
Introduction to Quantum Information Science

Artur Ekert, Timothy Hosgood, Alastair Kay, Chiara Macchiavello

Last updated: 24 July 2025

Contents

Introduction 6
Plan and intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Notes on this PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
How to cite this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Some mathematical preliminaries 9
0.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.2 Euclidean vectors and vector spaces . . . . . . . . . . . . . . . . . . . . . . 14
0.3 Bras and kets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
0.4 Daggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
0.5 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0.6 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.7 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . 21
0.8 Outer products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.9 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
0.10 Some useful identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
0.11 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I Foundations 34

1 Quantum interference 35
1.1 Two basic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2 The failure of probability theory . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3 The double-slit experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4 Superpositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5 Interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Qubits, gates, and circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.7 Quantum decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.8 Types of computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.9 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.10 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1

https://www.arturekert.org/
https://thosgood.com
http://www.ma.rhul.ac.uk/akay/
https://fisica.unipv.it/personale/Persona.php?ID=55


1.11 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Qubits 57
2.1 Composing quantum operations . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Quantum bits, called “qubits” . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 Quantum gates and circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Single qubit interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5 The square root of NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Phase gates galore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Pauli operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8 From bit-flips to phase-flips, and back again . . . . . . . . . . . . . . . . . . 67
2.9 Any unitary operation on a single qubit . . . . . . . . . . . . . . . . . . . . 68
2.10 The Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.11 Drawing points on the Bloch sphere . . . . . . . . . . . . . . . . . . . . . . 71
2.12 Composition of rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.13 A finite set of universal gates . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.14 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Quantum gates 78
3.1 Beam-splitters: physics against logic . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Beam-splitters: quantum interference, revisited . . . . . . . . . . . . . . . . 81
3.3 The Pauli matrices, algebraically . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Unitaries as rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Universality, again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Some quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.7 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Measurements 103
4.1 Hilbert spaces, briefly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Complete measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 The projection rule, and incomplete measurements . . . . . . . . . . . . . . 106
4.4 Example of an incomplete measurement . . . . . . . . . . . . . . . . . . . . 107
4.5 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6 Compatible observables and the uncertainty relation . . . . . . . . . . . . . 110
4.7 Quantum communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Basic quantum coding and decoding . . . . . . . . . . . . . . . . . . . . . . 115
4.9 Distinguishing non-orthogonal states . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Wiesner’s quantum money . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.11 Quantum theory, formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.12 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Entanglement 125
5.1 A very brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 From one qubit to two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Quantum theory, formally (continued) . . . . . . . . . . . . . . . . . . . . . 127
5.4 More qubits, and binary representations . . . . . . . . . . . . . . . . . . . . 129
5.5 Separable or entangled? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Controlled-NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2



5.7 Bell states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.8 Quantum teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9 No-cloning, and other no-go theorems . . . . . . . . . . . . . . . . . . . . . 139
5.10 Controlled-phase and controlled-U . . . . . . . . . . . . . . . . . . . . . . . 141
5.11 Universality, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.12 Phase kick-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.13 Density operators, and other things to come . . . . . . . . . . . . . . . . . . 145
5.14 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

II Further foundations 157

6 Bell’s theorem 158
6.1 Hidden variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Quantum correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3 The CHSH inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4 Bell’s theorem via CHSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5 Tsirelson’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6 Quantum randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.7 Loopholes in Bell tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.8 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Stabilisers 173
7.1 Pauli groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 Pauli stabilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3 Single stabiliser states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4 Measuring Pauli stabilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.5 Normal subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.6 Pauli normalisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.7 Clifford walks on stabiliser states . . . . . . . . . . . . . . . . . . . . . . . . 188
7.8 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8 Density matrices 198
8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.2 Statistical mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3 Instructive examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4 The Bloch ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.5 Subsystems of entangled systems . . . . . . . . . . . . . . . . . . . . . . . . 206
8.6 Mixtures and subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.7 Partial trace, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.8 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9 Quantum channels 213
9.1 Everything is (secretly) unitary . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2 Random unitaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.3 Random isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.4 Evolution of open systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.5 Stinespring’s dilation and Kraus’s ambiguity . . . . . . . . . . . . . . . . . . 221

3



9.6 Single-qubit channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.7 Composition of quantum channels . . . . . . . . . . . . . . . . . . . . . . . 227
9.8 Completely positive trace-preserving maps . . . . . . . . . . . . . . . . . . . 229
9.9 Channel-state duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
9.10 The mathematics of “can” and “cannot” . . . . . . . . . . . . . . . . . . . . 237
9.11 Kraus operators, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.12 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

III Applications and reality 252

10 Quantum algorithms 253
10.1 Quantum Boolean function evaluation . . . . . . . . . . . . . . . . . . . . . 253
10.2 More phase kick-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.3 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.4 Deutsch’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.5 The Bernstein–Vazirani algorithm . . . . . . . . . . . . . . . . . . . . . . . . 259
10.6 Grover’s search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.7 Simon’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.8 Phase estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.9 Quantum Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
10.10 Hidden-order determination . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.11 Shor’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.12 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

11 Quantum cryptography 286

12 Approximation 287
12.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
12.2 How far apart are two quantum states? . . . . . . . . . . . . . . . . . . . . 289
12.3 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.4 Approximating unitaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
12.5 Approximating generic unitaries is hard, but. . . . . . . . . . . . . . . . . . . 295
12.6 How far apart are two probability distributions? . . . . . . . . . . . . . . . 297
12.7 Dealing with density operators . . . . . . . . . . . . . . . . . . . . . . . . . 299
12.8 Distinguishing non-orthogonal states, again . . . . . . . . . . . . . . . . . . 302
12.9 Approximate phase estimation . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.10 How accurate is accurate enough? . . . . . . . . . . . . . . . . . . . . . . . 306
12.11 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

13 Decoherence and recoherence 316
13.1 The three-qubit code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
13.2 Towards error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
13.3 Discretisation of quantum errors . . . . . . . . . . . . . . . . . . . . . . . . 321
13.4 Digitising quantum errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
13.5 Recoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
13.6 The classical repetition code . . . . . . . . . . . . . . . . . . . . . . . . . . 326
13.7 Correcting bit-flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

4



13.8 Correcting phase-flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
13.9 Composing correctable channels . . . . . . . . . . . . . . . . . . . . . . . . 334
13.10 Correcting any single error: Shor [[9,1,3]] . . . . . . . . . . . . . . . . . . 336
13.11 Error-correcting assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 339
13.12 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

14 Quantum error correction 343
14.1 The Hamming code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.2 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
14.3 Quantum codes from classical . . . . . . . . . . . . . . . . . . . . . . . . . . 351
14.4 Logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.5 . . . and error families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
14.6 Logical operators (a different approach) . . . . . . . . . . . . . . . . . . . . 361
14.7 Error-correcting conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
14.8 Code distance and thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 371
14.9 Encoding circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
14.10 Encoding arbitrary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
14.11 Remarks and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

15 Fault tolerance 388

Appendix: Further topics and selected reading 389

5



Introduction

This section is not yet finished.

Although almost complete, this book is still a work-in-progress — a few sec-
tions are missing, but we are constantly updating and filling in the gaps!
Because of this, external links to specific chapters or sections might break as
things move around.

Plan and intended audience

In this series of lectures you will learn how inherently quantum phenomena, such as quantum
interference and quantum entanglement, can make information processing more efficient
and more secure, even in the presence of noise.

There are many introductions to quantum information science, so it seems like a good
idea to start with an explanation of why this particular one exists. When learning such a
subject, located somewhere in between mathematics, physics, and computer science, there
are many possible approaches, with one main factor being “how far along the scale of in-
formal to formal do I want to be?”. In these notes we take the following philosophy: it can
be both interesting and fun to cover lots of ground quickly and see as much as possible on
a surface level, but it’s also good to know that there is a lot of important stuff that you’ll
miss by doing this. In practice, this means that we don’t worry to much about high-level
mathematics. That is not to say that we do not use mathematics “properly” — in these notes
you’ll find a perfectly formal treatment of e.g. quantum channels via completely positive
trace-preserving maps in the language of linear algebra — but rather than putting too many
footnotes with technical caveats and explanations throughout the main text, we opt to collect
them all together into one big “warning” here:

The mathematics underlying quantum theory is a vast and in-depth subject, most of
which we will never touch upon, some of which we will only allude to, and the rest
of which we will cover only in the level of detail necessary for our overarching goal
(give or take some interesting mathematical detours).

But this then poses the question of what the overarching goal of this book actually is.

This book aims to help the eager reader understand what quantum information sci-
ence is all about, and for them to realise which facets of it they would like to study
in more detail.

But this does not mean that our treatment is cursory! In fact, by the end of this book
you will have learnt a fair bit more than what might usually be covered in a standard quan-
tum information science course that you would find in a mathematics masters degree, for
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example.

The interdisciplinary nature of this topic, combined with the diverse backgrounds that
different readers have, means that some may find certain chapters easy, while others find
the same ones difficult — so if things seem hard to you then don’t worry, because the next
chapter might feel much easier! The only real prerequisites are a working knowledge of
complex numbers and vectors and matrices; some previous exposure to elementary prob-
ability theory and Dirac bra-ket notation (for example) would be helpful, but we provide
crash-course introductions to some topics like these at the end of this chapter. A basic
knowledge of quantum mechanics (especially in the simple context of finite dimensional
state spaces, e.g. state vectors, composite systems, unitary matrices, Born rule for quantum
measurements) and some ideas from classical theoretical computer science (complexity the-
ory, algorithms) would be helpful, but is not at all necessary.

Of course, even if you aren’t familiar with the formal mathematics of complex numbers
and linear algebra, then that shouldn’t stop you from reading this book if you want to. You
might be surprised at how much you can black box the bits that you don’t understand. The
caveat stands, however, that, to really get to grips with this subject, at least some knowledge
of maths is necessary — and this is not a bad thing!

On that note, every chapter ends with a section called “Remarks and exercises”. You
will find the same advice in basically every single mathematical text: even just attempting
to do the exercises is almost more important than reading the actual book itself. For this
book, it is doubly true that you should at least read these sections, because they contain not
just exercises but also further content including worked exercises and further fundamental
expository content.

Finally, throughout this text you will find some technical asides. These are not at all
necessary reading, but are just there to provide the exceptionally eager reader (or perhaps
those with a more formal mathematical background) with some extra context, as well as
some pointers towards further reading. They are usually intentionally vague and scarce in
detail.

Notes on this PDF

This book is primarily an online resource: the web version contains links to external sites,
embedded videos, and improved accessibility and functionality. Note that this current PDF
might be an outdated version, as can be checked by comparing the “Last updated” date to
the web version (which also includes a change history).

Links to websites (as opposed to sections within this document) appear in a different
colour and are underlined.

The web version of this book can be found at https://qubit.guide.
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Technical asides.

In this PDF, the technical asides mentioned in the introduction are formatted like
this. One advantage of the web version is that these are hidden by default, and so
don’t interrupt the main text with unnecessary asides.

How to cite this book

BibLaTeX:

@online{qubitguide
author = {Ekert, A and Hosgood, T and Kay, A and Macchiavello, C}
title = {{Introduction to Quantum Information Science}}
url = {https://qubit.guide}
date = {2025-07-24}

}

BibTeX:

@misc{qubitguide
author = {Ekert, A and Hosgood, T and Kay, A and Macchiavello, C}
title = {{Introduction to Quantum Information Science}}
howpublished = {\url{https://qubit.guide}}
date = {2025-07-24}

}
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0.1 Complex numbers

Some mathematical preliminaries

Here we quickly recall most of the fundamental mathematical results that we will
rely on in the rest of this book, most importantly linear algebra over the complex
numbers. However, we will not introduce everything from the ground up. Most
notably, we will assume that the reader understands what a matrix is, and how it
represents a linear transformation; some prior exposure to complex numbers
would be helpful.

If an equation like tr |a〉〈b| = 〈b|a〉 makes sense to you, and you can find the
eigenvalues and eigenvectors of a matrix like[

0 1 + i√
2e−iπ/4 0

]
then you can safely skip over this section and get started directly with Chapter 1.

As a small note on notation, we generally write “x := y” to mean “x is defined
to be (equal to) y”, and “x ≡ y” to mean “x is just another name for y”, but
sometimes we simply just write “x = y”.

0.1 Complex numbers

One of the fundamental ingredients of quantum information science (and, in-
deed, of quantum physics in general) is the notion of complex numbers. It
would be disingenuous to expect that a few paragraphs would suffice to make
the reader sufficiently familiar with subject, but we try our best here to give a
speedy overview of the core principles, and end with some exercises that can be
a helpful indicator of which things you might want to read up on elsewhere.

The “classical” way of arriving at complex numbers is as follows: start with
the natural numbers N = {0, 1, 2, . . .}, which we can add; if we want to be
able to invert addition (i.e. subtract), then we end up with the integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .}, which we can multiply; if we want to be able to invert
multiplication (i.e. divide), then we end up with the rationals Q = {p

q | p, q ∈ Z}.
In this process of “closure under more and more binary operations”, we have
passed from a monoid, to a group, to a field. Algebraically, then, we seem to
be done: we can do all the addition and multiplication that we like, and we can
invert it whenever it makes sense to do so (e.g. we can divide, as long as it’s not
by 0).

But there are lots of numbers that turn up in geometry that are not rational,
such as

√
2 ≈ 1.414, π ≈ 3.14, and e ≈ 2.718. To include all of these (and

simultaneously make sense of things like infinite sums, and limits), we must do
some real analysis — something which we won’t touch upon here — to end up
with the real numbers R. These form a field, just like the rationals, but now we
don’t have any “gaps” in our number line. So what’s left to do?

Well the reals have one big problem: they are not algebraically closed.
That is, there exist polynomials with no roots, i.e. equations of the form anx

n +
an−1x

n−1 + . . .+a1x+a0 = 0 (where the ai are real numbers) that have no solu-

9



0.1 Complex numbers

tions.1 Somehow the most fundamental such example is the equation x2 + 1 = 0,
which has no solutions, because the square of any real number must be non-
negative, and so

√
−1 6∈ R.

It turns out that if we just throw in this one extra number i :=
√
−1 to R then

we can solve any polynomial — a theorem so important that it’s known as the
fundamental theorem of algebra. We call the result of doing this the complex
numbers, and denote them by C.

This gives us an algebraic way of understanding what a complex number
is: it is a real number x plus an imaginary number iy (where y ∈ R) That is,
every complex number x+ iy simply corresponds to a pair of real numbers (x, y).
So now we can think geometrically! We imagine the complex numbers C as
the 2-dimensional Euclidean space R2, where the x-axis corresponds to the real
part of a complex number, and the y-axis to the imaginary part. This really is
a geometric way of thinking, since now addition (and subtraction) of complex
numbers (which is defined by adding their real and imaginary parts separately)
is given by vector addition, as shown in Figure 0.1.

ℜ(z)

ℑ(z)

• z

•
z′

• z + z′

Figure 0.1: Addition of two complex numbers z = x+ iy and z′ = x′ + iy′, where
we write Re (resp. Im) for the real (resp. imaginary) part of a complex number:
Re(x + iy) = x and Im(x + iy) = y. Commutativity of addition corresponds to
what is sometimes called the parallelogram law for addition of vectors.

But what about multiplication and division? Following the rules of the game,
we can figure out what the product of two complex numbers is by treating the
imaginary number i as a “formal variable”, i.e. pretending it’s just a variable in
some polynomial, and then remembering that i =

√
−1 at the very end:

(x+ iy)(x′ + iy′) = xx′ + ixy′ + iyx′ + i2yy′

= xx′ + ixy′ + iyx′ − yy′

= xx′ − yy′ + i(xy′ + yx′).

Division works similarly — the most simple example of inverting a complex
number x + iy makes sense whenever x and y are both non-zero, since then we

1To explain why we care so much about polynomials would be the subject of a whole nother book,
but one important reason (of the many!), for both analysts and geometers alike, is the Weierstrass
Approximation Theorem.
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0.1 Complex numbers

can use the trick of “multiplying by 1”:

1
x+ iy

= 1
x+ iy

x− iy
x− iy

= x− iy
x2 + y2

= x

x2 + y2 − i
y

x2 + y2

This other complex number x − iy that we used is somehow special because
it is exactly the thing we needed to make the denominator real, so we give it a
name: the complex conjugate2 of a complex number z = x + iy is the complex
number z? := x−iy. Geometrically, this is just the reflection of the vector (x, y) ∈
R2 in the x-axis. The product zz? = x2+y2 is also important: you might recognise
(from Pythagoras’ theorem) that

√
x2 + y2 is exactly the length of the vector

(x, y), and so we call the real number |z| :=
√
zz? the modulus (or magnitude,

norm, or absolute value). Note then that we can simply write 1/z = z?/|z|2.

Now things are looking somewhat nice, but the story isn’t complete. We have
a good geometric intuition for what a complex number is (a vector in R2) and
how to add them (vector addition), as well as what the complex conjugate and
the modulus mean (reflection in the x-axis, and the length of the vector, respec-
tively); but what about multiplication and division?

To understand these we need to switch from our rectangular coordinates
z = x + iy to polar coordinates — instead of describing a point z in R2 as
“x units left/right and y units up/down”, we describe it as “r units from the
origin, at an angle of θ radians”. We already know, given (x, y) ∈ R2, how to
calculate its distance r from the origin, since this is exactly the length of the
vector: r = |(x, y)| =

√
x2 + y2. But what about the angle? Some trigonometry

tells us that θ = arctan(y/x), so we now know how to convert rectangular to
polar coordinates:

x+ iy = (x, y) 7−→ (r, θ) := (
√
x2 + y2, arctan(y/x)).

It would be nice to know how to go in the other direction though, but this can
also be solved with some trigonometry:

(r, θ) 7−→ (r cos θ, r sin θ).

2The more common notation in mathematics is z̄ instead of z?, but physicists tend to like the
latter.
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ℜ(z)

ℑ(z)

r =

√ x
2 +

y
2

θ = arctan(y/x)

x = r cos θ

y = r sin θ •
z

Figure 0.2: Expressing a complex number z in both planar and polar forms.

Great! . . . but what’s the point of polar coordinates? Well, it turns out that
they give us a geometric way of understanding multiplication: you can show3 that
(r, θ) multiplied by (r′, θ′) is exactly (rr′, θ+θ′), which says that multiplication by
a complex number (r, θ) is exactly a scaling by a factor of r and a rotation by θ.
This means that we can also easily find the multiplicative inverse of (r, θ), since
it’s just (1/r,−θ). Finally, complex conjugation just means switching the sign of
the angle: (r, θ)? = (r,−θ).

There is one last ingredient that we should mention, which is the thing that
really solidifies the relation between rectangular and polar coordinates. We know
that rectangular coordinates (x, y) can be written as x + iy, so is there some
more algebraic way of writing polar coordinates (r, θ)? Then we can avoid any
ambiguity that might arise from using pairs of numbers — if I tell you that I’m
thinking of the complex number z = (0.3, 2), do I mean the point 0.3 + 2i, or the
point that is distance r from the origin at an angle of 2 radians?

Given polar coordinates (r, θ), we know that this is equal to (r cos θ, r sin θ) in
rectangular coordinates. For simplicity, let’s first consider the case where r = 1.
Then we can write (1, θ) as cos θ+ i sin θ. Using the Taylor series4 of sin and cos,
we can rewrite this as

cos θ + i sin θ =
(

1− θ2

2!
+ θ4

4!
− . . .

)
+ i

(
θ − θ3

3!
+ θ5

5!
− . . .

)
= 1 + iθ − θ2

2!
− iθ

3

3!
+ θ4

4!
+ i

θ5

5!
− . . .

= 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ i4θ4

4!
+ i5θ5

5!
+ . . .

= exp(iθ)

where at the very end we use the Taylor expansion of the exponential function
exp(x) = ex.

3Exercise. Prove this!
4If you don’t know about Taylor series, then feel free to just skim this part, but make sure to read

the punchline!
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0.1 Complex numbers

We have just “proved”5 one of the most remarkable formulas in mathematics:
Euler’s formula

eiθ = cos θ + i sin θ

(a special case of which gives the famous equation eiπ + 1 = 0, uniting five fun-
damental constants: 0, 1, i, e, and π). In summary then, we have two beautiful
ways of expressing a complex number z ∈ C, in either its rectangular/planar
form or its polar/Euler form:

z = x+ iy = reiθ.

Addition and subtraction are most neatly expressed in the planar form
x + iy, and multiplication and division are most neatly expressed in the
polar form reiθ; complex conjugation looks nice and tidy in both.

Addition of polar vectors.

We know how to perform addition, multiplication, inversion (which is a
special case of division), and complex conjugation on complex numbers
in planar form, but we’ve only described how to do the last three of these
in polar form: we haven’t said how to write reiθ + r′eiθ′

as seiϕ for some
s and ϕ. This is because it is very messy looking:

s =
√
r2 + (r′)2 + 2rr′ cos(θ′ − θ)

ϕ = θ + atan2
(
r′ sin(θ′ − θ), r + r′ cos(θ′ − θ)

)
and where atan2 is the 2-argument arctangent function.

