a logical state.

The first is reasonably simple: if the control qubit is in state |1〉, then we want to
apply XL to the target. Since XL can be expressed as a tensor product of Pauli X 0 If we want to keep the circuit as

simple as possible, then we should
choose the smallest weight repre-
sentative of XL, which might not
be just a tensor product of all X
operators. For example, in the
seven-qubit code there is an imple-
mentation of XL of weight 3.

operators, this means that the controlled-XL is just a bunch of controlled-NOT gates,
each controlled by the top qubit, and targeting each of the qubits of the encoded state.

The second step is maybe not so obvious, but there’s a trick that we can use here!
We know that the top qubit should end in the |0〉 state, so we can do anything we
want to it. For example, let’s apply a Hadamard gate and then measure it — why not?

|ψ⟩ H

|0⟩L XL |ψ⟩L

But now we can recall how controlled-NOT (which is simply a controlled-X) inter-
acts with the Hadamard: the circuit above is equivalent to the circuit below.

|ψ⟩ H

|0⟩L XL ZL |ψ⟩L

This is a circuit that we could build, since we know all about the many implemen-
tations of XL and ZL thanks to the stabiliser formalism. If we really like, however,
we could go one step further and replace the controlled-ZL with a ZL after the mea-
surement:

|ψ⟩ H

|0⟩L XL ZL |ψ⟩L
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14.11 Remarks and exercises

14.11.1 Error correcting conditions for the three-qubit code

When building the Shor [[9, 1, 3]] code, we used the three-qubit code twice: once to
correct for X-errors, and once for Z-errors. However, there is no reason why we
couldn’t instead have used one copy to correct for Y -errors instead of X-errors, and
we can see this using the dot-error diagrams.

Consider the stabiliser code given by S = 〈ZZ1,1ZZ〉. In Figure 14.13 we draw
all the computational errors of weight at most 1, and we see that this does not describe
a correctable scenario. That is, as we already know, the three-qubit code cannot alone
correct for all single-qubit errors.

•

• • •
•

•
•

•
•

•

Figure 14.13: All computational errors of weight at most 1 for the three-qubit code
given by 〈ZZ1,1ZZ〉. Note that this describes a non-correctable scenario. In fact,
both of the two rules are broken.

But now let’s look at X-, Y -, and Z-errors all individually and see what happens.
As Figure 14.14 shows, the three-qubit code given by 〈ZZ1,1ZZ〉 can correct for all
X-errors (as we already knew), but also for all Y -errors!

•

•

•

•

•

•

•

•

•

• • •

Figure 14.14: Different types of computational errors of weight at most 1. Left to
right: X-type errors (correctable); Y -type errors (correctable); Z-type errors (non-
correctable).

14.11.2 The smallest d = 3 code, full stop

We have already seen the Shor [[9, 1, 3]] code, which can protect against any single-
qubit error. Despite its simplicity, it is not the smallest code that can do this: that title
belongs to the [[5, 1, 3]] stabiliser code, given by

S = 〈XZZX1,1ZXXZ,X1XZZ,ZX1XZ〉
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shown as a Tanner graph in Figure ??. Note that the stabiliser generators (i.e. parity
checks) are related to each other by cyclic shifts: we just take different length-five
chunks from the infinite string XZZX1XZZX1XZZX1 . . .. This code is unusual
compared to the ones we have seen before, since it’s actually impossible to write its
generators as operators that consist of either all X or all Z.

d1 d2 d3 d4 d5

s1 s2

s3 s4

Figure 14.15: The Tanner graph for the [[5, 1, 3]] stabiliser code. Solid lines represent
X-checks, and dashed ones Z-checks.

This [[5, 1, 3]] code truly is optimal, in that it is the smallest possible quantum 0 Note that this code is not a CSS
code! To prove this, we could
use theorems about transversal
gates. The smallest CSS code with
d = 3 is described in Exercise
14.11.10.

error correcting code with d = 3. Indeed, suppose that we have n qubits representing
one logical qubit, and each error X, Y , or Z on any of these n qubits maps the
two-dimensional codespace to a different, mutually orthogonal subspace. This means

0Here we are tacitly assuming that
the code is non-degenerate (see
Exercise 14.11.9).

that we have to fit the codespace, plus 3n two-dimensional subspaces, into the 2n-
dimensional Hilbert space associated with the n qubits. This implies that we need to
satisfy

2(1 + 3n) ⩽ 2n

which tells us that we must have at least n ⩾ 5.
The counting argument above tells us that the smallest code must have at least

five qubits, but doesn’t tell us if we can actually make one with exactly five qubits!
How do we actually go about finding optimal codes then? The answer is simply that
we do not know — there is no universal prescription for designing optimal quantum
codes. But we do know quite a few things about designing good quantum codes.