You do not need to know everything about this whole story of algebraically
closed fields and so on, but it helps to know the basics, so here are some exercises
that should help you to become more familiar.6

a. The set Q of rational numbers and the set R of real numbers are both fields,
but the set Z of integers is not. Why not?

b. Look up the formal statement of the fundamental theorem of algebra.
c. Evaluate each of the following quantities:

1 + e−iπ, |1 + i|, (1 + i)42,
√
i, 2i, ii.

5It is very important to point out that this “proof” is not rigorous or formal — you need to be very
very careful when rearranging infinite sums! However, this proof can be made rigorous by using some
real analysis.

6Note that we have not really given you enough information in this section to be able to solve all
these exercises, but that is intentional! Sometimes we like to ask questions and not answer them,
with the hope that you will enjoy getting to do some research by yourself.
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d. Here is a simple “proof” that +1 = −1:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1.

What is wrong with it?
e. Prove that, for any two complex numbers w, z ∈ C, we always have the

inequality7

|z − w| ⩾ |z| − |w|.

f. Using the fact that e3iθ = (eiθ)3, derive a formula for cos 3θ in terms of cos θ
and sin θ.

0.2 Euclidean vectors and vector spaces

We assume that you are familiar with Euclidean vectors — those arrow-like geo-
metric objects which are used to represent physical quantities, such as trajecto-
ries, velocities, or forces. You know that any two velocities can be added to yield
a third, and the multiplication of a “velocity vector” by a real number is another
“velocity vector”. So a linear combination of vectors is another vector: if v and
w are vectors, and λ and µ are numbers (rational, real, or complex, for example),
then λv + µw is another vector. Mathematicians have simply taken these proper-
ties and defined vectors as anything that we can add and multiply by numbers,
as long as everything behaves in a nice enough way. This is basically what an
Italian mathematician Giuseppe Peano (1858–1932) did in a chapter of his 1888
book with an impressive title: Calcolo geometrico secondo l’Ausdehnungslehre di H.
Grassmann preceduto dalle operazioni della logica deduttiva. Following Peano, we
define a vector space as a mathematical structure in which the notion of linear
combination “makes sense”.

More formally, a complex vector space is a set V such that, given any two
vectors a and b (that is, any two elements of V ) and any two complex numbers
α and β, we can form the linear combination αa + βb, which is also a vector
in V . There are certain “nice properties” that vector spaces things must satisfy.
Addition of vectors must be commutative and associative, with an identity (the
zero vector, which is often written as 0) and an inverse for each v (written as
−v). Multiplication by complex numbers must obey the two distributive laws:
(α+ β)v = αv + βv and α(v + w) = αv + αw.

Modules over a ring.

A more succinct way of defining a vector space is as an abelian group
endowed with a scalar action of a field. This showcases vector spaces as
a particularly well behaved example of a more general object: modules
over a ring.

7Hint: use polar form, draw a diagram, and appeal to the triangle inequality.
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A subspace of V is any subset of V which is closed under vector addition
and multiplication by complex numbers. Here we start using the Dirac bra-ket
notation and write vectors in a somewhat fancy way as |label〉, where the “label”
is anything that serves to specify what the vector is. For example, | ↑〉 and | ↓〉
may refer to an electron with spin up or down along some prescribed direction,
and |0〉 and |1〉 may describe a quantum bit holding either logical 0 or 1. As a
maybe more familiar example, the set of binary strings of length n is a vector
space over the field Z/2Z of integers mod 2; in the case n = 2 we can write
down all the vectors in this vector space in this notation: |00〉, |01〉, |10〉, |11〉,
where e.g. |10〉 + |11〉 = |01〉 (addition is taken mod 2). These are often called
ket vectors, or simply kets. (We will deal with “bras” in a moment).

A basis in V is a collection of vectors |e1〉, |e2〉, . . . , |en〉 such that every vector
|v〉 in V can be written (in exactly one way) as a linear combination of the basis
vectors: |v〉 =

∑n
i=1 vi|ei〉, where the vi are complex numbers. The number

of elements in a basis is called the dimension of V .8 The most common, and
prototypical, n-dimensional complex vector space (and the space which we will
be using most of the time) is the space of ordered n-tuples of complex numbers,
usually written as column vectors:

|a〉 =


a1
a2
...
an



with a basis given by the column vectors |ei〉 that are 0 in every row except for a
1 in the i-th row:

|e1〉 =


1
0
...
0

 |e2〉 =


0
1
...
0

 . . . |en〉 =


0
0
...
1



and where addition of vectors is done component-wise, so that

(
n∑

i=1
vi|ei〉

)
+

(
n∑

i=1
wi|ei〉

)
=

n∑
i=1

(vi + wi)|ei〉

8Showing that this definition is independent of the basis that we choose is a “fun” linear algebra
exercise.
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or, in column vectors,

|v〉 =


v1
v2
...
vn

 |w〉 =


w1
w2
...
wn



α|a〉+ β|b〉 =


αv1 + βw1
αv2 + βw2

...
αvn + βwn


Throughout the course we will deal only with vector spaces of finite dimen-

sions. This is sufficient for all our purposes and we will avoid many mathematical
subtleties associated with infinite dimensional spaces, for which we would need
the tools of functional analysis.

Formally, whenever we say n-dimensional Euclidean space, we mean the
real vector space Rn.

0.3 Bras and kets

An inner product on a vector space V (over the complex numbers) is a function
that assigns to each pair of vectors |u〉, |v〉 ∈ V a complex number 〈u|v〉, and
satisfies the following conditions:

• 〈u|v〉 = 〈v|u〉?
• 〈v|v〉 ⩾ 0 for all |v〉
• 〈v|v〉 = 0 if and only if |v〉 = 0

where ? denotes complex conjugation (sometimes written as z 7→ z̄ instead).
The inner product must also be linear in the second argument but antilinear

in the first argument:

〈c1u1 + c2u2|v〉 = c?
1〈u1|v〉+ c?

2〈u2|v〉

for any complex constants c1 and c2.
To any physical system we associate9 a complex vector space with an inner

product, known as a Hilbert space H. The inner product between vectors |u〉
and |v〉 in H is written as 〈u|v〉.

9The question of how exactly we construct this associated space is a subtle one in the case of
arbitrary physical systems, but we shall see that this is relatively straightforward when working with
the types of systems that we consider in this book.
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Finite-dimensional functional analysis.

If V is a vector space with an inner product 〈−,−〉, then this gives us
a norm on V by defining ‖x‖ =

√
〈x, x〉 and thus a metric by defining

d(x, y) = ‖y − x‖. We say that a sequence (xn) in V is Cauchy if its
elements “eventually always get closer”, i.e. if for all ε > 0 there exists
some N ∈ N such that for all m,n > N we have ‖xn − xm‖ < ε. We
say that a normed space is complete if every Cauchy sequence converges in
that space, i.e. if the limits of sequences that should exist actually do exist.

Now one useful fact is the following: on a finite dimensional vec-
tor space, all norms are equivalent. (Note that this does not mean that
‖x‖1 = ‖x‖2 for any two norms ‖ − ‖1 and ‖ − ‖2, but simply that they
“induce the same topology” — feel free to look up the precise definition
elsewhere). This follows from another useful fact: in a finite dimensional
vector space, the unit ball is compact. By a short topological argument,
we can use these facts to show that what we claimed, namely that every
finite dimensional inner product space is complete (with respect to the
norm induced by the inner product, and thus with respect to any norm,
since all norms are equivalent).

In the infinite dimensional case these facts are not true, and we have a
special name for those inner product spaces which are complete: Hilbert
spaces. So working in the finite dimensional case means that “we do not
have to worry about analysis”, in that the completeness property comes
for free the moment we have an inner product, and we can freely refer to
inner product spaces as Hilbert spaces.

For example, for column vectors |u〉 and |v〉 in Cn written as

|u〉 =


u1
u2
...
un

 |v〉 =


v1
v2
...
vn


their inner product is defined by

〈u|v〉 = u?
1v1 + u?

2v2 + . . .+ u?
nvn.

Following Dirac, we may split the inner product into two ingredients:

〈u|v〉 −→ 〈u| |v〉.

Here |v〉 is a ket vector, and 〈u| is called a bra vector, or a bra, and can be
represented by a row vector:

〈u| =
[
u?

1, u?
2, . . . , u?

n

]
.
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The inner product can now be viewed as the result of the matrix multiplication:

〈u|v〉 =
[
u?

1, u?
2, . . . , u?

n

]
·


v1
v2
...
vn


= u?

1v1 + u?
2v2 + . . .+ u?

nvn.

Bras are vectors: you can add them, and multiply them by scalars (which,
here, are complex numbers), but they are vectors in the space H? which is dual
to H. Elements of H? are linear functionals, that is, linear maps from H to C. A
linear functional 〈u| acting on a vector |v〉 in H gives a complex number 〈u|v〉.

All Hilbert spaces of the same (finite) dimension are isomorphic, so the
differences between quantum systems cannot be really understood with-
out additional structure. This structure is provided by a specific algebra
of operators acting on H.

0.4 Daggers

Although H and H? are not identical spaces — the former is inhabited by kets,
and the latter by bras — they are closely related. There is a bijective map from
one to the other given by |v〉 ↔ 〈v|, and denoted by a dagger:10

〈v| = (|v〉)†

|v〉 = (〈v|)†.

We usually omit the parentheses when it is obvious what the dagger operation
applies to.

The dagger operation, also known as Hermitian conjugation, is antilinear:

(c1|v1〉+ c2|v2〉)† = c?
1〈v1|+ c?

2〈v2|
(c1〈v1|+ c2〈v2|)† = c?

1|v1〉+ c?
2|v2〉.

Also, when applied twice, the dagger operation is the identity map.
You might already be familiar with Hermitian conjugation under another

name: the conjugate transpose11 of an (n ×m) matrix A is an (m × n) matrix
A†, obtained by interchanging the rows and columns of A and taking complex
conjugates of each entry in A, i.e. A†

ij = A?
ji. In particular then,

|v〉 =


v1
v2
...
vn

 †←→ 〈v| =
[
v?

1 , v?
2 , . . . , v?

n

]
.

10“Is this a † which I see before me. . . ”
11In mathematics texts this operation is often denoted by ? rather than †, but we reserve the former

for complex conjugation without matrix transposition. Note, however, that scalars can be thought of
as (1 × 1) matrices, and in this special case we have that † = ?.
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We will come back to this † operation on matrices in Section 0.6.

0.5 Geometry

The inner product brings geometry: the length, or norm, of |v〉 is given by ‖v‖ =√
〈v|v〉, and we say that |u〉 and |v〉 are orthogonal if 〈u|v〉 = 0. Any maximal

set of pairwise orthogonal vectors of unit length12 forms an orthonormal basis
{|e1〉, . . . , |en〉}, and so any vector can be expressed as a linear combination of
the basis vectors:

|v〉 =
∑

i

vi|ei〉

where vi = 〈ei|v〉. Then the bras 〈ei| form the dual basis

〈v| =
∑

i

v?
i 〈ei|

where v?
i = 〈v|ei〉.

To make the notation a bit less cumbersome, we will sometimes label the basis
kets as |i〉 rather than |ei〉, and write

|v〉 =
∑

i

|i〉〈i|v〉

〈v| =
∑

j

〈v|i〉〈i|

but do not confuse |0〉 with the zero vector! We never write the zero vector as |0〉,
but only ever as 0, without any bra or ket decorations (so e.g. |v〉+ 0 = |v〉).

Now that we have some notion of geometry, we can explain a bit more about
this idea of associating a Hilbert space to a quantum system — we will use some
terminology that we have not yet introduced, but all will be explained in due
time.

To any isolated quantum system, which can be prepared in n perfectly
distinguishable states, we can associate a Hilbert space H of dimension
n such that each vector |v〉 ∈ H of unit length 〈v|v〉 = 1 represents a
quantum state of the system. The overall phase of the vector has no
physical significance: |v〉 and eiϕ|v〉 (for any real ϕ) both describe the
same state.

We note here one more fact that also won’t yet make sense, but which won’t
hurt to have hidden away in the back of your mind.

12That is, consider sets of vectors |ei〉 such that 〈ei|ej〉 = δij (where the Kronecker delta δij is
0 if i 6= j, and 1 if i = j.), and then pick any of the largest such sets (which must exist, since we
assume our vector spaces to be finite dimensional).
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The inner product 〈u|v〉 is the probability amplitude that a quantum
system prepared in state |v〉 will be found in state |u〉 upon measurement.
This means that states corresponding to orthogonal vectors (i.e. 〈u|v〉 =
0) are perfectly distinguishable: if we prepare the system in state |v〉, then
it will never be found in state |u〉, and vice versa.

0.6 Operators

A linear map between two vector spaces H and K is a function A : H → K that
respects linear combinations:

A(c1|v1〉+ c2|v2〉) = c1A|v1〉+ c2A|v2〉

for any vectors |v1〉, |v2〉 and any complex numbers c1, c2. We will focus mostly on
endomorphisms, that is, maps from H to H, and we will call them operators.
The symbol 1 is reserved for the identity operator that maps every element of H
to itself (i.e. 1|v〉 = |v〉 for all |v〉 ∈ H). The product BA of two operators A and
B is the operator obtained by first applying A to some ket |v〉 and then B to the
ket which results from applying A:

(BA)|v〉 = B(A|v〉).

The order does matter: in general, BA 6= AB. In the exceptional case in which
AB = BA, one says that these two operators commute. The inverse ofA, written
as A−1, is the operator that satisfies AA−1 = 1 = A−1A. For finite-dimensional
spaces, one only needs to check one of these two conditions, since any one of the
two implies the other, whereas, on an infinite-dimensional space, both must be
checked. Finally, given a particular basis, an operator A is uniquely determined
by the entries of its matrix: Aij = 〈i|A|j〉.

The adjoint, or Hermitian conjugate, of an linear map A, denoted by A†, is
defined by the relation

〈i|A†|j〉 = 〈j|A|i〉?

for all |i〉, |j〉 ∈ H

and † turns (n×m) matrices into (m× n) matrices.
An operator A is said to be

• normal if AA† = A†A
• unitary if A† = A−1

• Hermitian (or self-adjoint) if A† = A.

In particular then, being unitary implies being normal, since if A† = A−1

then AA† = A†A, since both of these are equal to 1. Note also that unitary
and Hermitian operators must indeed be operators, i.e. they are represented by a
square matrix.
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Any physically admissible evolution of an isolated quantum system is repre-
sented by a unitary operator.13 Note that unitary operators preserve the inner
product: given a unitary operator U and two kets |a〉 and |b〉, and defining
|a′〉 = U |a〉 and |b′〉 = U |b〉, we have that

〈a′| = 〈a|U†

〈b′| = 〈b|U†

〈a′|b′〉 = 〈a|U†U |b〉 = 〈a|1|b〉 = 〈a|b〉.

Preserving the inner product implies preserving the norm induced by this prod-
uct, i.e. unit state vectors are mapped to unit state vectors, i.e. unitary operations
are the isometries of the Euclidean norm.

Dagger compact categories.

This whole package of stuff and properties and structure (i.e. finite di-
mensional Hilbert spaces with linear maps and the dagger) bundles up
into an abstract framework called a dagger compact category. We will
not delve into the vast world of category theory in this book, and to reach
an understanding of all the ingredients that go into the one single defini-
tion of dagger compact categories would take more than a single chapter.
But it’s a good idea to be aware that there are researchers in quantum
information science who work entirely from this approach, known as cat-
egorical quantum mechanics.

One particular method within this approach is the use of string dia-
grams, which allow for the use of so-called diagrammatic reasoning, with
the ZX-calculus being a particularly successful example. For an introduc-
tion to string diagrams of this flavour, it’s maybe a good idea to start
with understanding how they can express the linear algebra that you al-
ready know. For example, Pawel Sobocinski’s “Graphical Linear Algebra”
aims to teach linear algebra entirely through the introduction of string
diagrams.

0.7 Eigenvalues and eigenvectors

Given an operator A, an eigenvector is a non-zero vector |v〉 such that

A|v〉 = λ|v〉

for some λ ∈ C (which is called the corresponding eigenvalue). We call the
pair (λ, |v〉) an eigenpair, and we call the set of eigenvalues the spectrum of A,
denoted by σ(A). It is a surprising (but incredibly useful) fact that every operator

13This is an axiom, justified by experimental evidence, and also by some sort of mathematical
intuition. So, in this book, we take this as a fact that we do not question. It is, however, very
interesting to question it: why should we assume this to be true?
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has at least one eigenpair.14 Geometrically, an eigenvector of an operator A is a
vector upon which A simply acts by “stretching”. Note that eigenvectors can be
scaled by an arbitrary non-zero length: if A|v〉 = λ|v〉 then

A(µ|v〉) = µ(A|v〉)
= µλ|v〉
= λ(µ|v〉)

for any µ 6= 0. Because of this, we usually assume all eigenvectors to be of length 1.
Rewriting the defining property of an eigenpair (λ, |v〉), we see that

(A− λ1)|v〉 = 0

which tells us that the operator A − λ1 has a non-zero kernel, and is thus non-
invertible. This gives a useful characterisation of the spectrum in terms of a
determinant:

σ(A) = {λ ∈ C | det(A− λ1) = 0}.

The spectrum σ(A) allows us to recover information about the operator A.
For example, the trace of A is equal to the sum of all its eigenvalues, and the
determinant of A is equal to the product of all its eigenvalues. We can show
this easily for normal operators using the fact15 that their eigenvectors are or-
thogonal: they satisfy 〈v|w〉 = 0 for v 6= w. Because eigenvectors can always be
scaled, this means that we can assume the eigenvectors of a normal operator to
be orthonormal. If we write the eigenpairs as (λi, |vi〉), we can define

U =
∑

i

|i〉〈vi|

for an orthonormal basis {|1〉, . . . , |n〉}, which is an orthogonal matrix (since the
eigenvectors are also assumed to be orthonormal). Then we see that

UAU† =
∑
i,j

|i〉〈vi|A|vj〉〈j|

=
∑
i,j

|i〉〈vi|λj |vj〉〈j|

=
∑
i,j

λj |i〉(〈vi|vj〉)〈j|

=
∑

i

λi|i〉〈i|

(where we again use this hypothesis that the eigenvectors of A are all orthonor-
mal) which is the diagonal matrix D consisting of the eigenvalues λi of A along

14You can prove this for an (n × n) matrix A by considering the set {|v〉, A|v〉, A2|v〉, . . . , An|v〉}
of vectors in Cn. Since this has n + 1 elements, it must be linearly dependent, and so (after some
lengthy algebra) we can construct an eigenpair.

15Exercise. Prove this! Hint: start by showing that, if (λ, |v〉) is an eigenpair of A, then (λ?, |v〉) is
an eigenpair of A†.
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its diagonal. Then, since UAU† = D, we can equally write A = U†DU , which
gives us

A =
∑

i

λi|vi〉〈vi|.

We call each λi|vi〉〈vi| the eigenspace projector, since a projector is defined to
be any operator P that satisfies P = P † and P 2 = P . Note that projectors can
only have eigenvalues equal to 0 or 1, since if |v〉 is an eigenvector of P then,
using the fact that P 2 = P ,

0 = (P 2 − P )|v〉
= (λ2 − λ)|v〉

=⇒ λ(λ− 1) = 0

and so λ must be equal to either 0 or 1.
Finally we can now return to the relationship between eigenvalues and the

trace and determinant, using this fact that any normal operator A gives a unitary
operator U such that A = U†DU for the diagonal matrix D of eigenvalues of A.
Indeed,

tr(A) = tr(U†DU)
= tr(DUU†)
= tr(D)

=
∑

i

λi

which proves that the trace is equal to the sum of the eigenvalues, and

det(A) = det
(
U†DU

)
= det

(
U†)det(D) det(U)

= det(D) det
(
U†) det(U)

= det(D) det
(
U†U

)
= det(D)

=
∏

i

λi

which proves that the determinant is equal to the product of the eigenvalues.
The eigenspace projectors give us the spectral decomposition of A, which is

where we write

A =
∑

i

λi|vi〉〈vi|.
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Extending functions to matrices.

The spectral decomposition of a normal operator gives an effective way of
calculating the action of a function on a matrix. If f : C→ C is a function,
then we can define

f(A) =
∑

i

f(λi)|vi〉〈vi|.

For example, if f(x) = x2, then, by this definition, f(A) =
∑

i λ
2
i |vi〉〈vi|.

But this is consistent with the definition of A2 that you expect:

A2 =

(∑
i

λi|vi〉〈vi|
)(∑

i

λi|vi〉〈vi|
)

=
∑
i,j

λiλj |vi〉〈vi||vj〉〈vj |

=
∑

i

λ2
i |vi〉〈vi|

using the fact that the eigenvectors |vi〉 are orthonormal and that projec-
tors P = |vi〉〈vi| satisfy P 2 = P .

0.8 Outer products

Apart from the inner product 〈u|v〉, which is a complex number, we can also
form the outer product |u〉〈v|, which is a linear map (operator) on H (or on H?,
depending how you look at it). This is what physicists like (and what mathemati-
cians dislike!) about Dirac notation: a certain degree of healthy ambiguity.

• The result of |u〉〈v| acting on a ket |x〉 is |u〉〈v|x〉, i.e. the vector |u〉 multi-
plied by the complex number 〈v|x〉.

• Similarly, the result of |u〉〈v| acting on a bra 〈y| is 〈y|u〉〈v|, i.e. the linear
functional 〈v| multiplied by the complex number 〈y|u〉.

The product of two maps, A = |a〉〈b| followed by B = |c〉〈d|, is a linear map
BA, which can be written in Dirac notation as

BA = |c〉〈d|a〉〈b| = 〈d|a〉|c〉〈b|

i.e. the inner product (complex number) 〈d|a〉 times the outer product (linear
map) |c〉〈b|.

Any operator on H can be expressed as a sum of outer products. Given an
orthonormal basis {|ei〉}i=1,...,n, any operator which maps the basis vectors |ei〉
to vectors |fi〉 can be written as

∑n
i=1 |fi〉〈ei|. If the vectors {|fi〉} also form

an orthonormal basis then the operator simply “rotates” one orthonormal basis
into another. These are unitary operators which preserve the inner product. In

24



0.9 The trace

particular, if each |ei〉 is mapped to |ei〉, then we obtain the identity operator:∑
i

|ei〉〈ei| = 1.

This relation holds for any orthonormal basis, and it is one of the most ubiquitous
and useful formulas in quantum theory, known as completeness.16 For example,
for any vector |v〉 and for any orthonormal basis {|ei〉}, we have

|v〉 = 1|v〉

=
∑

i

|ei〉〈ei| |v〉

=
∑

i

|ei〉 〈ei|v〉

=
∑

i

vi|ei〉

where vi = 〈ei|v〉 are the components of |v〉.
Finally, note that calculating the adjoint of an outer product boils down to

just swapping the order:

(|a〉〈b|)† = |b〉〈a|.

0.9 The trace

The trace is an operation which turns outer products into inner products,

tr : |b〉〈a| 7−→ 〈a|b〉.

We have just seen that any linear operator can be written as a sum of outer prod-
ucts, and so we can extend the definition of trace (by linearity) to any operator.
Equivalently, for any square matrix A, the trace of A can be defined to be the sum
of its diagonal elements:

trA =
∑

k

〈ek|A|ek〉 =
∑

k

Akk.

In fact, the trace of A is equal to the sum of the eigenvalues of A, even in the
case where A is not diagonalisable.

You can show, using this definition or otherwise, that the trace is cyclic17

(tr(AB) = tr(BA)) and linear (tr(αA + βB) = α tr(A) + β tr(B), where A and
B are square matrices and α and β complex numbers).

16Not to be confused with “completeness” in the sense of Hilbert spaces.
17Note that “cyclic” does not mean the same thing as “permutation invariant”! It is not true in

general that tr(ABC) = tr(CBA), but only that tr(ABC) = tr(BCA) = tr(CAB), i.e. we can
only cyclically permute the operators.
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To recover the first definition from the second, we argue as follows:

tr |b〉〈a| =
∑

k

〈ek|b〉〈a|ek〉

=
∑

k

〈a|ek〉〈ek|b〉

= 〈a|1|b〉
= 〈a|b〉.

Here, the second term can be viewed both as the sum of the diagonal elements of
|b〉〈a| in the |ek〉 basis, and as the sum of the products of two complex numbers
〈ek|b〉 and 〈a|ek〉. We have used the decomposition of the identity,

∑
k |ek〉〈ek| =

1. Given that we can decompose the identity by choosing any orthonormal basis,
it is clear that the trace does not depend on the choice of the basis.

0.10 Some useful identities

Here is a summary of some particularly useful equalities concerning bras, kets,
inner products, outer products, traces, and operators, that we will be using time
and time again. In all of these, |a〉, |b〉 ∈ H are kets, A,B,C are operators on H,
and α, β ∈ C are scalars.

Dagger for bras and kets:
• |a〉† = 〈a|
• 〈a|† = |a〉
• (|a〉〈b|)† = |b〉〈a|
• (α|a〉+ β|b〉)† = α?〈a|+ β?〈b|

Dagger for operators:
• (AB)† = B†A†

• (A†)† = A
• (αA+ βB)† = α?A† + β?B†

Trace:
• tr(αA+ βB) = α tr(A) + β tr(B)
• tr(ABC) = tr(CAB) = tr(BCA)
• tr |a〉〈b| = 〈b|a〉
• tr(A|a〉〈b|) = 〈b|A|a〉 = tr(|a〉〈b|A)
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0.11 Probabilities

In a sense, the basics of quantum theory boil down to the combination of two
bits of mathematics: linear algebra over the complex numbers, and probability
theory. We have just gone over all the linear algebra that we will need, so now
let’s tackle the other topic (though we will immediately revisit it in Chapter 1).

Probability theory is a vast and beautiful subject which has undergone many
transformations over the centuries. What started as something understood in
terms of gambling odds later evolved into the theory of measure spaces, and is
now even able to be expressed in terms of diagrammatic category theory. But
for our purposes, we only need the very elementary parts of the subject, so we
will stick with the first interpretation: probability tells us the odds of something
happening.18

The setup is always the same: we have some process (rolling some dice,
flipping a coin, drawing a card, etc.) that has some possible outcomes (getting a
5, heads, or an ace of hearts, etc.) but is realised in some way which means that
we cannot be certain which outcome we will see whenever we run the process
(or “perform the experiment”).

The first thing to define in any such scenario is the sample space, usually
denoted by Ω, which is the set of all possible outcomes. Next we have the event
space F , which is the set of all events, where an event is a set of outcomes (this
might sound confusing at first, but we’ll give some examples shortly). Whenever
we run the process, we will get some outcome, and we say that any event that
contains that outcome occurred. Finally, we will have a probability function,
which assigns to any event a probability, which is a number between 0 and 1.
This probability function has to satisfy some axioms, but we’ll come to these later;
for now, let us give some examples. Here is a table of the sample spaces for some
processes.

Process Sample space Ω

Rolling a six-sided die {1, 2, 3, 4, 5, 6}
Flipping a coin {H,T}
Flipping two distinct coins {HH,TH,HT, TT}
Flipping two identical coins {HH,TH, TT}

And here’s a table of some (but not all, except for in the case of flipping a
single coin) of the events corresponding to these sample spaces.

Process Example events A ∈ F Interpretation

Rolling a six-sided die {1} rolling a 1
{1, 3, 5} rolling an odd number
{1, 2, 3} rolling a number less

than or equal to 3

18What we actually mean by “the odds of something happening” and how we should really interpret
probabilities “in the real world” is a profound philosophical problem that we shall completely pass
over.
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Process Example events A ∈ F Interpretation

{2, 3} rolling a prime number
less than 4

Flipping a coin {H} getting heads
{T} getting tails
{H,T} any outcome at all

Flipping two distinct
coins

{HH} getting two heads

{HH,TH,HT} getting at least one
heads

{HH,TT} getting two the same
Flipping two identical
coins

{HH} getting two heads

{HH,TH} getting at least one
heads

In the table above we can see that, for example, if we rolled a 1 on a six-sided
die then many events occurred: we rolled a 1, but we also rolled an odd number,
and a number less than 3; but we did not roll a prime number.

Something else that arises in these examples the notion of distinguishable
outcomes, when we look at how the sample space of flipping two coins depends
on whether or not they are identical. That is, if we have a gold coin and a silver
coin then it makes sense to say that HT is different from TH, because the first
means that the gold coin was the one that landed on heads, and the second
means that it was instead the silver coin. But if we have two identical coins,
then how can we distinguish between HT and TH? We would have to be able to
point to one of them, say, the one on the left, and say “that’s the coin that’s on the
left”, but if we can do this then by definition we can distinguish between them!19

In general, the sample space consists only of distinguishable outcomes, but what
counts as distinguishable really depends on the specifics of the experiment that
we have set up.

Measure theory.

This approach towards probability, where we think of a “scenario” as such
a triple (Ω,F , P ), places us firmly within the setting of measure the-
ory. What we have described is a probability measure, and there are
many more general types of measure that exist, but they all describe the
same sort of idea: we have a set Ω that we think of as our “space”, some
particularly well-behaved collection F of subsets of Ω, and a function
µ : F → Rt {±∞} known as the measure. We think of the measure µ as

19Another possibility would be to distinguish the coins in time instead of space, i.e. to flip one coin
first and then the other afterwards. A coin cannot remember what happened the last time it was
flipped, so is there really a difference between flipping a single coin twice or two coins once? In the
eyes of probability theory, the answer is “no”.
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telling us how big any element of F is, be it interpreted as geometric size
or, in the example of probability measures, the likelihood. This formalism
becomes very useful when we want to do any analysis (which happens
as soon as we want to deal with infinite-dimensional spaces, or even just
“introduce some geometry”), such as in constructing the Lebesgue inte-
gral. Thinking of probability spaces through measure theory allows us to
make use of the many powerful tools of real analysis.

Now we can define probability rather succinctly.

In a fair process, where all outcomes are equally likely, the probability
P (A) of an event A is the number of desired outcomes divided by the
number of total outcomes, i.e.

P (A) = # of elements of A
# of elements of Ω

.

In particular, the probability will always be a number between 0 and 1.

Running through some of the above examples of events, we see that this
definition of probability agrees with what we might already expect.

Event Probability

Getting heads on a single coin flip 1/2
Rolling a 6 with a single die 1/6
Rolling an odd number with a single die 3/6 = 1/2

Pascal’s triangle.

Flipping a fair coin (or actually, even an unfair one) is a common scenario
in discussing probability, because it has just two outcomes — the small-
est amount you can have without things becoming purely deterministic.
There are lots of numbers that you will see turn up time and time again
in calculations of probability for binary outcome events, and most usually
they are binomial coefficients. These are numbers that can be read di-
rectly from the rows of Pascal’s triangle (which, as is often the case in
mathematics, is more deserving of being named after a different person:
Al-Karaji, or maybe Omar Khayyam), and they satisfy many interesting
combinatorial patterns.

Now let’s look at what happens when we’re interested in more than one event
occurring. We might study the possibility of either event A or event B happening,

29

https://en.wikipedia.org/wiki/Lebesgue_integration
https://en.wikipedia.org/wiki/Lebesgue_integration
https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Pascal%27s_triangle
https://en.wikipedia.org/wiki/Al-Karaji
https://en.wikipedia.org/wiki/Omar_Khayyam


0.10 Some useful identities

where the “or” here can be exclusive (we want exactly one of them to happen,
but not both) or inclusive (we want at least one of them to happen), or we could
study the possibility of both event A and event B happening. It turns out that
these two notions, which seem somehow opposite, are delicately related.

First of all, let’s consider both events A and B occurring. What does this
mean? Well, by our definition of “occurring”, it means that the outcome of the
process is an element of A and also of B, which is equivalent to saying that it is
an element of their intersection A ∩B. In other words,

P (A and B) = P (A ∩B).

This lets us define two very important terms.

We say that A and B are mutually exclusive if P (A ∩B) = 0, and inde-
pendent if P (A ∩B) = P (A)P (B).

In words, A and B are mutually exclusive if one of them occurring
precludes the other from occurring, i.e. if at most one of them can occur,
and they are independent if one of them occurring has no effect on the
other occurring.

Usually, when we talk of mutually exclusive events we are referring to a single
run of an experiment, and for independent events we are referring to multiple
runs. For example, “rolling an even number” and “rolling an odd number” are
mutually exclusive events when rolling a single die once, but independent events
when rolling a single die twice.20 Basically, we should be careful when talking
about events and make sure to be precise as to what our sample space is, and
how the event is actually realised as a subset of this.

We can think of mutually exclusive and independent as extreme ends of a
scale: on one side we have events that affect each other so strongly that if one
occurs then we know with absolute certainty that the other one did not; on the
other we have events that have absolutely no effect on each other whatsoever.
One might wonder about what the opposite of mutually exclusive might be, and
there are two ideas that seem like they might be interesting: events A and B
such that P (A ∩ B) = 1, and events A and B such that, if one occurs, then the
other also always occurs. The first of these two putative definitions is not so
interesting, because if P (A∩B) = 1 then both A and B always occur, and so, by
the definition of P (A) = P (B) = 1, this means that A = B = Ω is just the event
that “anything happens”. The second is a bit less trivial, but also not so deep:
saying that A occurs if and only if B occurs is equivalent to saying that A = B as
events.

Now let’s think about either event A or event B occurring, in the inclusive-
or sense of the word (we will return to the exclusive one afterwards). This is
equivalent to the event given by the union A ∪B occurring. In other words,

P (A or B) = P (A ∪B).
20Exercise. Are the events “rolling an even number” and “rolling an odd number” still independent

when we think of rolling two die simultaneously?
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The relationship between P (A ∪ B) and P (A ∩ B) is given by the following
principle.

Inclusion–exclusion principle. P (A ∪B) = P (A) + P (B)− P (A ∩B).

We will not prove this, but it’s a fun exercise to think about why this must be
true.21 In fact, the general inclusion–exclusion principle describes what happens
for an arbitrary finite number of events. Using this, we can see why mutually
independent events are particularly nice: if A and B are mutually exclusive, then
P (A ∪ B) = P (A) + P (B), i.e. the probability of (A or B) is the sum of the
probability of A and the probability of B.

In the same way that mutually exclusive events are special in the eyes of
the inclusion–exclusion principle, independent events are special in the eyes of
conditional probability. Oftentimes we consider events that are not independent,
such as drawing cards from a deck without replacing them afterwards: if I take
the ace of hearts, then the probability of me drawing a heart the next time has
gone down from 13/52 to 12/51, since there is now one fewer heart in the deck.
Even worse, the probability of me drawing the ace of hearts again is now 0. Given
two events A and B, we define the conditional probability P (B|A), of B given
A, to be the probability thatB occurs assuming thatA has just previously occurred.
Thinking back to the definition of probability, we can calculate this by taking the
number of outcomes in A∩B (our desired outcomes, the outcomes in B that also
are outcomes in A) and dividing it by the number of outcomes in A (all possible
outcomes, since we are assuming that A has happened), so that

P (B|A) = P (A ∩B)
P (A)

.

Conditional probabilities are the source of many misunderstandings. For ex-
ample, it’s intuitively obvious that the probability of flipping a coin 100 times
and getting heads every single time is very small. So say we’ve flipped a coin
99 times and managed to get a heads every single time, are we now more likely
to flip a tail, because the chance of getting 100 heads in a row must be small?
Well we don’t even need mathematics to answer this: the coin has no way of
remembering what has happened on the previous flips! In other words, also the
probability P (H100) = P (H99 and H) is very small, the (conditional) probability
P (H|H99) is still exactly 1/2. Looking at the definition of conditional probability,
this makes sense: P (H99) is itself very small, almost as small as P (H100), so it’s
not surprising that when we divide one by the other we get a number that’s not
so far away from 1.

Now we can see how independent events are special: if P (A∩B) = P (A)P (B)

21Drawing a Venn diagram might help.
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then

P (B|A) = P (A ∩B)
P (A)

= P (A)P (B)
P (A)

= P (B)

and so the probability of B given A is exactly the same as the probability of B
without knowing anything about the outcome of A (and similarly for P (A|B) =
P (A)).

Finally, we mention what might be called the fundamental theorem of condi-
tional probability.

Bayes’ theorem. Let A and B be events with P (B) 6= 0. Then

P (A|B) = P (B|A)P (A)
P (B)

.

You should now be able to answer the following questions:

1. When you roll a normal six-sided die, what is the set of distinguishable
outcomes?

2. What is the probability of getting a 5?
3. What is the probability of getting a number (strictly) less than 3?

Now imagine that you have two six-sided dice.

4. If you roll both dice at the same time, what is the probability of them both
landing on a 6?

5. What is the probability of getting two numbers that add up to 6?

Finally, we give our two six-sided dice to a friend for them to roll in secret.

6. If they tell us that they rolled two numbers that added up to 6, what is the
probability that they rolled a 1?

Diagrammatic probability theory.

We mentioned in Section 0.6 that a lot of the structure inherent in our for-
malism of quantum theory can be encapsulated by the notion of a dagger
compact category, and can thus be investigated with a diagrammatic ap-
proach. It turns out that parts of probability theory — specifically Markov
processes, which describe scenarios where different events can happen
with varying probabilities, but where nothing depends on the history of
the scenario, only on the here-and-now — are also amenable to such an
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0.10 Some useful identities

approach. This leads to the definition of a Markov category.
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Foundations

34



1 Quantum interference

About complex numbers, called probability amplitudes, that,
unlike probabilities, can cancel each other out, leading to quan-
tum interference, and consequently qualitatively new ways of
processing information.

The classical theory of computation does not usually refer to physics. Pio-
neers such as Alan Turing, Alonzo Church, Emil Post, and Kurt Gödel managed to
capture the correct classical theory by intuition alone and, as a result, it is often
falsely assumed that its foundations are self-evident and purely abstract. They
are not!

Possibly the most important motto of this book is the following: “Compu-
tation is a physical process. Computation is a physical process. Computation
is . . . ”

The concepts of information and computation can be properly formulated
only in the context of a physical theory — information is stored, transmitted and
processed always by physical means. Computers are physical objects and compu-
tation is a physical process. Indeed, any computation, classical or quantum, can
be viewed in terms of physical experiments, which produce outputs that depend
on initial preparations called inputs. Once we abandon the classical view of com-
putation as a purely logical notion independent of the laws of physics it becomes
clear that whenever we improve our knowledge about physical reality, we may
also gain new means of computation. Thus, from this perspective, it is not very
surprising that the discovery of quantum mechanics in particular has changed
our understanding of the nature of computation. In order to explain what makes
quantum computers so different from their classical counterparts, we begin with
the rudiments of quantum theory.

Some of what we say in this chapter will be repeated in later chapters, but
usually in much more detail. Feel free to think of this chapter as a sort of “aero-
plane tour” of the rudiments, knowing that we will soon land on the ground to
go out exploring by foot.

1.1 Two basic rules

Quantum theory, at least at some instrumental level, can be viewed as a mod-
ification of probability theory: we replace positive real numbers (i.e. probabil-
ities) with complex numbers z, called probability amplitudes (or simply “am-
plitudes”), such that the squares of their absolute values |z|2 are interpreted as
probabilities.
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1.2 The failure of probability theory

The correspondence between probability amplitudes z and probabilities
|z|2 is known as Born’s rule, named for physicist and mathematician Max
Born (1882–1970).

The rules for combining amplitudes are very reminiscent of the rules for com-
bining probabilities:

1. Whenever something can happen in a sequence of independent steps, we
multiply the amplitudes of each step.

z1
z2

z = z1z2

2. Whenever something can happen in several alternative ways, we add the
amplitudes for each separate way.

z1

z2

z = z1 + z2

That’s it! These two rules are basically all you need to manipulate ampli-
tudes in any physical process, no matter how complicated.22 They are universal
and apply to any physical system, from elementary particles through atoms and
molecules to white dwarfs stars. They also apply to information, since, as we
have already emphasised, information is physical. The two rules look decep-
tively simple but, as you will see in a moment, their consequences are anything
but trivial.

1.2 The failure of probability theory

Modern mathematical probability theory is based on three axioms, proposed by
Andrey Nikolaevich Kolmogorov (1903–1987) in his monograph with the impres-
sive German title Grundbegriffe der Wahrscheinlichkeitsrechnung (“Foundations of
Probability Theory”). The Kolmogorov axioms are simple and intuitive:23

1. Once you identify all elementary outcomes, or events, you may then assign
probabilities to them, where. . .

22We will, however, amend the two rules later on when we touch upon particle statistics.
23It’s an interesting coincidence that the two basic ingredients of modern quantum theory — prob-

ability and complex numbers — were discovered by the same person, an extraordinary man of many
talents: a gambling scholar by the name of Girolamo Cardano (1501–1576).
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1.3 The double-slit experiment

2. . . . a probability is a number between 0 and 1, and an event which is certain
has probability 1.

3. Finally, the probability of any event can be calculated using a deceptively
simple rule — the additivity axiom: whenever an event can occur in sev-
eral mutually exclusive ways, the probability for the event is the sum of the
probabilities for each way considered separately.

Obvious, isn’t it? So obvious, in fact, that probability theory was accepted
as a mathematical framework, a language that can be used to describe actual
physical phenomena. Physics should be able to identify elementary events and
assign numerical probabilities to them. Once this is done we may revert to math-
ematical formalism of probability theory. The Kolmogorov axioms will take care
of the mathematical consistency and will guide us whenever there is a need to
calculate probabilities of more complex events. This is a very sensible approach,
apart from the important fact that it does not always work! Today, we know that
probability theory, as ubiquitous as it is, fails to describe many common quantum
phenomena. In order to see the need for quantum theory let us consider a simple
experiment in which probability theory fails to give the right predictions.

1.3 The double-slit experiment

In a double-slit experiment, a particle (such as a photon) emitted from a source
S can reach a detector D by taking two different paths, e.g. through an upper or
a lower slit in a barrier between the source and the detector. After sufficiently
many repetitions of this experiment we can evaluate the frequency of clicks in
the detector D and show that it is inconsistent with the predictions based on
probability theory. Let us use the quantum approach to show how the discrepancy
arises.

The particle emitted from S can reach detector D by taking two different
paths, which are assigned probability amplitudes z1 and z2, respectively. We may
then say that the upper slit is taken with probability p1 = |z1|2 and the lower
slit with probability p2 = |z2|2. These are two mutually exclusive24 events. With
the two slits open, allowing the particle to take either path, probability theory
declares (by the Kolmogorov additivity axiom) that the particle should reach the
detector with probability p1 + p2 = |z1|2 + |z2|2. But this is not what happens
experimentally!