One last thing to mention is how this code displays that quantum codes can be
used for more than just error correction. The [[5, 1, 3]] code gives a way of designing
a ((3, 5)) quantum secret sharing protocol.

14.11.3 Hamming code encodings and decodings

1. How is the binary message 0101 encoded in the Hamming [7, 4, 3] code?
2. If we receive the string 1011011 from Alice, who encoded her message in the

Hamming [7, 4, 3] code, then what is the error syndrome? What correction
should we make? What is the decoded message?

14.11.4 Generator and parity-check matrices

Show that, if the (n× k) generator matrix for an [n, k, d] linear code is written in the
form

G =
[

1
P

]
where P is an ((n−k)×k) binary matrix, then the parity-check matrix can be written
as

H =
[
P 1

]
.
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14.11.5 A big parity check matrix

Consider the following parity-check matrix of a classical [n, k, 7] code:

1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1


1. What are the values of the parameters n and k?

2. If we receive the bit string

x = 00101001011011000110101

and assume that no more than three errors have occurred, what are the locations
of the errors?

3. Show that we could use two copies of this code to build a CSS code.

4. If we build a CSS code using this classical code, what parameters does it have?
That is, what is its specification as an [[n, k, d]] code?

5. Given a state |ψ〉 of 23 qubits, how would you measure the value of the first
stabiliser

X1X4X5X6X10X11X12X13?

6. If we were to write out |0〉L for the CSS code, how many different basis states
would be in the superposition?

14.11.6 Using Tanner graphs

Consider the Tanner graph below.

d1 d2 d3 d4 d5

s

Recall that we use solid lines to denote X-parity checks and dashed lines to denote
Z-parity checks.

1. What stabiliser does this Tanner graph define?
2. Add to the Tanner graph the definition for a second stabiliser g2 = 1XZZX.

How can we visually confirm that the two stabilisers commute?

At the end of Section 14.1, in Figure 14.3, we claimed an equivalence between
Tanner graphs (for detecting the parity of X errors) and circuits. Consider the simpler
example below.
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s|0⟩

|ψ⟩
d1

d2

s

3. Draw the circuit for measuring the parity of Z-errors. 0 Hint: you know what the circuit
for X-parity checks looks like, so
do the standard thing and swap ev-
ery X for Z (and vice versa), trans-
form anything in the Z-basis to the
X-basis (and vice versa), and then
check if the resulting circuit can
be simplified by cancelling out any
gates; don’t forget that a c-NOT is
secretly a c-X!

4. Draw the Tanner graph for the Shor [[9, 1, 3]] code.

14.11.7 Five-qubit repetition code

Consider the five-qubit repetition code

|0〉 7→ |+〉⊗5

|1〉 7→ |−〉⊗5.

1. What are the stabilisers of this code?
2. What is the normaliser of this code?
3. Which of the following sets of errors satisfy the error correcting conditions for

this code? (Recall that the identity 1 is always implicitly assumed to be inside
the set of errors).

a. {X1, Z5}
b. {X1, X2, X3, X4}
c. {Z1, Z2, Z3, Z4}
d. {Z1Z2, Z2Z4, Z1Z4}

14.11.8 An error in the Steane [[7, 1, 3]] code

One logical qubit is encoded in seven physical qubits using the Steane [[7, 1, 3]] code,
which then experiences the error

E = X1Y 11Z1.

1. What is the resulting error syndrome?
2. What is the smallest-weight error with the same error syndrome as E?
3. If we apply the smallest-weight error from above as our correction, then what

is the net logical error on the encoded qubit?

14.11.9 Non-degenerate codes

An [n, k, d] code is said to be non-degenerate if every Pauli operator of weight ⩽
bd/2c has a distinct error syndrome.

Prove that all the stabilisers for a non-degenerate code have weight ⩾ d.

14.11.10 The smallest d = 3 CSS code

The [[7, 1, 3]] code is the smallest possible CSS code with distance d = 3. Let’s prove
that now, making the simplification that we will only consider non-degenerate codes.

1. If we construct a CSS code using two parity-check matrices H1 and H2, with m1
and m2 rows (respectively), and we want our code to encode one logical qubit
into n physical qubits, then how are the numbers m1, m2, and n related?