Let us see what happens if we instead follow the two “quantum rules”: first
we add the amplitudes, then we square the absolute value of the sum to get the

24That is, if one happens then the other one cannot. For example, “heads” and “tails” are mutually
exclusive outcomes of flipping a coin, but “heads” and “6” are not mutually exclusive outcomes of
simultaneously flipping a coin and rolling a dice.
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1.3 The double-slit experiment

probability. Thus, the particle will reach the detector with probability

p = |z|2

= |z1 + z2|2

= |z1|2 + |z2|2 + z?
1z2 + z1z

?
2

= p1 + p2 + |z1||z2|
(
ei(ϕ2−ϕ1) + e−i(ϕ2−ϕ1)

)
= p1 + p2 + 2√p1p2 cos(ϕ2 − ϕ1)︸ ︷︷ ︸

interference terms

(‡)

where we have expressed the amplitudes in their polar forms:

z1 = |z1|eiϕ1

z2 = |z2|eiϕ2 .

The appearance of the interference terms marks the departure from the classical
theory of probability. The probability of any two seemingly mutually exclusive
events is the sum of the probabilities of the individual events p1 + p2 modified by
the interference term 2√p1p2 cos(ϕ2 − ϕ1). Depending on the relative phase
ϕ2 − ϕ1, the interference term can be either negative (giving what we call de-
structive interference) or positive (constructive interference), leading to either
suppression or enhancement (respectively) of the total probability p.

The algebra is simple; our focus is on the physical interpretation. Firstly, note
that the important quantity here is the relative phase ϕ2 − ϕ1 rather than the
individual phases ϕ1 and ϕ2. This observation is not trivial at all: if a particle
reacts only to the difference of the two phases, each pertaining to a separate
path, then it must have, somehow, experienced the two paths, right? That is, we
cannot say that the particle has travelled either through the upper or the lower
slit, because it has travelled through both. In the same way, quantum computers
follow, in some tangible way, all computational paths simultaneously, producing
answers that depend on all these alternative calculations. Weird, but this is how
it is!

Secondly, what has happened to the additivity axiom in probability theory?
What was wrong with it? One problem is the assumption that the processes of
taking the upper or the lower slit are mutually exclusive; in reality, as we have
just mentioned, the two transitions both occur, simultaneously. However, we can-
not learn this from probability theory, nor from any other a priori mathematical
construct — we can only observe this by repeated scientific experiments in our
physical world.25

There is no fundamental reason why Nature should conform to the addi-
tivity axiom.

25According to the philosopher Karl Popper (1902–1994) a theory is genuinely scientific only if it
is possible, in principle, to establish that it is false. Genuinely scientific theories are never finally
confirmed because, no matter how many confirming observations have been made, observations that
are inconsistent with the empirical predictions of the theory are always possible.
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1.4 Superpositions

We find out how nature works by making “intelligent” guesses, running exper-
iments, checking what happens and formulating physical theories. If our guess
disagrees with experiments then it is wrong, so we try another intelligent guess,
and another, etc. Right now, quantum theory is the best guess we have: it offers
good explanations and predictions that have not been falsified by any of the ex-
isting experiments. This said, rest assured that one day quantum theory will be
falsified, and then we will have to start guessing all over again.

The quantum eraser.

This section is not yet finished.

1.4 Superpositions

Amplitudes are more than just tools for calculating probabilities: they tell us
something about physical reality. When we deal with probabilities, we may think
about them as numbers that quantify our lack of knowledge. Indeed, classically,
when we say that “a particle goes through the upper or the lower slit with some
respective probabilities”, what we really mean is that it does go through one of
the two slits, but we just do not know which one for sure. In contrast, according
to quantum theory, a particle that goes through the upper and the lower slit with
certain amplitudes does explore both of the two paths, not just one of them. This
is a statement about a real physical situation — about something that is out there
and with which we can experiment.

The assumption that the particle goes through one of the two slits but
we just don’t know which one, is inconsistent with many experimental
observations.

We have to accept that, apart from some easy to visualise states, known as
the basis states (such as the particle at the upper slit or the particle at the lower
slit), there are infinitely many other states, all of them equally real, in which the
particle is in a superposition of the two basis states. This rather bizarre picture
of reality is the best we have at the moment, and it works (at least, for now!).

Physicists write such superposition states as26

|ψ〉 = α|upper slit〉+ β|lower slit〉,

meaning the particle goes through the upper slit with amplitude α, and through
the lower slit with amplitude β. Mathematically, you can think about this ex-
pression as a vector |ψ〉 in a two-dimensional complex vector space written in

26Dirac notation will likely be familiar to physicists, but may look odd to mathematicians or com-
puter scientists. Love it or hate it (and we suggest the former), the notation is so common that you
simply have no choice but to learn it, especially if you want to study anything related to quantum
theory.
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1.5 Interferometers

terms of the two basis vectors |upper slit〉 and |lower slit〉. You could also write
this vector as a column vector with two complex entries α and β, but then you
would have to explain the physical meaning of the basis states. Here, we use the
Dirac notation | 〉, introduced by Paul Dirac (1902–1984) in the early days of
the quantum theory as a useful way to write and manipulate vectors. In Dirac
notation you can put into the “box” | 〉 anything that serves to specify what the
vector is: it could be | ↑〉 for spin up and | ↓〉 for spin down (whatever this tech-
nical terminology “spin” means), or |0〉 for a quantum bit holding logical 0 and
|1〉 for a quantum bit holding logical 1, etc. As we shall soon see, there is much
more to this notation, and learning to manipulate it will help you greatly.

1.5 Interferometers

One of the most fundamental family of experiments for our purposes are so-called
interference experiments, modern versions of which are performed using inter-
nal degrees of freedom of atoms and ions. For example, Ramsey interferome-
try, named after American physicist Norman Ramsey (1915–2011), is a generic
name for an interference experiment in which atoms are sent through two sep-
arate “resonant interaction” zones, known as Ramsey zones, separated by an
intermediate “dispersive interaction” zone.

Many beautiful experiments of this type were carried out in the 1990s in
Serge Haroche’s lab at the Ecole Normale Supérieure in Paris. Rubidium atoms
were sent through two separate interaction zones (resonant interaction in the
first and the third cavity) separated by a phase inducing dispersive interaction
zone (the central cavity). The atoms were subsequently measured, via a selective
ionisation, and found to be in one of the two preselected energy states, here
labeled as |0〉 and |1〉. The fraction of atoms found in states |0〉 or |1〉 showed a
clear dependence on the phase shifts induced by the dispersive interaction in the
central cavity. In 2012, Serge Haroche and Dave Wineland shared the Nobel Prize
in physics for “ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems.” Let us now try to understand
what this experiment actually entails.

|0⟩

|1⟩

|0⟩

resonant dispersive resonant

Figure 1.1: A schematic diagram of a Ramsey interference experiment.

The three rectangular boxes in Figure 1.1 represent three cavities, each cavity
being an arrangement of mirrors which traps electromagnetic field (think about
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1.5 Interferometers

standing waves in between two mirrors). The oval shapes represent rubidium
atoms with two preselected energy states27 labelled as |0〉 and |1〉. Each atom is
initially prepared in a highly excited internal energy state |0〉 and zips through
the three cavities, from the left to the right. In each cavity the atom interacts with
the cavity field. The first and the third cavities are, for all theoretical purposes,
identical: their frequencies are tuned to the resonant frequency of the atom,
and the atom exchanges energy with the cavity, going back and forth between
its energy states |0〉 and |1〉. In contrast, in the second (central) cavity, the atom
undergoes the so-called dispersive interaction: it is too off-resonance for the atom
to exchange energy with the field, but the atom’s energy states “feel” the field and
acquire phase shifts. After experiencing this well timed sequence of resonant–
dispersive–resonant interactions, the energy of the atom is measured and the
atom is found to be either in state |0〉 or state |1〉. The (surprising) result of this
experiment is analogous to that of the double-slit experiment described above:
the fraction of atoms found in state |0〉 or |1〉 shows a clear dependence on the
phase shifts induced by the dispersive interaction in the central cavity.

We can understand this interference better if we follow the two internal states
of the atom as it moves through the three cavities.

resonant dispersive resonant

|0⟩

|1⟩

|0⟩

|1⟩

eiφ0

eiφ1

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

−1√
2

−1√
2

Figure 1.2: The Ramsey interferometer represented as an abstract diagram, to be
read from left to right. The line segments represent transitions between the two
states, |0〉 and |1〉, and the numbers are the corresponding probability amplitudes.

Suppose we are interested in the probability that the atom, initially in state
|0〉, will be found, after completing its journey through the three cavities, in state
|1〉. As you can see in Figure 1.2, this can happen in two ways, as indicated by the

27If the language of energy states of atoms is unfamiliar to you, don’t worry! Here we are just trying
to give some physical motivation for one of the fundamental quantum circuits which we will see pop
up time and time again. Vaguely, though, you can just have in your mind the idea that atoms have a
certain amount of energy at any given time, but the amount that they can have is one of a number
of fixed amounts, depending on the chemistry of the atom. This is in fact one of the key principles in
the history of quantum physics, and is the reason for the word “quantum”.
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1.5 Interferometers

two thick paths connecting the input state |0〉 on the left with the output state
|1〉 on the right. Again, let Uij denote the probability amplitude that input |j〉
generates output |i〉 (for i, j = 0, 1).

We can see from the diagram that

U10 = 1√
2
eiϕ0

1√
2

+ 1√
2
eiϕ1
−1√

2

= 1
2
(
eiϕ0 − eiϕ1

)
.

Then, using the trick of writing x = x+y
2 + x−y

2 and y = x+y
2 −

x−y
2 , followed by

Euler’s formula (eiα = cosα+ i sinα), we see that

U10 = 1
2
(
eiϕ0 − eiϕ1

)
= 1

2

(
ei

ϕ0+ϕ1
2 ei

ϕ0−ϕ1
2 − ei

ϕ0+ϕ1
2 e−i

ϕ0−ϕ1
2

)
= 1

2
ei

ϕ0+ϕ1
2

(
ei

ϕ0−ϕ1
2 − e−i

ϕ0−ϕ1
2

)
= 1

2
ei

ϕ0+ϕ1
2

(
2i sin

(
ϕ0 − ϕ1

2

))
= −iei

ϕ0+ϕ1
2 sin ϕ1 − ϕ0

2
where the relative phase ϕ = ϕ1 − ϕ0 shows up yet again.

The corresponding probability (i.e. that an atom, initially in state |0〉, will be
found in state |1〉) is then28

P10 = |U10|2

=
∣∣∣∣−iei

ϕ0+ϕ1
2 sin ϕ1 − ϕ0

2

∣∣∣∣2
=
∣∣∣∣sin ϕ1 − ϕ0

2

∣∣∣∣2
= 1

2
(1− cosϕ)

where we use the fact that |i|2 = 1 and |eiα|2 = 1 for any α, along with the
double angle formula cos 2θ = 1− 2 sin2 θ.

You should recognise the first term 1
2 as the “classical” probability and the

second one − 1
2 cosϕ as the interference term. We can repeat such calculations

for any other pair of input–output states. This approach works fine here but,
in general, tracking all possible paths in evolving quantum systems can become
messy when the number of input and output states increases. There is, however,
a neat way of doing these calculations: matrix multiplication.

28From the classical probability theory perspective the resonant interaction induces a random
switch between |0〉 and |1〉 (why?) and the dispersive interaction has no effect on these two states
(why?). One random switch followed by another random switch is exactly the same as a single ran-
dom switch (if you flip a coin twice and just observe the last result, this is probabilistically the same
as just flipping the coin once), which gives 1

2 for the probability that input |0〉 becomes output |1〉.
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1.6 Qubits, gates, and circuits

The effect of each interaction on atomic states can be described by a matrix
of transition amplitudes, as illustrated in Figure 1.3, and then the sequence of in-
dependent interactions is described by the product of these matrices: we compile
all the Uij into one matrix U .

U =

[
1√
2

1√
2

1√
2

−1√
2

] [
eiϕ0 0

0 eiϕ1

][ 1√
2

1√
2

1√
2

−1√
2

]

= ei
ϕ0+ϕ1

2

[
cos ϕ

2 −i sin ϕ
2

−i sin ϕ
2 cos ϕ

2

]
=
[
U00 U01
U10 U11

]
where ϕ = ϕ1 − ϕ0, as before.

[
1√
2

1√
2

1√
2

−1√
2

] [
eiφ0 0
0 eiφ1

] [
1√
2

1√
2

1√
2

−1√
2

]
=

[
cos φ

2 −i sin φ
2

−i sin φ
2 cos φ

2

]

=

1√
2

1√
2

1√
2

1√
2

−i sin φ
2

cos φ
2

−i sin φ
2

cos φ
2

1√
2

1√
2 eiφ0

eiφ1
−1√
2

−1√
2

Figure 1.3: The Ramsey interferometer represented as an abstract diagram (ma-
trix approach). Here we have omitted the |0〉 and |1〉 labels, just to simply the
diagram. We also ignore (for reasons that we will later explain) the global phase
factor of ei

ϕ0+ϕ1
2 .

In general, quantum operation A followed by quantum operation B is the
quantum operation described by the matrix product29 BA. Indeed, the expres-
sion (BA)ij =

∑
k BikAkj is the sum over amplitudes that input |j〉 generates

output |i〉 via a specific intermediate state |k〉. As you can see, the matrix ap-
proach is a wonderful bookkeeping tool: in one package it takes care of both
multiplying and adding probability amplitudes corresponding to all the contribut-
ing paths.

1.6 Qubits, gates, and circuits

Atoms, trapped ions, molecules, nuclear spins, and many other quantum objects
with two pre-selected basis states labelled as |0〉 and |1〉 can be used to implement
simple quantum interference — from now on we will call such objects quantum

29Note the order of the matrices: the composition “A followed by B” is BA, not AB! This reflects
the fact that, in linear algebra, we apply a matrix to a vector on the left, i.e. A applied to v is written
Av.
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1.7 Quantum decoherence

bits, or qubits. But note that there is no need to learn about the physics behind
these diverse technologies (e.g. “what is nuclear spin?”) if all you want is to
understand the basics of quantum theory. Indeed, from now on we will conve-
niently forget about any specific experimental realisation of a qubit and represent
a generic single-qubit interference graphically as a circuit diagram:30

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

This diagram should be read from left to right. The horizontal line represents
a qubit that is inertly carried from one quantum operation to another. We of-
ten call this line a quantum wire. The wire may describe translation in space
(e.g. atoms travelling through cavities) or translation in time (e.g. a sequence
of operations performed on a trapped ion).31 The boxes or circles on the wire
represent elementary quantum operations, called quantum (logic) gates.

In the example circuit above, we have two types of gates: two Hadamard
gates H (think “resonant interaction”) and one phase gate Pϕ (think “dispersive
interaction”), where32

H =

[
1√
2

1√
2

1√
2

−1√
2

]
and Pϕ =

[
1 0
0 eiϕ

]
.

The input qubits appear as state vectors on the left side of circuit diagrams,
and the output qubits as state vectors on the right. The product of the three
matrices33

HPϕH =
[

cos ϕ
2 −i sin ϕ

2
−i sin ϕ

2 cos ϕ
2

]
describes the action of the whole circuit, telling us that it maps input state vectors
to output state vectors as follows:

|0〉 7−→ cos ϕ
2 |0〉 − i sin

ϕ
2 |1〉,

|1〉 7−→ −i sin ϕ
2 |0〉+ cos ϕ

2 |1〉.

1.7 Quantum decoherence

We do need quantum theory to describe many physical phenomena, but, at the
same time, there are many other phenomena where the classical theory of prob-
ability works pretty well. Indeed, we hardly see quantum interference on a daily

30Do not confuse the interference diagrams of Figure 1.1 and Figure 1.3 with the circuit diagram.
In the circuit diagrams, which we will use almost constantly from now on, a single line represents a
single qubit.

31Yet again we see that we can conveniently forget about the actual physical implementations,
treating them all with the same abstract description.

32Global phase factors are irrelevant; it is only the relative phase ϕ = ϕ1 − ϕ0 that matters. For
example, in a single-qubit phase gate Pϕ we usually factor out eiϕ0 , leaving us with the two diagonal
entries: 1 and eiϕ.

33cf. Figure 1.3. Note again that circuits are read left to right, but matrix composition goes right to
left. Since the first and last matrices/gates are the same (i.e. both are H), we don’t notice this, but
it’s important to note that the first (i.e. leftmost) H in the matrix product HPϕH corresponds to the
last (i.e. rightmost) H in the circuit diagram.
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1.7 Quantum decoherence

basis. Why? The answer is decoherence. The addition of probability ampli-
tudes, rather than probabilities, applies to physical systems which are completely
isolated. However, it is almost impossible to isolate a complex quantum system,
such as a quantum computer, from the rest of the world: there will always be
spurious interactions with the environment (such as heat transfer), and when we
add amplitudes, we have to take into account not only different configurations of
the physical system at hand, but also different configurations of the environment.

For example, consider an isolated system composed of a quantum computer
and its environment. The computer is prepared in some input state I and gener-
ates output O. Let us look at the following two scenarios:

1. The computer is isolated and quantum computation does not affect the envi-
ronment. The computer and the environment evolve independently from
each other and, as a result, the environment does not hold any physical
record of how the computer reached output O. In this case we add the
amplitudes for each of the two alternative computational paths.

I

O

z1

z2

p = |z1 + z2|2

2. Quantum computation affects the environment. The environment now holds
a physical record of how the computer reached output O, which results
in two final states of the composed system (computer and environment)
which we denote O1 and O2. We add the probabilities for each of the two
alternative computational paths.

I
O1

O2

z1

z2

p = |z1|2 + |z2|2

When quantum computation affects the environment (or vice versa), we have
to include the environment in our analysis, since it is now involved in the com-
putation. Depending on which computational path was taken, the environment
may end up in two distinct states. The computer itself may show output O,
but when we include the environment we have not one, but two, outputs, O1
and O2, denoting, respectively, “computer shows output O and the environment
knows that path 1 was taken” and “computer shows output O and the environ-
ment knows that path 2 was taken”. There are no alternative ways of reaching
O1 or O2, hence there is no interference, and the corresponding probabilities
read p1 = |z1|2 for O1, and p2 = |z2|2 for O2. The probability that the computer
shows output O, regardless the state of the environment, is the sum of of the
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1.8 Types of computation

two probabilities: p = p1 + p2. We have lost the interference term and, with
this, any advantages of quantum computation are also lost. In the presence of
decoherence, the interference formula in Equation (‡) is modified and reads

p = p1 + p2 + 2v√p1p2 cos(ϕ2 − ϕ1),

where the parameter v, called the visibility of the interference pattern, ranges
from 0 (the environment can perfectly distinguish between the two paths, i.e. to-
tal decoherence, or no interference) to 1 (the environment cannot distinguish
between the two paths, i.e. no decoherence, or full interference), with the val-
ues in between corresponding to partial decoherence.

p1 + p2

1

relative phase

probability p

We shall derive this formula later on, and you will see that v quantifies the de-
gree of distinguishability between O1 and O2. The more the environment knows
about which path was taken, the less interference we see, and the less we can
leverage the computational power of quantum effects.

Decoherence suppresses quantum interference.

Decoherence is chiefly responsible for our classical description of the world:
without interference terms we may as well add probabilities instead of ampli-
tudes (thus recovering the additivity axiom). While decoherence is a serious
impediment to building quantum computers, depriving us of the power of quan-
tum interference, it is not all doom and gloom: there are clever ways around
decoherence, such as quantum error correction and fault-tolerant methods, both
of which we will meet later.

1.8 Types of computation

One single qubit has two logical (i.e. non-superposition) states: |0〉 and |1〉. Bring
another qubit and the combined systems has four logical states: |00〉, |01〉, |10〉,
and |11〉. In general n qubits will give us 2n states, representing all possible
binary strings of length n. It is important to use subsystems — here qubits —
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1.8 Types of computation

rather than one chunk of matter, since, by operating on at most n qubits, we can
reach any of the 2n states of the composed system. Now, if we let the qubits
interact in a controllable fashion, then we are computing!

Think about computation as a physical process that evolves a prescribed initial
configuration of a computing machine, called INPUT, into some final configura-
tion, called OUTPUT. We shall refer to the configurations as states. Figure 1.4
shows five consecutive computational steps performed on four distinct states.

input

output

Figure 1.4: Deterministic computation.

That computation was deterministic: every time you run it with the same
input, you get the same output.

But a computation does not have to be deterministic — we can augment a
computing machine by allowing it to “toss an unbiased coin” and to choose its
steps randomly. It can then be viewed as a directed34 tree-like graph where each
node corresponds to a state of the machine, and each edge represents one step
of the computation, as shown in Figure 1.5

input

p = p1 + p2

Figure 1.5: Probabilistic computation.

The computation starts from some initial state (INPUT) and it subsequently
branches into other nodes representing states reachable with non-zero probabil-
ity from the initial state. The probability of a particular final state (OUTPUT) being
reached is equal to the sum of the probabilities along all mutually exclusive paths
which connect the initial state with that particular state. Figure 1.5 shows only
two computational paths, but, in general, there could be many more paths (here,
up to 256) contributing to the final probability.

Quantum computation can be represented by a similar graph, as in Figure
1.6.

34So we read left to right, and omit the arrowheads.
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1.8 Types of computation

input

p = p1 + p2
+2

√
p1p2 cos(φ2 − φ1)

Figure 1.6: Quantum computation.

For quantum computations, we associate with each edge in the graph the
probability amplitude that the computation follows that edge. The probability
amplitude that a particular path to be followed is the product of amplitudes per-
taining to the transitions in each step. The probability amplitude of a particular
final state being reached is equal to the sum of the amplitudes along all mutually
exclusive paths which connect the initial state with that particular state:

z =
∑

all paths k

zk.

The resulting probability, as we have just seen, is the sum of the probabilities
pk pertaining to each computational path modified by the interference terms. To
show this, note first that

p = |z|2 = z?z

=

 N∑
j=1

zj

?(
N∑

k=1

zk

)
= (z?

1 + z?
2 + · · ·+ z?

N ) (z1 + z2 + · · ·+ zN )

Multiplying out these two sums gives us terms of the form z?
i zj for 1 ⩽ i, j ⩽ N ,

so we can think of these as forming a square matrix and then split the sum into
the “diagonal” terms and the “off-diagonal” terms:

p =
∑

k

|zk|2︸ ︷︷ ︸
diagonal
elements

+
∑
k>j

(
z?

kzj + z?
j zk

)
︸ ︷︷ ︸

off-diagonal
elements

=
∑

k

|zk|2 +
∑
k>j

(
|zk||zj |ei(ϕj−ϕk) + |zj ||zk|ei(ϕk−ϕj)

)
=
∑

k

|zk|2 +
∑
k>j

(
|zk||zj |e−i(ϕk−ϕj) + |zj ||zk|ei(ϕk−ϕj)

)
=
∑

k

pk +
∑
k>j

2|zk||zj | cos(ϕk − ϕj)

=
∑

k

pk +
∑
k>j

2√pkpj cos(ϕk − ϕj)︸ ︷︷ ︸
interference terms

.
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Quantum computation can be viewed as a complex multi-particle quan-
tum interference involving many computational paths through a com-
puting device. The art of quantum computation is to shape the quan-
tum interference through a sequence of computational steps, enhancing
probabilities of the “correct” outputs and suppressing probabilities of the
“wrong” ones.

1.9 Computational complexity

Is there a compelling reason why we should care about quantum computation? It
may sound like an extravagant way to compute something that can be computed
anyway. Indeed, your standard laptop, given enough time and memory, can
simulate pretty much any physical process. In principle, it can also simulate
any quantum interference and compute everything that quantum computers can
compute. The snag is that this simulation is, in general, very inefficient. And
efficiency does matter, especially if you have to wait more than the age of the
universe for your laptop to stop and deliver an answer!35

In order to solve a particular problem, computers (classical or quantum) fol-
low a precise set of instructions called an algorithm. Computer scientists quan-
tify the efficiency of an algorithm according to how rapidly its running time, or
the use of memory, increases when it is given ever larger inputs to work on. An
algorithm is said to be efficient if the number of elementary operations taken to
execute it increases no faster than a polynomial function of the size of the input.36

We take the input size to be the total number of binary digits (bits) needed to
specify the input. For example, using the algorithm taught in elementary school,
one can multiply two n digit numbers in a time that grows like the number of
digits squared, n2. In contrast, the fastest-known method for the reverse opera-
tion — factoring an n-digit integer into prime numbers — takes a time that grows
exponentially, roughly as 2n. This is considered inefficient.

35The age of the universe is currently estimated to be around 13.772 billion years.
36Note that technological progress alone, such as increasing the speed of classical computers, will

never turn an inefficient (exponential scaling) algorithm into an efficient (polynomial scaling) algo-
rithm. Why?

49



1.9 Computational complexity

input size n

execution time

2n n2

polynomial
is good :)

exponential
is bad :(

The class of problems that can be solved in polynomial time by a deterministic
computer is represented by the capital letter P, for polynomial time. The class
of problems that can be solved in polynomial time by a probabilistic computer is
called BPP, for bounded-error probabilistic polynomial time.

It is clear that BPP contains P, since deterministic computation is a special case
of probabilistic computation in which we never consult the source of randomness.
When we run a probabilistic (a.k.a. randomised) computation many times on the
same input, we will not get the same answer every time, but the computation is
useful if the probability of getting the right answer is high enough.

Finally, the class of problems that can be solved in polynomial time by a quan-
tum computer is called BQP, for bounded-error quantum polynomial.37 Since a
quantum computer can easily generate random bits and simulate a probabilistic
classical computer, BQP certainly contains the class BPP (which itself contains the
class P). Here we are interested in problems that are in BQP but not known to be
in BPP. The most popular example of such a problem is factoring.

P

BPP

BQP

A quantum algorithm, discovered by Peter Shor in 1994, can factor n-digit
numbers in a number of steps that grows only as n2, as opposed to the 2n that we
have classically.38 Since the intractability of factorisation underpins the security
of many methods of encryption, Shor’s algorithm (see Section 10.11) was soon

37The phrase “bounded-error” has a precise meaning: the probability of error is at most 1/3.
38It must be stressed that not all quantum algorithms are so efficient. In fact many are no faster than

their classical counterparts. Which particular problems will lend themselves to quantum speed-ups is
an open question.
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1.10 Outlook

hailed as the first “killer application” for quantum computation: something very
useful that only a quantum computer could do. Since then, the hunt has been
on for interesting things for quantum computers to do, and at the same time, for
the scientific and technological advances that could allow us to build quantum
computers in reality.

1.10 Outlook

When the physics of computation was first investigated, starting in the 1960s,
one of the main motivations was a fear that quantum-mechanical effects might
place fundamental bounds on the accuracy with which physical objects could
render the properties of the abstract entities (such as logical variables and oper-
ations) that appear in the theory of computation. It turned out, however, that
quantum mechanics itself imposes no significant limits, and even breaks through
some of those problems that were imposed by classical physics. The quantum
world has a richness and intricacy that allows new practical technologies, and
new kinds of knowledge. In this course we will merely scratch the surface of the
rapidly developing field of quantum computation. We will concentrate mostly on
the fundamental issues and skip many experimental details. However, it should
be mentioned that quantum computing is a serious possibility for future genera-
tions of computing devices. At present it is not clear how and when fully-fledged
quantum computers will eventually be built, but this notwithstanding, the quan-
tum theory of computation already plays a much more fundamental role in the
scheme of things than its classical predecessor did. It is reasonable to argue that
anyone who seeks a fundamental understanding of either physics, computation,
or logic must incorporate into their world view the new insights brought by quan-
tum theory.

1.11 Remarks and exercises

1.11.1 A historical remark

Back in 1926, Max Born simply postulated the connection between amplitudes
and probabilities, but did not get it quite right on his first attempt. In the original
paper39 proposing the probability interpretation of the state vector (wavefunc-
tion) he wrote:

. . . If one translates this result into terms of particles only one
interpretation is possible. Θη,τ,m(α, β, γ) [the wavefunction for
the particular problem he is considering] gives the probability∗

for the electron arriving from the z direction to be thrown out
into the direction designated by the angles α, β, γ. . .
∗ Addition in proof: More careful considerations show that

39Max Born, “Zur Quantenmechanik der StoSSvorgänge”, Zeitschrift für Physik 37 (1926), pp. 893–
867.
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1.11 Remarks and exercises

the probability is proportional to the square of the quantity
Θη,τ,m(α, β, γ).

1.11.2 Modifying the Born rule

Suppose that we modified the Born rule, so that probabilities were given by the
absolute values of amplitudes raised to the power p (for some p > 0 not necessarily
equal to 2). Then physically admissible evolutions would still have to preserve
the normalisation of probability: mathematically speaking, they would have to
be isometries of p-norms.

The p-norm of a vector v = (v1, v2, . . . , vn), for p ∈ N, is defined as40

p
√
|v1|p + |v2|p + . . .+ |vn|p.

It is clear that any permutation of vector components and multiplication by phase
factors (i.e. unit complex numbers, of the form eiϕ for some ϕ) will leave any
p-norm unchanged. It turns out that these complex permutations are the only
isometries, except for one special case: p = 2. For p = 2, the isometries are exactly
unitaries, which form a continuous group; in all other cases we are restricted to
discrete permutations. We do not have to go into details of the proof since we
can see this result.

v1

v2

p
=
1

p
=
2

p
=
42

p = ∞

Figure 1.7: The unit spheres in the p-norm for p = 1, 2, 42,∞ (where the defi-
nition of the ∞-norm is slightly different; we will come back to this in Section
12.11.2).

40In the case p = 2, we recover the usual Pythagorean/Euclidean equation that we all know and
love: the distance of the point (v1, v2, . . . , vn) from the origin is

√
v2

1 + v2
2 + . . .+ v2

n; if we take
n = 2 as well then we recover the Pythagoras theorem.
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The image of the unit sphere must be preserved under probability preserving
operations. As we can see in Figure 1.7, the 2-norm is special because of its
rotational invariance (it describes a circle) — the probability measure picks out
no preferred basis in the space of state vectors. Moreover, it respects unitary
operations and does not restrict them in any way. If the admissible physical
evolutions were restricted to discrete symmetries, e.g. permutations, then there
would be no continuity, and no concept of “time” as we know it.

1.11.3 Many computational paths

A quantum computer starts calculations in some initial state, then follows n dif-
ferent computational paths which lead to the final output. The computational
paths are followed with probability amplitudes 1

ne
ikϕ, where ϕ is a fixed angle

0 < ϕ < 2π and k = 0, 1, ...n−1. Using the fact that 1+z+z2 + . . .+zn = 1−zn+1

1−z ,
show that the probability P of generating the output is given by

P = 1
n2

∣∣∣∣1− einϕ

1− eiϕ

∣∣∣∣2 = 1
n2

sin2(nϕ
2 )

sin2( ϕ
2 )

.

for 0 < ϕ < 2π, and that P = 1 when ϕ = 0. Plot the probability as a function of
ϕ.

1.11.4 Distant photon emitters

Imagine two distant stars, A and B, that emit identical photons. If you point a
single detector towards them you will register a click every now and then, but
you never know which star the photon came from. Now prepare two detectors
and point them towards the stars. Assume the photons arrive with the probabil-
ity amplitudes specified in Figure 1.8. Every now and then you will register a
coincidence: the two detectors will both click.

a. Calculate the probability of such a coincidence.
b. Now assume that z ≈ 1

r e
i2rπ/λ, where r is the distance between detectors

and the stars and λ is some fixed constant. How can we use this to measure
r?

A

B

1

2

z

z

zeiϕ

zeiϕ

Figure 1.8: Two photon detectors pointing at two stars, with the probabilities of
detection labelling the arrows.
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1.11.5 Quantum Turing machines

The classical theory of computation is essentially the theory of the universal Tur-
ing machine — the most popular mathematical model of classical computation.
Its significance relies on the fact that, given a possibly very large but still finite
amount of time, the universal Turing machine is capable of any computation that
can be done by any modern classical digital computer, no matter how powerful.
The concept of Turing machines may be modified to incorporate quantum compu-
tation, but we will not follow this path. It is much easier to explain the essence of
quantum computation talking about quantum logic gates and quantum Boolean
networks or circuits. The two approaches are computationally equivalent, even
though certain theoretical concepts, e.g. in computational complexity, are easier
to formulate precisely using the Turing machine model. The main advantage of
quantum circuits is that they relate far more directly to proposed experimental
realisations of quantum computation.

1.11.6 More time, more memory

A quantum machine has N perfectly distinguishable configurations. What is the
maximum number of computational paths connecting a specific input with a spe-
cific output after k steps of the machine?

Suppose you are using your laptop to add together amplitudes pertaining to
each of the paths. As k and N increase you may need more time and more
memory to complete the task. How does the execution time and the memory
requirements grow with k and N? In particular, which will be the thing that
limits you sooner: not having enough memory, not having enough time, or both?

1.11.7 Asymptotic behaviour: big-O

In order to make qualitative distinctions between how different functions grow
we will often use the asymptotic big-O notation. For example, suppose an algo-
rithm running on input of size n takes an2 + bn + c elementary steps, for some
positive constants a, b and c. These constants depend mainly on the details of the
implementation and the choice of elementary steps. What we really care about
is that, for large n, the whole expression is dominated by its quadratic term. We
then say that the running time of this algorithm grows as n2, and we write it
as O(n2), ignoring the less significant terms and the constant coefficients. More
precisely, let f(n) and g(n) be functions from positive integers to positive reals.
You may think of f(n) and g(n) as the running times of two algorithms on inputs
of size n. We say f = O(g),41 which means that f grows no faster than g, if there
is a constant c > 0 such that f(n) ⩽ cg(n) for all sufficiently large values of n.
Essentially, f = O(g) is a very loose analogue of f ⩽ g. In addition to the big-O
notation, computer scientists often use Ω for lower bounds: f = Ω(g) means
g = O(f). Again, this is a very loose analogue of f ⩾ g.

1. When we say that f(n) = O(logn), why don’t we have to specify the base
of the logarithm?

41f = O(g) is pronounced as “f is big-oh of g”.
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2. Let f(n) = 5n3 + 1000n+ 50. Is f(n) = O(n3), or O(n4), or both?
3. Which of the following statements are true?

a. nk = O(2n) for any constant k
b. n! = O(nn)
c. if f1 = O(g) and f2 = O(g), then f1 + f2 = O(g).

1.11.8 Polynomial is good, and exponential is bad

In computational complexity the basic distinction is between polynomial and ex-
ponential algorithms. Polynomial growth is good and exponential growth is bad,
especially if you have to pay for it. There is an old story about the legendary
inventor of chess who asked the Persian king to be paid only by a grain of ce-
real, doubled on each of the 64 squares of a chess board. The king placed one
grain of rice on the first square, two on the second, four on the third, and he was
supposed to keep on doubling until the board was full. The last square would
then have 263 = 9, 223, 372, 036, 854, 775, 808 grains of rice, more than has been
ever harvested on planet Earth, to which we must add the grains of all previous
squares, making the total number about twice as large. If we placed that many
grains in an unbroken line we would reach the nearest star Alpha Centauri, our
closest celestial neighbour beyond the solar system, about 4.4 light-years away.42

The moral of the story: if whatever you do requires an exponential use of
resources, you are in trouble.

1.11.9 Imperfect prime tester

There exists a randomised algorithm which tests whether a given number N is
prime.43 The algorithm always returns yes when N is prime, and the probability
it returns yes when N is not prime is ε, where ε is never greater than a half
(independently, each time you run the algorithm). You run this algorithm r times
(for the same value of N), and each time the algorithm returns yes. What is the
probability that N is not prime?

1.11.10 Imperfect decision maker

Suppose a randomised algorithm solves a decision problem, returning yes or no
answers. It gets the answer wrong with a probability not greater than 1

2−δ, where
δ > 0 is a constant.44 If we are willing to accept a probability of error no larger
than ε, then it suffices to run the computation r times, where r = O(log 1/ε).

42One light year (the distance that light travels through a vacuum in one year) is 9.4607 × 1015

metres.
43Primality used to be given as the classic example of a problem in BPP but not P. However, in 2002

a deterministic polynomial time test for primality was proposed by Manindra Agrawal, Neeraj Kayal,
and Nitin Saxena in the wonderfully titled paper “PRIMES is in P”. Thus, since 2002, primality has
been in P.

44This result is known as the Chernoff bound.
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x

1 + x

ex

1. If we perform this computation r times, how many possible sequences of
outcomes are there?

2. Give a bound on the probability of any particular sequence with w wrong
answers.

3. If we look at the set of r outcomes, we will determine the final outcome by
performing a majority vote. This can only go wrong if w > r/2. Give an
upper bound on the probability of any single sequence that would lead us
to the wrong conclusion.

4. Using the bound 1 − x ⩽ e−x, conclude that the probability of our coming
to the wrong conclusion is upper bounded by e−2rδ2

.
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2 Qubits

About quantum bits and quantum circuits, including the “im-
possible” square root of NOT, as well as an introduction to
single-qubit unitaries and rotations of the Bloch sphere, and
the implications concerning universal gates.

When studying classical information theory, one single bit isn’t usually the
most interesting object to think about — it’s either 0 or 1. Yet in the quantum case,
just working with one “quantum bit” (which we call a qubit) opens up a whole
world of interesting mathematics. In fact, single-qubit interference is arguably
the fundamental building block for quantum computing, and so deserves to be
thoroughly investigated and understood.

2.1 Composing quantum operations

In order to understand something in its full complexity it is always good to start
with the simplest case. Let us take a closer look at quantum interference in the
simplest possible computing machine: the one that has only two distinguishable
configurations — two quantum states — which we label as |0〉 and |1〉. We pre-
pare the machine in some input state, usually |0〉, and let it evolve: the machine
undergoes a prescribed sequence of computational steps, each of which induces
transitions between the two “computational states” |0〉 and |1〉. The machine then
ends in the output state |ψ〉 = α0|0〉+α1|1〉, meaning the two outputs, |0〉 and |1〉,
are reached with probability amplitudes α0 and α1, respectively. In the process of
computation each computational step U (also referred to as an operation) sends
state |k〉 to state |l〉, where k, l = 0, 1, but only with some amplitude Ulk. We
write this as

|k〉 7−→
∑

l

Ulk|l〉.

(watch out for the order of the indices). In words, the state |k〉 evolves into
the specific state |l〉 with probability amplitude Ulk and probability |Ulk|2, so the
whole situation is described by the superposition (i.e. the sum) of all of these.

Thus any computational step U of this machine can be described by a matrix
which tabulates all the transition amplitudes:

U =
[
U00 U01
U10 U11

]
.

The matrix element Ulk represents the amplitude of transition from state |k〉 to
state |l〉 (again, watch the order of indices). To be clear, the entries in this matrix
are not any random complex numbers: their moduli squared represent transition
probabilities, which in turn implies that such matrices must be unitary.45

45Recall that matrix U is called unitary if

U†U = UU† = 1
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2.1 Composing quantum operations

We can also describe U by drawing a diagram, which contains exactly the
same information as the matrix representation, but just in a different form:

|0⟩

|1⟩

|0⟩

|1⟩

U00

U11

U10

U01

Now how can we find some quantum interference to study? Consider two
computational steps, U and V . What is the amplitude that input |k〉 will generate
output |m〉? We have to check all computational paths leading from input |k〉 to
output |m〉 and add the corresponding amplitudes. For example, as you can see
in Figure 2.1, input |0〉 and output |1〉 are connected by the two computational
paths: |0〉 7→ |0〉 7→ |1〉 (amplitude V10U00) and |0〉 7→ |1〉 7→ |1〉 (amplitude
V11U10). Thus the total amplitude that input |0〉 gives output |1〉 is the sum
V10U00 + V11U10, and when we take the modulus squared of this expression we
will see the interference term.

|0⟩

|1⟩

|0⟩

|1⟩

|0⟩

|1⟩U11

V01U01

V00U00

U10

V11

V10

Figure 2.1: The composition of two computational steps, U and V , with the
possible paths from |0〉 to |1〉 highlighted.

In general, given U and V

|k〉 7−→
∑

l

Ulk|l〉

|l〉 7−→
∑
m

Vml|m〉

we can compose the two operations: we first apply U , and then V , to obtain

|k〉 7−→
∑

l

Ulk

(∑
m

Vml|m〉

)

=
∑
m

(∑
l

VmlUlk

)
|m〉

=
∑
m

(V U)mk|m〉.

where the adjoint or Hermitian conjugate U† of any matrix U with complex entries Uij is obtained
by taking the complex conjugate of every element in the matrix and then interchanging rows and
columns (U†

kl
= U?lk).
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2.2 Quantum bits, called “qubits”

If you want to hone your quantum intuition think about it the following way.
The amplitude that input |k〉 evolves to |m〉 via a specific intermediate state |l〉 is
given by VmlUlk (evolutions are independent so the amplitudes are multiplied).
This done, we have to sum over all possible values of l (the transition can oc-
cur in several mutually exclusive ways so the amplitudes are added) to obtain∑

l VmlUlk. Thus the matrix multiplication V U (watch the order of matrices)
in one swoop takes care of the multiplication and addition of amplitudes corre-
sponding to different computational paths.

2.2 Quantum bits, called “qubits”

Such a two-state machine that we have just described in abstract terms is usually
realised as a controlled evolution of a two-state system, called a quantum bit,
or qubit for short.46 For example, the state |0〉 may be chosen to be the lowest
energy state of an atom (the ground state), and state |1〉 a higher energy state
(the excited state). Pulses of light of the appropriate frequency, duration, and
intensity can take the atom back and forth between the basis states |0〉 and |1〉
(implementing logical NOT).