2. Explain why the columns of a non-degenerate d = 3 code must be distinct.
Hence conclude that 2mi ⩾ n+ 1 for i = 1, 2.

3. Conclude that the smallest possible non-degenerate CSS code with d = 3 has
n = 7 qubits.
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14.11.11 CSS codes from a single matrix

Let H be an (n×m) binary matrix, with m > n, whose rows are linearly independent.
When taken as a parity-check matrix, it thus defines an [m,m − n, d] code. Even
though HT cannot be the parity-check matrix of a code (simply because m > n), it
still has a well defined distance dT .

Show that

HX =
[
1m×m ⊗H HT ⊗ 1n×n

]
HZ =

[
H ⊗ 1n×n 1m×m ⊗HT

]
defines a CSS code with specification [[n2 +m2, (n−m)2,min(d, dt)]].

14.11.12 Error-correcting conditions, algebraically

Let S ⩽ Pn be a stabiliser group, and let E ⊆ Pn be a set such that 1 ∈ E . Prove that
the stabiliser code defined by S can perfectly correct for all errors in E if and only if

E†
1E2 6∈ N(S) \ S

for all E1, E2 ∈ E .

14.11.13 Steane error correction: towards fault tolerance

We have seen how we can measure the stabilisers of a stabiliser code by using a
Hadamard test, resulting in ±1 outcomes. From these, we can determine where the
errors are likely to have occurred and then correct them. In Chapter 15, we will see
that the scenario of fault-tolerant computation requires us to be very careful with
how we construct our error-correcting circuits in order to minimise the propagation
of faults that occur during the error-process itself. A particularly useful strategy is
to not have multiple qubits interacting, but this contradicts the measurements of the
stabilisers, since these, by definition, act on many qubits. There are a variety of ways
to deal with this. In the case of CSS codes, Steane himself provided a particularly
elegant method, which we will now explore.

Note that, while we are motivated by the possibility of there being faults during
the error correction, for now we will still assume that the error-correction process
proceeds perfectly, and we are only trying to identify and fix errors on the incoming
(logical) state |ψ〉L.

As we shall later see, CSS codes all have transversal c-NOT gates: applying a
c-NOT to each physical qubit gives exactly the effect of a c-NOT on the logical qubit.
In other words, we can implement the logical operator c-NOTL by taking a tensor
product of usual controlled-NOT gates. What this means for us right now is that, at
the logical level, we can consider circuits such as 0 We are assuming the availability

of the logical states |0〉L and |+〉L,
but state preparation is another
challenge that we will eventually
have to deal with!

|ψ⟩L |ψ⟩L

|0⟩L |0⟩L

|ψ⟩L |ψ⟩L

|+⟩L |+⟩L

1. Verify that the above circuits do indeed have the claimed outputs.

This means that, if the qubits are in the logical space (i.e. have undergone no
errors), then the action of the circuit is trivial. So what happens if there’s an error?
Let’s assume that we’re working with an [[n, 1, d]] CSS code.

2. If an X or Z error has already affected the input logical state |ψ〉L on a specific
physical qubit (say, the i-th) in the circuit on the left above, what are the possible
errors on the final state?
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3. If an X or Z error has already affected the input logical state |ψ〉L on a specific
physical qubit (say, the i-th) in the circuit on the right above, what are the
possible errors on the final state?

In other words, we see that single errors cannot propagate to more than one error
on each logical qubit. This will prove to be very useful when thinking about fault
tolerance, as the same is also true if errors occur during the circuit. Now we should
see how error correction works. Let’s consider the circuit on the left above.

4. The X stabilisers are defined by the rows of a parity-check matrix H. We mea-
sure each physical qubit of the second logical qubit, |0〉L, in the X basis at the
end of the circuit. In the absence of any errors, we get a measurement outcome
y ∈ {0, 1}n. What is the value of H · y?

5. If a weight-w Z-error occurs on the state |ψ〉L before the (transversal) controlled-
NOT, where 2w < d, then what are the possible measurement outcomes? How
do we identify which corrections to make?

So this circuit allows us to correct Z-errors on the input, but it does absolutely
nothing to X-errors.

6. Show that the circuit on the right above enables the correction of X-errors in a
similar way, where the extra logical qubit is now measured by measuring each
individual qubit in the Z (i.e. computational) basis.
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TO-DO

This section is not yet finished.
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About . . .

This section is not yet finished.
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