Some other pulses (say, half the duration or intensity) will take the atom into
states that have no classical analogue. Such states are called coherent superpo-
sitions of |0〉 and |1〉, and represent a qubit in state |0〉 with some amplitude α0
and in state |1〉 with some other amplitude α1. This is conveniently represented
by a state vector

|ψ〉 = α0|0〉+ α1|1〉 ↔
[
α0
α1

]

|0⟩ |1⟩ |ψ⟩

By Born’s rule, we know that α0 and α1 cannot be arbitrary complex numbers:
they must satisfy |α0|2 + |α1|2 = 1. This lets us draw the state vector “geometri-
cally”, using the fact that the locus of vectors of magnitude equal to 1 describes
a circle:

46More general n-state systems can also be of interest, and are sometimes called q-nits; three-
state systems in particular are sometimes called qutrits. In this book, however, we will only concern
ourselves with qubits, since they readily generalise the classical notion of bits (and also give us more
than enough interesting constructions to get started with!).
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|0⟩

|1⟩

|ψ⟩

α0

α1

But recall that amplitudes are complex numbers, and so α0 and α1 cannot
really be drawn as 1-dimensional real vectors on a flat screen or piece of paper;
the picture above provides good intuition, but to be fully accurate we would
need to draw it in four-dimensional space (or at least on some three-dimensional
paper).

A qubit is a quantum system in which the Boolean states 0 and 1 are
represented by a prescribed pair of normalised and mutually orthogonal
quantum states labelled by |0〉 and |1〉. The two states form a so-called
computational (or standard) basis, and so any other state of an isolated
qubit can be written as a coherent superposition

|ψ〉 = α0|0〉+ α1|1〉

for some α0 and α1 such that |α0|2 + |α1|2 = 1.
In practice, a qubit is typically a microscopic system, such as an atom,

a nuclear spin, or a polarised photon.

As we have already mentioned, any47 computational step, that is, any physi-
cally admissible operation U on a qubit, is described by a (2 × 2) unitary matrix
U . It modifies the state of the qubit as

|ψ〉 7−→ |ψ′〉 = U |ψ〉

which we can write explicitly as[
α′

0
α′

1

]
=
[
U00 U01
U10 U11

] [
α0
α1

]
That is, the operation U turns the state |ψ〉, with components αk, into the state
|ψ′〉 = U |ψ〉, with components α′

l =
∑

k Ulkαk.

2.3 Quantum gates and circuits

Atoms, trapped ions, molecules, nuclear spins and many other quantum objects,
which we call qubits, can be used to implement simple quantum interference

47Here we are talking about isolated systems. As you will soon learn, a larger class of physically
admissible operations is described by completely positive maps. It may sound awfully complicated
but, as you will soon see, it is actually very simple.
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(something which we have still yet to explain), and hence simple quantum com-
putation. There is no need to learn about physics behind these diverse technolo-
gies if all you want is to understand the basics of quantum computation. We may
now conveniently forget about any specific experimental realisation of a qubit
and just remember that any manipulations on qubits have to be performed by
physically admissible operations, and that such operations are represented by
unitary transformations.

A quantum (logic) gate is a device which performs a fixed unitary oper-
ation on selected qubits in a fixed period of time, and a quantum circuit
is a device consisting of quantum logic gates whose computational steps
are synchronised in time.

The size of such a circuit is the number of gates it contains. The gates
in a circuit can be divided into layers, where the gates in the same layer
operate at the same time, and the number of such layers is called the
depth of a circuit.

Some unitary U acting on a single qubit is represented diagrammatically as

U

This diagram should be read from left to right. The horizontal line represents a
qubit that is inertly carried from one quantum operation to another. We often call
this line a quantum wire. The wire may describe translation in space (e.g. atoms
travelling through cavities) or translation in time (e.g. a sequence of operations
performed on a trapped ion). A sequence of two gates acting on the same qubit,
say U followed by V , is represented by

U V

and is described by the matrix product V U (note the order in which we mul-
tiply the matrices).

2.4 Single qubit interference

Let us now describe what is probably the most important sequence of operations
performed on a single qubit: a generic single-qubit interference. It is typically
constructed as a sequence of three elementary operations:

1. the Hadamard gate
2. a phase-shift gate
3. the Hadamard gate again.

We represent it graphically as48

48We sometimes write the phase gate as Pϕ instead, if it makes the circuit easier to read.
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2.4 Single qubit interference

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

where the definitions of the Hadamard and phase-shift gates are as in Section
1.6:

Hadamard: H = 1√
2

[
1 1
1 −1

] |0〉 7−→ 1√
2 (|0〉+ |1〉)

|1〉 7−→ 1√
2 (|0〉 − |1〉)

Phase-shift: Pϕ =
[
1 0
0 eiϕ

]
|0〉 7−→ |0〉
|1〉 7−→ eiϕ|1〉

Note that we sometimes use the notation |+〉 and |−〉 when talking about
Hadamard gates, where

|+〉 := H|0〉 = 1√
2

(|0〉+ |1〉)

|−〉 := H|1〉 = 1√
2

(|0〉 − |1〉).

You will see this specific sequence of gates over and over again, for it is quan-
tum interference that gives quantum computation additional capabilities.49

Something that many explanations of quantum computing say is the fol-
lowing: “quantum computers are quicker because they evaluate all possi-
ble solutions at once, in parallel”. This is not accurate.

Firstly, quantum computers are not necessarily “quicker” than classical
computers, but can simply implement quantum algorithms, some of which
are quicker than their classical counterparts. Secondly, the idea that they
“just do all the possible computations at once” is false — instead, they
rely on thoughtfully using interference (which can be constructive or de-
structive) to modify the probabilities of specific outcomes.

The motto to keep in mind is that the power of quantum computing
comes from quantum interference.

The product of the three matrices HPϕH describes the action of the whole
circuit: it gives the transition amplitudes between states |0〉 and |1〉 at the input
and the output as

1√
2

[
1 1
1 −1

] [
1 0
0 eiϕ

]
1√
2

[
1 1
1 −1

]
= ei ϕ

2

[
cosϕ/2 −i sinϕ/2
−i sinϕ/2 cosϕ/2

]
49Indeed, you have already seen this sequence: recall our study of Ramsey interferometry (Section

1.5), and note how this is essentially the same!
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2.5 The square root of NOT

Given that our input state is almost always |0〉, it is sometimes much easier
and more instructive to step through the execution of this circuit and follow the
evolving state. The interference circuit effects the following sequence of trans-
formations:50

|0〉 H7−→ 1√
2

(|0〉+ |1〉)

Pφ7−→ 1√
2
(
|0〉+ eiφ|1〉

)
H7−→ cos φ

2
|0〉 − i sin φ

2
|1〉.

The first Hadamard gate prepares an equally weighted superposition of |0〉 and
|1〉 and the second Hadamard closes the interference by bringing the interfering
paths together. The phase shift ϕ in between effectively controls the entire evo-
lution and determines the output. The probabilities of finding the qubit in state
|0〉 or |1〉 at the output are, respectively,

Pr(0) = cos2 φ

2

Pr(1) = sin2 φ

2
.

This simple quantum process contains, in a nutshell, the essential ingredients of
quantum computation. This sequence (Hadamard–phase shift–Hadamard) will
appear over and over again. It reflects a natural progression of quantum com-
putation: first we prepare different computational paths, then we evaluate a
function which effectively introduces phase shifts into different computational
paths, then we bring the computational paths together at the output.

2.5 The square root of NOT

Now that we have poked our heads into the quantum world, let us see how
quantum interference challenges conventional logic. Consider the following task:

Design a logic gate that operates on a single bit and such that
when it is followed by another, identical, logic gate the output is
always the negation of the input.

Let us call the resulting logic gate the square root of NOT, or
√

NOT.

√
NOT

√
NOT

NOT

50We ignore the global phase factor ei
ϕ
2 .
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2.5 The square root of NOT

A simple check, such as an attempt to construct a truth table, should per-
suade you that there is no such operation in logic. It may seem reasonable to
argue that since there is no such operation in logic,

√
NOT is impossible. But it

does exist! Experimental physicists routinely construct such “impossible” gates in
their laboratories. It is a physically admissible operation described by the unitary
matrix51

√
NOT = 1

2

[
1 + i 1− i
1− i 1 + i

]
= 1√

2

[
ei π

4 e−i π
4

e−i π
4 ei π

4

]
.

Indeed,

1
2

[
1 + i 1− i
1− i 1 + i

]
1
2

[
1 + i 1− i
1− i 1 + i

]
=
[
0 1
1 0

]
.

0

1

0

1

1+i
2

1−i
2

1−i
2

1+i
2

1+i
2

1−i
2

1−i
2

1+i
2

=

0

1

0

1

√
NOT

√
NOT NOT

Figure 2.2: A computation that, when repeated, gives exactly NOT. An unlabelled
line means that it has probability 1, and the lack of a line corresponds to having
probability 0.

We could also step through the circuit diagram and follow the evolution of
the state vector:

|0⟩ 1√
2

[
ei

π
4 |0⟩+ e−iπ

4 |1⟩
]

|1⟩

√
NOT

√
NOT

Or, if you prefer to work with column vectors and matrices, you can write the
two consecutive application of

√
NOT to state |0〉 as52[

0
1

]
←−| 1√

2

[
ei π

4

e−i π
4

]
←−|

[
1
0

]
where each “←−|” denotes multiplication by 1√

2

[
ei π

4 e−i π
4

e−i π
4 ei π

4

]
.

One way or another, quantum theory explains the behaviour of
√

NOT, and so,
reassured by the physical experiments53 that corroborate this theory, logicians

51There are infinitely many unitary operations that act as the square root of NOT.
52Just remember that circuits diagrams are read from left to right, and vector and matrix operations

go from right to left.
53One such experiment (which we will soon discuss, in Section 3.1) is the so-called Mach-Zehnder

interferometer.
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2.6 Phase gates galore

are now entitled to propose a new logical operation
√

NOT. Why? Because a
faithful physical model for it exists in nature!

2.6 Phase gates galore

We have already met the generic phase gate Pϕ =
[
1 0
0 eiϕ

]
which acts via

|0〉 7−→ |0〉
|1〉 7−→ eiϕ|1〉

but there are three specific examples of Pϕ that are important enough to merit
their own names (two of which are rather confusing, at first glance).

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

π
4 -phase: S =

[
1 0
0 i

]
|0〉 7−→ |0〉
|1〉 7−→ i|1〉

π
8 -phase: T =

[
1 0
0 ei π

4

]
|0〉 7−→ |0〉
|1〉 7−→ ei π

4 |1〉

Recall that a phase gate Pϕ is only defined up to a global phase factor, and so
we can write its matrix either as

Pϕ =
[
1 0
0 eiϕ

]
or as

Pϕ =
[
e−i ϕ

2 0
0 ei ϕ

2

]

The first version is more common in the quantum information science community,
but the second one is sometimes more convenient to use, as it has determinant
1, and hence belongs to a group called SU(2). We will occasionally switch to the
SU(2) version of phase gates, and this is where the π

4 -phase and π
8 -phase gates get

their names, since their SU(2) versions have e∓iπ/4 and e∓iπ/8 (respectively) on
the diagonal, even though they are actually of phase π/2 and π/4 (respectively).
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2.7 Pauli operators

The groups SU(2) and SO(3).

We will soon explain what this group SU(2) is and how it relates to
another important group called SO(3), but it turns up in many places
throughout quantum physics, as well as mathematics in general. Other
places you might see SU(2) appear are when talking about quaternions
(which are somehow the next thing in the sequence R ↪→ C ↪→ H) and
two of the four “fundamental interactions”, namely electromagnetism
and the weak nuclear force, which get bundled together into something
known as electroweak interaction.

We will also eventually talk about how this aforementioned relation-
ship between SU(2) and SO(3) lets us describe rotations of things in three-
dimensional space. The abstract mathematical concept lying behind this
is one with a very lofty-sounding title indeed: representation theory of
Lie algebras. This lets us formally talk about things like (non-relativistic)
spin. As for this application of SU(2) in studying the electroweak interac-
tion, this is an example of something known as gauge theory.

The remaining gate, the phase-flip Z, is arguably the most important specific
phase gate, since it is one of the Pauli operators, which we will now discuss.

While we’re talking about phase, we should also justify why we keep on saying
“let us ignore the global phase factors”. In general, states differing only by a
global phase are physically indistinguishable, and so it is physical experimentation
that leads us to this mathematical choice of only defining things up to a global
phase.

Global phase.

If you are more mathematically minded, then we can justify ignoring the
global phase in a few other ways. Taking the axiomatic approach, where
values of physical observables correspond to eigenvalues of operators,
think about how the eigenvalues of a matrix A relate to those of the
matrix µA, where µ is a complex number with |µ| = 1. One “high-level”
way of dealing with this, in the language of gauge theory, is to talk of
invariance under gauge symmetry (here, in particular, we’re talking
about U(1) symmetries).

2.7 Pauli operators

Adding to our collection of common single-qubit gates, we now look at the three
Pauli operators54 σx, σy, and σz, also denoted by X, Y , and Z, respectively.
These three operators, combined with the identity, satisfy a lot of nice formal
properties, which we shall examine briefly here, and then return to in more detail

54Most of the time we refer to “operators” as “matrices”, where the implicit assumption is that we
are using the standard basis {|0〉, |1〉}.

66

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Electroweak_interaction
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Gauge_theory
https://en.wikipedia.org/wiki/Circle_group


2.8 From bit-flips to phase-flips, and back again

later on, in Section 3.3. After that, these operators will turn up everywhere, so
it’s good to get familiar with them!

Identity: 1 =
[
1 0
0 1

]
|0〉 7−→ |0〉
|1〉 7−→ |1〉

Bit-flip: X =
[
0 1
1 0

]
|0〉 7−→ |1〉
|1〉 7−→ |0〉

Bit-phase-flip: Y =
[
0 −i
i 0

]
|0〉 7−→ i|1〉
|1〉 7−→ −i|0〉

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

The identity is just a quantum wire, and we have already seen (Section 2.6)
the X and Z gates as the bit-flip and phase-flip, respectively. Note that, of the
X and Z gates, only the X gate has a classical analogue (namely the logical NOT
operator). The remaining gate, the Y operator, describes the combined effect of
both the bit- and the phase-flip: ZX = iY .

In fact, this is just one of the equations that the Pauli matrices satisfy. The
Pauli matrices are unitary and Hermitian, they square to the identity, and they
anticommute. By this last point, we mean that

XY = −Y X,
XZ = −ZX,
Y Z = −ZY.

As already mentioned, they satisfy ZX = iY , but also any cyclic permutation of
this equation (that is, replace X with Y , Y with Z, and Z with X, and repeat
this as many times as you wish).

These operators are also called sigma operators (usually when we use the
notation σx, σy, σz) or (when written as matrices in the standard basis, as we
have done) as Pauli spin matrices. They are so ubiquitous in quantum physics
that they should certainly be memorised.

2.8 From bit-flips to phase-flips, and back again

The Pauli Z gate is a special case of a phase gate Pϕ with ϕ = π. When we insert
it into the interference circuit we obtain

=H Z H X

If you wish to verify this, write the Hadamard gate as H = (X + Z)/
√

2 and
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2.9 Any unitary operation on a single qubit

use the properties of the Pauli operators. So the Hadamard gate turns phase-flips
into bit-flips, but it also turns bit-flips into phase-flips:

=H X H Z

Let us also add, for completeness, that HYH = −Y . You will see these iden-
tities again and again, especially when we discuss quantum error corrections.55

HXH = Z

HZH = X

HYH = −Y

2.9 Any unitary operation on a single qubit

There are infinitely many single-qubit unitaries, i.e. unitary operations that can
be performed on a single qubit. In general, any complex (n × n) matrix has n2

complex entries, and can thus be specified by 2n2 real independent parameters.56

The unitarity constraint removes n2 of these (why? the argument is that once we
specify n2 parameters, the rest are uniquely determined by solving the equation
that needs to be satisfied in order for the matrix to be unitary). So any unitary
(n× n) matrix has n2 real independent parameters.

Parameter counting.

This sort of argument — counting how many parameters determine a
family of matrices — is really an example of calculating the dimension of
a vector space. More generally, saying things like “imposing a polynomial
equation condition on the coefficients lowers the number of (complex)
parameters necessary by 1” is the bread and butter of algebraic geometry,
where we try to understand how satisfying polynomial equations can be
interpreted as geometrically modifying high-dimensional “shapes”.

In particular, we need four real parameters to specify a (2× 2) unitary matrix.
If we are prepared to ignore global phase factors (which we are!) then there are
only three real parameters left. The real question is, can we use this to construct
and implement any unitary on a single qubit in some simple way?

Delightfully, the answer is yes, we can.
Any unitary operation on a qubit (up to an overall multiplicative phase factor)

can be implemented by a circuit containing just two Hadamards and three phase
gates, with adjustable phase settings, as in Figure 2.3.

55Unitaries, such as H, that take the three Pauli operators to the Pauli operators via conjugation
form the so-called Clifford group, which we will meet later on, in Chapter 7. Which phase gate is in
the Clifford group of a single qubit?

56Any complex number z is uniquely specified by two real parameters, writing z = x + iy or
z = reiϕ, for example. This is an instance of the fact that C is a two-dimensional vector space over
R.
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2.10 The Bloch sphere

α φ β
H H

Figure 2.3: The universal circuit for unitary (2 × 2) matrices, exhibiting how
any such matrix is uniquely determined (up to a global phase) by three real
parameters.

If we multiply the matrices57 corresponding to each gate in the network we
obtain the single matrix

U(α, β, ϕ) =

[
e−i( α+β

2 ) cosϕ/2 −iei( α−β
2 ) sinϕ/2

−ie−i( α−β
2 ) sinϕ/2 ei( α+β

2 ) cosϕ/2

]
.

Any (2 × 2) unitary matrix (up to global phase) can be expressed in this form
using the three independent real parameters, α, β, and ϕ, which take values in
[0, 2π]. In order to see that this construction does what it claims, let us explore an
intriguing mathematical connection between single-qubit unitaries and rotations
in three dimensions.

2.10 The Bloch sphere

Unitary operations on a single qubit form a group. More precisely, the set of all
(2×2) unitary matrices forms a (non-abelian) group under matrix multiplication,
denoted by U(2). It turns out that compositions of single-qubit unitaries behave
pretty much the same as compositions of rotations in three dimensions. Techni-
cally speaking, we claim that U(2)/U(1) ∼= SO(3).58 That is, (2× 2) unitaries, up
to global phase, form a group which is isomorphic to the group of rotations in
three dimensions, which denoted by SO(3). This isomorphism helps to visualise
the actions of single-qubit gates.

There are many ways to introduce this isomorphism. Here we will just show
how to represent single-qubit state vectors in terms of Euclidean vectors in three
dimensions; later (in Section 3.4) we will actually relate unitary operations on
state vectors to rotations in this Euclidean space, demonstrating this isomor-
phism.59

Any single-qubit state can be written as |ψ〉 = α|0〉+ β|1〉, constrained by the
relation |α|2 + |β|2 = 1. This suggests a more natural parametrisation as

|ψ〉 = cos(θ/2)eiϕ0 |0〉+ sin(θ/2)eiϕ1 |1〉

(note that there is a good reason to use θ/2 instead of θ, and we we will explain
why later on). We can then factor out a global phase:

|ψ〉 = eiϕ0
(
cos(θ/2)|0〉+ sin(θ/2)eiϕ|1〉

)
,

57Remember that the order of matrix multiplication is reversed when compared to reading circuit
diagrams.

58Note that U(1) ∼= C×, where C× is the multiplicative group of invertible elements of the complex
numbers, i.e. the set C \ {0} with the group operation given by multiplication.

59That is, we have the group U(2) acting on the space of single-qubit state vectors, and we have
the group SO(3) acting on the unit sphere S2 ⊂ R3. In this chapter we will discuss how to go from
one space (i.e. the thing being acted upon) to the other; in Section 3.4 we will discuss how to go from
one group (i.e. the thing doing the acting) to the other.
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2.10 The Bloch sphere

and even remove it completely, since states that are identical up to a global phase
are physically indistinguishable.

The parametrisation in terms of θ and ϕ should remind you (if you are familiar
with it) of spherical polar coordinates for the surface of a sphere.

|0⟩

y

|1⟩

x

θ

φ

s⃗

Figure 2.4: The Bloch sphere, with the point ~s corresponding to |ψ〉 marked.

We call this sphere the Bloch sphere, and the unit vector ~s defined by θ and
ϕ the Bloch vector. This is a very useful way to visualise quantum states of a
single qubit and unitary operations that we perform on it. Any unitary action
on the state vector will induce a rotation of the corresponding Bloch vector. But
what kind of rotation?

We give a complete answer to this question soon, in Section 3.4, but we might
as well give some specific results here first, since some are easy enough to cal-
culate “by hand”. Here is one fundamental observation: any two orthogonal
state vectors appear on the Bloch sphere as two Bloch vectors pointing in opposite
directions. Now, the two eigenvectors of a single-qubit unitary U are always or-
thogonal, and so must define an axis running through the centre of the Bloch
sphere. This is the axis about which the Bloch vector is rotated when U acts on
the corresponding state vector. The rotation angle α is given by the eigenvalues
of U , which, up to a global phase factor, are of the form e∓iα/2.

It is instructive to work out few simple cases and get a feel for the rotations
corresponding to the most common unitaries. For example, it is easy to check
that a phase gate Pα acts by

cos θ
2
|0〉+ eiϕ sin θ

2
|1〉 7−→ cos θ

2
|0〉+ ei(ϕ+α) sin θ

2
|1〉.

The azimuthal angle changes from ϕ to ϕ+α, and so the Bloch sphere is rotated
anticlockwise by α about the z-axis. The Bloch vectors corresponding to the two
eigenvectors of Pα, namely |0〉 and |1〉, define the axis of the rotation.
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2.11 Drawing points on the Bloch sphere

s⃗ Pαs⃗

Figure 2.5: Phase gates Pα represent rotations of the Bloch sphere around the
z-axis.

As previously mentioned, the Pauli operator Z = σz is a special case of a
phase gate, and represents rotation by 180◦ (that is, π radians), about the z-axis.
You can also verify that X = σx, with eigenvectors (|0〉 ± |1〉)/

√
2, represents

rotation by 180◦ about the x-axis, and Y = σy, with eigenvectors (|0〉 ± i|1〉)/
√

2,
represents rotation by 180◦ about the y-axis. Again, note that, by the definition of
the axis, the points of intersection of these axes with the Bloch sphere are exactly
the eigenvectors of the operator.

How about the Hadamard gate? Like the Pauli operators, it squares to the
identity (H2 = 1), which implies that its eigenvalues are ±1. Thus it will corre-
spond to a rotation by 180◦. But about which axis? This time, rather than finding
eigenvectors of H, we notice that HXH = Z and HZH = X, thus H must
swap the x- and z-axes, turning rotations about the z-axis into rotations about
the x-axis, and vice versa. The Hadamard gate must then represent rotation by
180◦ about the diagonal (x+z)-axis. You may also notice that, after this rotation,
the y-axis points in the opposite direction, which seems to be related to another
identity: HYH = −Y . This is not a coincidence!

We will eventually show that the effect of the rotation represented by unitary
U on the Bloch vector with components sx, sy, sz is summarised in the formula

U(sxX + syY + szZ)U† = s′
xX + s′

yY + s′
zZ,

where s′
x, s′

y, and s′
z are the components of the rotated Bloch vector.

2.11 Drawing points on the Bloch sphere

We know that the state |0〉 corresponds to the north pole of the Bloch sphere, and
the state |1〉 to the south, but what about an arbitrary state |ψ〉 = α|0〉+β|1〉? By
definition, we can find the parametrisation in terms of θ and ϕ, but there is also
a neat “trick” for finding the point on the Bloch sphere that corresponds to |ψ〉,
which goes as follows.
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2.12 Composition of rotations

1. Calculate λ = β/α (assuming that α 6= 0, since otherwise |ψ〉 = |1〉).
2. Write λ = λx + iλy and mark the point p = (λx, λy) in the xy-plane (i.e. the

plane {z = 0}).
3. Draw the line going through the south-pole (which corresponds to |1〉) and

the point p. This will intersect the Bloch sphere in exactly one other point,
and this is exactly the point corresponding to |ψ〉.

Note that this lets you draw the point on the sphere, but doesn’t (immedi-
ately) give you the coordinates for it. That is, this method is nice for geometric
visualisation, but the parametrisation method is much better when it comes to
actually doing calculations.

2.12 Composition of rotations

We are now in a position to understand the circuit in Figure 2.3 in geometric
terms. It is a very useful fact of geometry (which we shall take for granted)
that any rotation in three-dimensional Euclidean space can be performed as a
sequence of three specific rotations: one about the z-axis, one about the x-axis,
and one more about z-axis. The circuit does exactly this:

α φ β
H H

The first phase gate effects rotation by α about the z-axis, the second phase
gate is sandwiched between the two Hadamard gates, and these three gates to-
gether effect rotation by ϕ about the x-axis, and, finally, the third phase gates
effects rotation by β about the z-axis. So we can implement any unitary U by
choosing the three phase shifts, α, ϕ, and β, which are known as the three Euler
angles.

2.13 A finite set of universal gates

The Hadamard gate and the phase gates, with adjustable phases, allow us to
implement an arbitrary single-qubit unitary exactly. The tacit assumption here is
that we have infinitely many phase gates: one gate for each phase. In fact, we
can pick just one phase gate, namely any phase gate Pα with the phase α that is
incommensurate60 with π. It is clear that repeated iteration of Pα can be used to
approximate any other phase gate to arbitrary accuracy: indeed, rotate the Bloch
sphere by α about the z-axis sufficiently many times and you end up as close as
you please to any other rotation about the z-axis.

If you want to be ε-close to the desired angle of rotation, then you may need to
repeat the rotation by α roughly 1/ε times. Indeed, within n applications (for61

60That is, there do not exist any m,n ∈ Z such that mα = nπ. For example, it suffices to take α to
be rational, since π is irrational.

61The notation x � y is rather imprecise, but it basically means “x is much much larger than y,
and, in particular, large enough for whatever we are claiming to be true”.
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2.14 Remarks and exercises

nα � 2π) of Pα, we expect the accessible angles to be approximately evenly
distributed within the range [0, 2π], i.e. any angle of rotation can be achieved to
an accuracy of ε = 2π/n by using up to n ≈ 1/ε applications of Pα. So we can use
just one phase gate to approximate the three phase gates in the circuit in Figure
2.3.

There are other ways of implementing irrational rotations of the Bloch sphere.
For example, take the Hadamard gate and the T gate (also known as the π/8-
phase gate, despite being the phase gate Pϕ for ϕ = π/4 as we saw earlier in
Section 2.6). You can check that the compositions THTH and HTHT represent
rotations by angles which are irrational multiples of π, about two different axes.
We can then compose a sequence of these two rotations to approximate any other
rotation of the sphere. This may look very nice in theory, but there are issues with
the actual physical implementation of this approach: in reality, all the gates in
the circuit will operate with only finite precision, and the phase gates will deviate
from implementing the required irrational rotations. It turns out, however, that
we can tolerate minor imperfections; the final result will not be that far off.

2.14 Remarks and exercises

2.14.1 One simple circuit

Let B be the matrix

B = 1√
2

[
1 i
i 1

]
.

1. Show that B is unitary.

2. Find the overall unitary corresponding to the circuit62

π/2
|0⟩ H B |1⟩

2.14.2 Change of basis

Write the state

|ψ〉 = 3
5
|0〉+ 4

5
|1〉

as a superposition of the states |±〉 = (|0〉±|1〉)/
√

2. In other words, find α, β ∈ C
such that

|ψ〉 = α|+〉+ β|−〉.

62If you get the answer
[

0 1
i 0

]
then you performed the matrix multiplication in the wrong order!
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2.14 Remarks and exercises

2.14.3 Operators as unitary matrices

Say we have a linear operator that acts on a qubit as follows:

|0〉 7→ α|0〉+ β|1〉
|1〉 7→ β?|0〉 − α?|1〉.

1. Show that this linear operator is equal to

M =
(
α|0〉+ β|1〉

)
〈0|+

(
β?|0〉 − α?|1〉

)
〈1|

by calculating M |0〉 and M |1〉.
2. If we pick the standard basis

|0〉 ≡
[
1
0

]
|1〉 ≡

[
0
1

]
then what is the matrix representation of M?

3. Verify that M is unitary.

2.14.4 Completing an orthonormal basis

Imagine that some quantum system has four energy levels: |0〉, |1〉, |2〉, and |3〉.
Consider the three orthonormal vectors

|ψ1〉 = 1√
3

(|0〉+ |1〉+ |2〉)

|ψ2〉 = 1√
2

(|0〉 − |2〉)

|ψ3〉 = |3〉.

Find a vector |ψ4〉 such that {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉} is an orthonormal basis.

2.14.5 Some sums of inner products

Let {|v1〉, . . . , |vN 〉} be an orthonormal basis. Evaluate the following:63

1.
∑N−1

k=1 k2〈vN−1|vk〉

2.
∑N−1

k=1 k2〈vN |vk〉

3.
∑N

k=1〈vN−1|vk〉〈vk|vN−1〉

4.
∑N−1

j,k=1〈vj |vk〉

63All of your answers should be numbers (in fact, they’ll all even be integers).
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2.14 Remarks and exercises

2.14.6 Some circuit identities

1. Prove the following circuit identities, ignoring any global phase:

α β
=

α+ β

α
=

−α
X X

2. Using the above, find θ1 and θ2 such that

θ1 θ2
=

θ1 θ2
=

δ
X X

for some value δ.

3. We can think of the second identity in the previous question as an imple-
mentation of “if the two X gates are absent then do nothing; otherwise
implement the phase gate Pδ”. Given that unitary matrices are normal,
adapt this circuit so that implements “if the two X gates are absent then
do nothing; otherwise implement the unitary U” where U is a one-qubit
unitary.

2.14.7 Unitaries preserve length

Let M be a linear operator that sends an orthonormal basis {|u1〉, . . . , |uN 〉} to a
set of states {|v1〉, . . . , |vn〉} where each |vi〉 is of length 1.

1. Show that the length of the vector M(|u1〉+ |u2〉)/
√

2 is√
1 + Re〈v1|v2〉.

2. Find a correctly normalised superposition |ψ〉 = λ(α|u1〉+ β|u2〉) such that
M |ψ〉 is of length√

1 + Im〈v1|v2〉.

3. Using the above, show that, for all |ψ〉 of length 1, the vector M |ψ〉 is of
length 1 if and only if M is unitary.
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2.14 Remarks and exercises

2.14.8 Unknown phase

Consider the usual quantum interference circuit:

φ
|0⟩ H H |1⟩

Suppose you can control the input of the circuit and measure the output, but
you do not know the phase shift ϕ introduced by the phase gate. You prepare
input |0〉 and register output |1〉. What can you say about ϕ?

Now you are promised that ϕ is either 0 or π. You can run the circuit only
once to find out which of the two phases was chosen. Is it possible to then always
correctly guess whether ϕ was 0 or π?

This problem forms the basis for a lot of material later on: most quantum
algorithms build upon it. We will return to it again and again in Chapter
10.

2.14.9 One of the many cross-product identities

When working with three-dimensional geometry, the cross product of vectors is
very useful, so here is an exercise to help you get used to working with it.

Let’s say we want to derive the identity64

(~a · ~σ)(~b · ~σ) = (~a ·~b)1 + i(~a×~b) · ~σ.

First, notice that the products of Pauli matrices can be written succinctly as

σiσj = δij1 + iεijk σk,

where δij is Kronecker delta (equal to 0 if i 6= j, and to 1 if i = j) and εijk is the
Levi-Civita symbol:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)

0 if i = j, or j = k, or k = i

That is, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), it is −1 if it is an odd
permutation, and it is 0 if any index is repeated. The Levi-Civita symbol is anti-
symmetric, meaning when any two indices are changed, its sign alternates. Then
recall that the scalar (dot) product and vector (cross) product of two Euclidean

64Hint: all you need here are the Pauli matrices’ commutation and anticommutation relations, but it
is instructive to derive the identity using the component notation, and below we give a sketch of how such
a derivation would go.

76

https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Levi-Civita_symbol#Three_dimensions


2.14 Remarks and exercises

vectors ~a and ~b can be written, in terms of the components, as

~a ·~b =
3∑

i=1
aibi

(~a×~b)i =
3∑

j,k=1

εijkajbk.

The rest is rather straightforward:

(~a · ~σ)(~b · ~σ) =
∑
i,j

aibjσiσj = . . . .
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3 Quantum gates

About understanding the square root of NOT via a physical im-
plementation using symmetric beam-splitters. More about the
Bloch sphere, via the omnipresent Pauli matrices, which can be
described in a more algebraic way.

Before introducing too many new ideas, we first want to study two things
we’ve already seen in more depth, namely the square root of NOT, and the Bloch
sphere.

The goal for the latter is to be able to visualise sequences of unitary operations
on a qubit as sequences of rotations, and to see the action of some quantum
circuits without getting engaged in lengthy calculations; this also leads us back
to the question of universal sets of gates. The goal for the former is to study a
way of implementing this gate using physical experiments, and then studying a
related construction (the so-called Mach–Zehnder interferometer).

3.1 Beam-splitters: physics against logic

A symmetric beam-splitter is a cube of glass which reflects half the light that
impinges upon it, while allowing the remaining half to pass through unaffected.
For our purposes it can simply be viewed as a device that has two input and two
output ports, which we label with |0〉 and |1〉 as in Figure 3.1.

|0⟩

|1⟩

|0⟩

|1⟩

Figure 3.1: A symmetric beam-splitter, with input ports on the bottom and the
left sides, and output ports on the top and the right sides.

When we aim a single photon at such a beam-splitter using one of the in-
put ports, we notice that the photon doesn’t split in two: we can place photo-
detectors wherever we like in the apparatus, fire in a photon, and verify that if
any of the photo-detectors registers a hit, none of the others do. In particular, if
we place a photo-detector behind the beam-splitter in each of the two possible
exit beams, the photon is detected with equal probability at either detector, no
matter whether the photon was initially fired into input port |0〉 or |1〉.

If we fire the photon into the input port |0〉, it may seem obvious that, at the
very least, the photon is either in the transmitted beam |0〉 or in the reflected
beam |1〉 during any one run of this experiment. Thus we may be tempted to
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3.1 Beam-splitters: physics against logic

think of the beam-splitter as a random binary switch which, with equal probabil-
ity, transforms any binary input into one of the two possible outputs. However, as
you might expect (now having already learnt about the double-slit experiment),
this is not necessarily the case. Let us introduce a second beam-splitter and place
two normal mirrors so that both paths intersect at the second beam-splitter, as
well as putting a detector at each output port of the second beam-splitter (see
Figure 3.2).

1

0

|0⟩

|1⟩

Figure 3.2: Two beam-splitters with mirrors, arranged so that the photon travels
through both, along with two detectors. We label the detectors in such a way
that, if a photon enters input |j〉 and is transmitted (not reflected) through both
beam-splitters, then it is detected by detector j.

Recall the Kolmogorov additivity axiom in classical probability theory: when-
ever something can happen in several alternative ways, we add probabilities for
each way considered separately. We might argue that a photon fired into the in-
put port |0〉 can reach the detector 0 in two mutually exclusive ways: either by two
consecutive reflections or by two consecutive transmissions. Each reflection hap-
pens with probability 1/2, and each transmission happens with probability 1/2,
so the total probability of a photon fired into input |0〉 reaching detector 0 is the
sum of the probability of the two consecutive reflections (1/2 × 1/2 = 1/4) and
the probability of the two consecutive transmissions (1/2 × 1/2 = 1/4), which
gives a probability of 1/2. This is summarised in Figure 3.3, and makes perfect
sense — a random switch followed by a random switch should give nothing else
but a random switch.

However, if we set up such an experiment in a lab, this is not what happens!
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3.1 Beam-splitters: physics against logic

There is no reason why probability theory (or any other a priori math-
ematical construct for that matter) should make any meaningful state-
ments about outcomes of physical experiments.

1

0

|0⟩

two consecutive transmissions:

probability = 1√
2

1√
2
= 1

2

1

0

|0⟩

two consecutive reflections:

probability = 1√
2

1√
2
= 1

2

Figure 3.3: The two possible classical scenarios. Note that this is not what actu-
ally happens in the real physical world!

In experimental reality, when the optical paths between the two beam-splitters
are the same, the photon fired from input port |0〉 always strikes detector 1 and
never detector 0 (and the photon fired from input port |1〉 always strikes detector
0 and never detector 1). In other words, a beam-splitter is a physical implementa-
tion of a

√
NOT gate.

The action of the beam-splitter — in fact, the action of any quantum device
— can be described by tabulating the amplitudes of transitions between its input
and output ports.65

B =
[
B00 B01
B10 B11

]
=

[
1√
2

i√
2

i√
2

1√
2

]
.

The matrix element Blk, where k, l = 0, 1, represents the amplitude of transition
from input |k〉 to output |l〉 (watch the order of indices). Each reflection (entries
B01 and B10) happens with amplitude i/

√
2, and each transmission (entries B00

and B11) happens with amplitude 1/
√

2. So the total amplitude that a photon
fired from input port |0〉 will reach detector 0 is the sum of the amplitude of the
two consecutive reflections (i/

√
2× i/

√
2 = −1/2) and the amplitude of the two

consecutive transmissions (1/
√

2× 1/
√

2 = 1/2) which gives the total amplitude
0, and thus a resulting probability of zero.

65Note that gate B is not the same square root of NOT as the one we have already seen. In fact,
there are infinitely many ways of implementing this “impossible” logical operation.
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3.2 Beam-splitters: quantum interference, revisited

Unlike probabilities, amplitudes can cancel each other out, witnessing
destructive interference.

We can now go on and calculate the amplitude that the photon will reach
detector 1. In this case we will get i, which gives probability 1 (since |i|2 = 1).
We can then switch to input |1〉 and repeat our calculations. All possible paths
and associated amplitudes are shown in Figure 3.4.

|0⟩

|1⟩

|0⟩

|1⟩

1√
2

i√
2

i√
2

1√
2

1√
2

i√
2

i√
2

1√
2

B B

Figure 3.4: All possible transitions and their amplitudes when we compose two
beam-splitters, as described by the matrix B above.

However, instead of going through all the paths in this diagram and linking
specific inputs to specific outputs, we can simply multiply the transition matrices:

BB =

[
1√
2

i√
2

i√
2

1√
2

][
1√
2

i√
2

i√
2

1√
2

]
=
[
0 i
i 0

]
= iX

where

X = NOT =
[
0 1
1 0

]
.

Bit-flip: NOT ≡ X
[
0 1
1 0

]

Beam-splitter:
√

NOT ≡ B 1√
2

[
1 i
i 1

]

3.2 Beam-splitters: quantum interference, revisited

One of the simplest quantum devices in which quantum interference can be con-
trolled is a Mach–Zehnder interferometer — see Figure 3.5.66

66You can play around with a virtual Mach–Zehnder interferometer at Quantum Flytrap’s Virtual
Lab. (There are also lots of other things you can do in this virtual lab — go have a look!).
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3.2 Beam-splitters: quantum interference, revisited

1

0

φ0

φ1

Input |0⟩

Input |1⟩

Figure 3.5: The Mach–Zehnder interferometer, with the input photon repre-
sented by the coloured dot. This experimental set-up is named after the physicists
Ludwig Mach and Ludwig Zehnder, who proposed it back in 1890s.

This is a slightly modified version of the construction shown in Figure 3.2,
where we have added two slivers of glass of different thickness into each of the
optical paths connecting the two beam-splitters. The slivers are usually referred
to as “phase shifters”, and their thicknesses ϕ0 and ϕ1 are measured in units
of the photon’s wavelength multiplied by 2π. These phase shifters are so called
because they modify the probability amplitudes by phase factors eiϕ0 and eiϕ1 ,
respectively. The only other change that we make is replacing the symmetric
beam-splitters with non-symmetric ones, i.e. they no longer transmit or reflect
with equal probability, but instead reflect with some (fixed) probability ampli-
tude i

√
R and transmit with some probability amplitude

√
T , where R + T = 1.

As before, the two input ports of the interferometer are labelled as |0〉 and |1〉,
and each of the two output ports, also labelled as 0 and 1, terminates in a pho-
todetector.

A photon (the coloured dot in the figure) impinges on the first beam-splitter
from one of the two input ports (here input |0〉) and begins its journey towards
one of the two photodetectors. Let67 Uij denote the probability amplitude that
the photon initially in input port j = 0, 1 ends up in detector i = 0, 1.

In quantum theory we almost always work with probability amplitudes,
and only once we have a full expression for the amplitude of a given out-
come do we square its absolute value to get the corresponding probability.

For example, let us calculate U00. We notice that there are two alternative

67We will often use i as an index even though it is also used for the imaginary unit. Hopefully, no
confusion will arise for it should be clear from the context which one is which.
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3.2 Beam-splitters: quantum interference, revisited

ways for the photon in the input port |0〉 to end up at the output port 0: It can
take the lower path, through the phase shifter ϕ0, or the upper path, through
the phase shifter ϕ1. The lower path implies two consecutive transmissions at
the beam-splitters and the phase factor eiϕ0 , whereas the upper path implies two
consecutive reflections and the phase factor eiϕ1 . Once the photon ends in the
output port 0 there is no way of knowing which path was taken, so we add the
amplitudes pertaining to each path. The resulting amplitude is

U00 =
√
Teiϕ0

√
T + i

√
Reiϕ1i

√
R,

and the corresponding probability P00 = |U00|2 is

P00 =
∣∣∣√Teiϕ0

√
T + i

√
Reiϕ1i

√
R
∣∣∣2

=
∣∣Teiϕ0 −Reiϕ1

∣∣2
= T 2 +R2 − 2TR cos(ϕ1 − ϕ0).

The “classical” part of this expression, T 2 + R2, basically says that the pho-
ton undergoes either two consecutive transmissions with probability T 2, or two
consecutive reflections with probability R2. The probability of being transmitted
through any phase shifter is always 1, hence the phase shifters play no role in the
classical description of this process. But the classical description is not correct
— it doesn’t agree with physical experiments! — whence the interference term
2TR cos(ϕ1 − ϕ0) in which the phase shifters play the essential role. Depending
on the relative phase ϕ = ϕ1−ϕ0 the probability that the detector 0 “clicks” after
having fired a photon into input |0〉 can vary from (T −R)2 to 1.

0 π 2π

(T −R)2

T 2 +R2

1

relative phase

P00

If we do not care about the experimental details, we can represent the action
of the Mach–Zehnder interferometer in terms of a diagram, as in Figure 3.6.
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3.2 Beam-splitters: quantum interference, revisited

first beamsplitter phase second beamsplitter

|0⟩

|1⟩

|0⟩

|1⟩

eiφ0

eiφ1

i
√
R

i
√
R

i
√
R

i
√
R

√
T

√
T

√
T

√
T

Figure 3.6: The Mach–Zehnder interferometer represented as an abstract dia-
gram.

Here we can follow, from left to right, the multiple different paths that a pho-
ton can take in between specific input and output ports. The amplitude along any
given path is just the product of the amplitudes pertaining to the path segments
(Rule 1, Section 1.1), while the overall amplitude is the sum of the amplitudes
for the many different paths (Rule 2, Section 1.1). You can, for example, see that
the probability amplitude U10 is given by

U10 =
√
Teiϕ0i

√
R+ i

√
Reiϕ1

√
T

and the corresponding probability is

P10 =
∣∣∣√Teiϕ0i

√
R+ i

√
Reiϕ1

√
T
∣∣∣2

= 2RT + 2RT cos(ϕ1 − ϕ0).

Again, the first term is of “classical” origin and represents probabilities corre-
sponding to each path: one reflection followed by one transmission plus one
transmission followed by one reflection, that is, RT + TR = 2RT . The second
term is the interference term. Clearly, the photon entering port |0〉 will end up in
one of the two detectors, hence

P00 + P10 = R2 + 2RT + T 2 = (T +R)2 = 1.

The action of the interferometer is thus fully described68 by the four probability
amplitudes Uij (i, j = 0, 1).

The most popular instance of a Mach–Zehnder interferometer involves only
symmetric beam-splitters (i.e. R = T = 1

2 ) and is fully described by the matrix69

U =
[
− sinϕ/2 cosϕ/2
cosϕ/2 sinϕ/2

]
where ϕ = ϕ1 − ϕ0.

68Any isolated quantum device can fully be described by the matrix of probability amplitudes Uij
that input j generates output i.

69Really, when you write down the matrices describing the action of the symmetric beam-splitters
and the phase gates, and then multiply them all together (which is an exercise worth doing!), you

actually obtain iei
ϕ0+ϕ1

2 U rather than U , but as we have already said, we can ignore global phase
factors.
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3.3 The Pauli matrices, algebraically

3.3 The Pauli matrices, algebraically

Matrices (of a fixed size, with entries in a fixed field) form a vector space: you
can add them, and you can multiply them by a scalar. One possible choice of a
basis in the vector space of (2× 2) matrices (over any field) is the set of matrices
{M00,M01,M10,M11}, where the entries ofMij are all 0 except for the ij-th entry,
which is 1 (e.g. M01 = [ 0 1

0 0 ]). However, it turns out that there is a different basis
which offers lots of insights into the structure of the general single-qubit unitary
transformations, namely {1, X, Y, Z}, i.e. the identity matrix and the three Pauli
matrices.70 We have already defined the Pauli operators (Section 2.7), but we
recall their definition here.

Identity: 1 =
[
1 0
0 1

]
|0〉 7−→ |0〉
|1〉 7−→ |1〉

Bit-flip: X =
[
0 1
1 0

]
|0〉 7−→ |1〉
|1〉 7−→ |0〉

Bit-phase-flip: Y =
[
0 −i
i 0

]
|0〉 7−→ i|1〉
|1〉 7−→ −i|0〉

Phase-flip: Z =
[
1 0
0 −1

]
|0〉 7−→ |0〉
|1〉 7−→ −|1〉

Recall that the Pauli operators (as well as the identity operator) are unitary
and Hermitian, square to the identity, and anticommute.71

The fact that {1, X, Y, Z} forms a basis for the space of (2×2) complex matri-
ces is equivalent to the statement that any (2× 2) complex matrix A has a unique
expansion in the form

A =
[
a0 + az ax − iay

ax + iay a0 − az

]
= a01 + axσx + ayσy + azσz.

for some complex numbers a0, ax, ay, and az.
If we define vectors ~a = (ax, ay, az) and ~σ = (σx, σy, σz), then we can write

the above expansion very concisely:

A = a01 + ~a · ~σ.
70In this chapter we are concerned only with the single-qubit Pauli operators. There are analogous

multi-qubit Pauli operators, but be careful: these do not satisfy all the same properties! For example,
anticommutativity (explained below) is special to the single-qubit case.

71Anticommutativity says that

XY + Y X = 0,
XZ + ZX = 0,
Y Z + ZY = 0.
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The algebraic properties of the Pauli matrices can then be neatly compacted (see
Exercise 3.7.4) into a single expression:

The multiplication rule:

(~a · ~σ) (~b · ~σ) = (~a ·~b) 1 + i(~a×~b) · ~σ.

Recall that the trace of a square matrix A, denoted by trA, is defined to be
the sum of the elements on the main diagonal of A, and defines a linear mapping:
for any scalars α and β,

tr(αA+ βB) = α trA+ β trB.

Moreover, the trace is invariant under cyclic permutations: e.g.

tr(ABC) = tr(BCA) = tr(CAB).

Note, however, that this does not imply that e.g. tr(ABC) = tr(ACB).
We can also define an inner product on the vector space of matrices:72

The Hilbert–Schmidt product of A and B is given by

(A|B) = 1
2

trA†B.

We will return to the algebraic structure of these Pauli matrices in Chapter
7, before explaining how they turn out to be useful for things such as quantum
error correction.

3.4 Unitaries as rotations

Now we can finish off our previous discussion (Section 2.10) of the Bloch sphere:
we know how single-qubit state vectors correspond to points on the Bloch sphere,
but now we can study how (2×2) unitary matrices correspond to rotations of this
sphere.

Geometrically speaking, the group of (2×2) unitaries U(2) is a three-dimensional
sphere S3 in R4. We often make the additional assumption that the determinant
is equal to +1, and can then express these matrices as

U = u01 + i(uxσx + uyσy + uzσz).

Such matrices form a very important subgroup of U(2), called the special (mean-
ing the determinant is equal to 1) unitary group, and denoted by SU(2).

72The 1
2 coefficient in this definition is simply the normalisation factor, which changes if we consider

multi-qubit Pauli operators. It is not necessary, but simplifies some calculations.
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3.4 Unitaries as rotations

In quantum theory, any two unitary matrices that differ by some global multi-
plicative phase factor represent the same physical operation, so we are “allowed
to” fix the determinant to be +1, and thus restrict ourselves to considering matri-
ces in SU(2). This is a sensible approach, practised by many theoretical physicists,
but again, for some historical reasons, this convention is not usually followed in
quantum information science. For example, phase gates are usually written as

Pα =
[
1 0
0 eiα

]
rather than

Pα =
[
e−i α

2 0
0 e i α

2

]
Still, as we’ve already mentioned, sometimes the T gate

T =
[
1 0
0 eiπ/4

]
=
[
e−iπ/8 0

0 eiπ/8

]
is called the π/8 gate, because of its SU(2) form.

Here we’re going to work with SU(2), so that we can write any (2×2) unitary
(i.e. up to an overall phase factor) as

U = u01 + i(uxσx + uyσy + uzσz) = u01 + i~u · ~σ

where u2
0 + |~u|2 = 1.

This last restriction on u0 and ~u allows us to parametrise u0 and ~u in terms of
a real unit vector ~n, parallel to ~u, and a real angle θ, in such a way that73

U = (cos θ)1 + (i sin θ)~n · ~σ.

An alternative way of writing this expression is

U = eiθ~n·~σ,

as follows from the power-series expansion of the exponential. Indeed, any uni-
tary matrix can always be written in the exponential form as

eiA = 1 + iA+ (iA)2

1 · 2
+ (iA)3

1 · 2 · 3
. . .

=
∞∑

n=0

(iA)n

n!

where A is an anti-Hermitian matrix. This is analogous to writing complex num-
bers of unit modulus as eiα.

Now comes a remarkable connection between two-dimensional unitary ma-
trices and ordinary three-dimensional rotations:

73As you can see, we often make progress and gain insights simply by choosing a convenient
parametrisation.
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3.4 Unitaries as rotations

The unitary U = eiθ~n·~σ represents a clockwise rotation through the angle
2θ about the axis defined by ~n.

The fact that the angle is 2θ, not θ, comes from our choice of parametrisation;
the “better” convention74 is to parametrise so that U = ei −θ

2 ~n·~σ, and then the
direction follows from the right-hand rule, and the rotation corresponds to that
in the Bloch sphere.

For example,

eiθσx =
[

cos θ i sin θ
i sin θ cos θ

]
eiθσy =

[
cos θ sin θ
− sin θ cos θ

]
eiθσz =

[
eiθ 0
0 e−iθ

]

represent rotations by 2θ about the x-, y- and z-axis, respectively. In fact, these
rotations are so important that they get a name.75

Rotating a state about a Pauli axis (the x-, y-, or z-axes) is known as a
Pauli rotation. We can write these as

eiθσk = (cos θ)1 + (i sin θ)σk

for k ∈ x, y, z.

74It is a good exercise to show that you can write any U in this way as well.
75Be careful: the precise definition can vary a lot between different texts, with some including a

factor of 1/2, or even a negative sign.
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3.4 Unitaries as rotations

n⃗

s⃗

Figure 3.7: The matrix eiθ~n·~σ rotates the vector ~s about ~n by angle 2θ, sending it
to a point on the blue circle, which is defined by being the unique circle whose
centre is passed through by ~n and containing ~s.

Now we can show that the Hadamard gate

H = 1√
2

[
1 1
1 −1

]
= 1√

2
(σx + σz)

= (−i)ei π
2

1√
2

(σx+σz)

represents (since we can ignore the global phase factor of −i) rotation about the
diagonal (x+ z)-axis by an angle of π.

In somewhat abstract terms, we make the connection between unitaries and
rotations by looking how the unitary group U(2) acts on the three-dimensional
vector space V of (2 × 2) Hermitian matrices with zero trace. All such matrices
S ∈ V can be written as S = ~s · ~σ for some real ~s, i.e. each matrix is represented
by a Euclidean vector ~s in R3.

Traceless matrices.

The vector space of traceless matrices (i.e. matrices S such that trS = 0)
might seem like an odd one, but it’s actually one of the fundamental
examples of a structure which is fundamental to modern mathematical
physics, namely that of a Lie algebra. These arise when studying Lie
groups — which are a combination of groups and manifolds, i.e. “a ge-
ometric space which has an algebraic structure” — via the notion of a
tangent space.

In particular, the space of (n × n) traceless skew-Hermitian (A† =
−A) matrices is the Lie algebra known as su(2), which is the Lie algebra
of SU(2), since the latter is indeed a Lie group.

You might be wondering why we have suddenly switched to skew-
Hermitian instead of Hermitian, but this is really just a mathemati-
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3.4 Unitaries as rotations

cian/physicist convention: you can go from one to the other by simply
multiplying by i. For example, mathematicians would usually prefer to
work with iσx, iσy, and iσz instead of the Pauli matrices σx, σy, and σz

themselves; the former are skew-Hermitian, the latter are Hermitian.

Now, U ∈ U(2) acts on the space V by S 7→ S′ = USU†, i.e.

~s · ~σ 7−→ ~s′ · ~σ = U(~s · ~σ)U† (‡)

This gives a linear map R3 → R3, and is thus given by some (3 × 3) real-valued
matrix:

RU : R3 → R3.

Next, note that this map is an isometry76 (a distance preserving operation),
since it preserves the scalar product in the Euclidean space: for any two vectors
~s and ~t,

~s′ · ~t′ = 1
2

tr[S′T ′]

= 1
2

tr[(USU†)(UTU†)]

= 1
2

tr[ST ]

= ~s · ~t

(where S = ~s · ~σ and T = ~t · ~σ) using the cyclic property of the trace. This
means that the matrix RU is orthogonal: orthogonal transformations preserve
the length of vectors as well as the angles between them.

Furthermore, we can show77 that detRU = 1. But the only isometries in three
dimensional Euclidean space (which are described by orthogonal matrices with
determinant 1) are rotations.

Thus, in the mathematical lingo, we have established a group homomor-
phism78

U(2) −→ SO(3)
U 7−→ RU

where SO(3) stands for the special orthogonal group in three dimensions —
the group of all rotations about the origin of three-dimensional Euclidean space
R3 under the operation of composition, which can be represented by the group

76We will talk more about isometries in Section 9.3.
77Some mathematicians might say that detRU = 1 because “any matrix in U(2) can be smoothly

connected to the identity”.
78Recall that a homomorphism is a structure-preserving map between two algebraic structures of

the same type; in our case, two groups. An isomorphism between algebraic structures of the same
type is a homomorphism that has an inverse homomorphism.
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of (3 × 3) orthogonal (and thus real) matrices. It follows from Equation (‡) that
unitary matrices differing only by a global multiplicative phase factor (e.g. U and
eiϕU) represent the same rotation.

Versors.

This mathematical argument is secretly using the language of unit quater-
nions, also known as versors, since these provide a very convenient way
of describing spatial rotation, and are often used in e.g. 3D computer
graphics software.

Physicists, however, usually prefer a more direct demonstration of this rota-
tion interpretation, which might go roughly as follows. Consider the map ~s 7→ ~s′

induced by U = eiα~n·~σ. For small values of α, we can write

~s′ · ~σ = U(~s · ~σ)U†

=
(

1 + iα(~n · ~σ) + . . .
)

(~s · ~σ)
(

1− iα(~n · ~σ) + . . .
)
.

To the first order in α, this gives

~s′ · ~σ =
(
~s+ 2α(~n× ~s)

)
· ~σ

that is,

~s′ = ~s+ 2α(~n× ~s)

which we recognise as a good old textbook formula for an infinitesimal clockwise
rotation of ~s about the axis ~n through the angle 2α.

3.5 Universality, again

Although this may all seem tediously abstract, it is surprisingly useful. Take
another look at the single-qubit interference circuit

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

and the corresponding sequence of unitary operations

H
(
e−i ϕ

2 Z
)
H = e−i ϕ

2 X

=
[

cosϕ/2 −i sinϕ/2
−i sinϕ/2 cosϕ/2

]

The single-qubit interference circuit has a simple geometrical meaning: it
shows how a rotation about the z-axis, induced by the phase gate Pϕ, is
turned, by the two Hadamard gates, into a rotation about the x-axis.
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3.5 Universality, again

Now, take a look at this circuit:

α φ β
H H

What does it represent? The central part is a rotation by ϕ about the x-axis,
sandwiched between two rotations about the z-axis. Recall our previous discus-
sion (Section 2.12) about a universal set of gates: any rotation in the Euclidean
space can be performed as a sequence of three rotations: one about z-axis, one
about x-axis, and one more about the z-axis. In this context, this implies that any
unitary U , up to a global phase factor, can be written as

U(α, β, ϕ) = e−i β
2 Ze−i ϕ

2 Xe−i α
2 Z

=

[
e−i( α+β

2 ) cos ϕ
2 iei( α−β

2 ) sin ϕ
2

ie−i( α−β
2 ) sin ϕ

2 ei( α+β
2 ) cos ϕ

2

]
.

That is, once you are given a pair of Hadamard gates and an infinite supply of
phase gates (so that you can choose the three phases you need) you can construct
an arbitrary unitary operation on a single qubit.

It is important to note that the two axes in question, z and x, do not have
any special status, geometrically speaking — if we have rotations about any two
orthogonal79 axes then we can create any one-qubit unitary that we want.

Figure 3.8: If we can move along the two families of circles, then from any point
on the sphere we can reach any other point. The two axes do not even have to
be orthogonal: any two different (i.e. non-collinear) axes will do! Can you see
why?

Now consider the following circuit:

A Z A† B Z B†

79In fact, even this orthogonality condition isn’t necessary! See Figure 3.8
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3.6 Some quantum dynamics

where both A and B are unitary operations. We claim that any unitary U can
be represented in this form, for some A and B.

Again, we can prove this geometrically. The circuit represents two rotations
by 180◦ about the two axes obtained by rotating the z-axis via unitaries A and
B, respectively. Any rotation in the three-dimensional space is the composition
of two rotations by 180◦, as shown in Figure 3.9. The resulting axis of rotation is
perpendicular to the two axes about which rotations by 180◦ are performed, and
the angle of the composed rotation is twice the angle between the two axes.

x

z

yα

α/2

Figure 3.9: Rotating by α around the z-axis is the same as the composition of
two rotations by 180◦ around axes which both lie in the xy-plane, with angle α/2
between them.

3.6 Some quantum dynamics

We will finish this chapter with a short aside on some more fundamental quantum
theory. Although this isn’t our main focus — we will happily black box away
this stuff, happy in the knowledge that some scientists in a lab somewhere have
already packaged everything up into nice quantum logic gates that we can use —
it is a nice opportunity to talk about other aspects of the subject that might be of
interest.

The time evolution of a quantum state is a unitary process which is gener-
ated by a Hermitian operator called the Hamiltonian, which we denote by Ĥ.
The Hamiltonian contains a complete specification of all interactions within the
system under consideration — in general, it may change over time. In an iso-
lated system, the state vector |ψ(t)〉 changes smoothly in time according to the
Schrödinger equation:

d
dt
|ψ(t)〉 = − i

ℏ
Ĥ|ψ(t)〉.

In the same way that Newton’s second law describes certain future behaviour of
a classical system given some initial knowledge, Schrödinger’s equation describes
the future behaviour of a quantum system given some initial knowledge.
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3.6 Some quantum dynamics

Lagrangian and Hamiltonian mechanics.

The first approach towards classical mechanics that you might meet is
the Newtonian framework, where we talk about the equations that are
satisfied by forces. It is Newton’s second law that we usually apply the
most in order to describe the behaviour of classical systems, and it is
usually stated as F = ma, where m is mass and a is acceleration. But
really the notion of “force” is not a fundamental one — a slightly more
instructive way of writing Newton’s second law for a system whose mass
can change over time is as F = dp

dt , where p = mv is (linear) momentum:
the product of mass (a scalar) with velocity (a vector).

Instead of talking about forces within a system, we can instead de-
scribe things entirely in terms of either position and velocity (where the
latter is just the time derivative of the former) — using coordinates (q, q̇),
where q (confusingly) stands for “position”, and we write q̇ to mean d

dt q
— or position and momentum — using coordinates (q,p), where (again,
confusingly) p stands for momentum (maybe it’s like “pneumatic”, and
we should call it “pmomentum”).

If we take either of these two approaches, then we have a suitable
replacement for Newton’s second law:

1. The first approach results in Lagrangian mechanics, where we
have some function L(t,q(t), q̇(t)) called the Lagrangian, and
study the Euler–Lagrange equations

d
dt

(
∂L
∂q̇

)
= ∂L
∂q

which is a second-order differential equation.
2. The second approach results in Hamiltonian mechanics, where

we have some functionH(t,p(t),q(t)) called the Hamiltonian, and
study the Hamilton equations

dq
dt

= ∂H
∂p

dp
dt

= −∂H
∂q

which is a pair of first-order differential equations.

These two important functions, the Lagrangian and the Hamiltonian,
are given by the total energies of the system: the former is the difference
of the kinetic and potential energies; the latter is the sum of the kinetic
and potential energies.

There are many situations where one framework is more useful than
the other, but in quantum physics we normally find the Hamiltonian ap-
proach more easier than the Lagrangian, since momentum is a conserved
quantity, whereas velocity is not. In fact, the Hamiltonian approach is
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3.6 Some quantum dynamics

hidden all over the place: the position and momentum operators in quan-
tum physics are truly fundamental, and will show up again when we talk
about uncertainty principles in Section 4.6.

Here ℏ is a very (very) small number known as the Planck constant. Physi-
cists often pick a unit system such that ℏ is equal to 1, to make calculations
simpler. But in SI units, 2πℏ is exactly80 equal to 6.62607015 × 10−34 joules per
hertz.

As a historical note, Planck’s constant ℏ has its roots right in the very birth of
quantum physics, since it shows up in the equation for the energy of a photon.
More generally, in 1923 de Broglie postulated that the ratio between the momen-
tum and quantum wavelength of any particle would be 2πℏ. Even before this, it
turned up in 1905 when Einstein stated his support for Planck’s idea that light
is not just a wave, but simultaneously consists of tiny packets of energy, called
quanta (whence the name quantum physics!), which we now call photons.81

We will see the Planck constant turn up again when we talk about uncertainty
principles in Section 4.6.

Back to quantum dynamics. For time-independent Hamiltonians Ĥ(t) = Ĥ,
the formal solution of the Schrödinger equation is given by

|ψ(t)〉 = e− i
ℏ Ĥt|ψ(0)〉.

Note that the function |ψ(t)〉 thus obtained is separable: it is written as a product
of two functions e− i

ℏ Ĥt · |ψ(0)〉, where the first is purely time dependent, and the
second has no time dependence. In fact, the time-dependent part is exactly the
phase factor U(t) = e− i

ℏ Ĥt, and we know that this does not affect the resulting
probabilities: ||ψ(t)〉|2 = |U(t)|2||ψ(0)〉|2 = ||ψ(0)〉|2. This means that ||ψ(t)〉|2 is
constant throughout time — we call such a state stationary, or refer to it as a
standing wave.

Quantum confinement.

We will not delve into a proper study of the Schrödinger equation — this
is the subject of entire books already, and deserves a lengthy treatment —
but it is nice to mention at least one worked example (although we will
skip almost all of the details!), since its applications are commonplace in
day-to-day life.

In the time-independent case, the Schrödinger equation can simply
be written as Ĥ|ψ〉 = E|ψ〉, where E is the total energy of the system.
When written like this, we can sneak a glimpse at what the Hamiltonian

80The kilogram is now defined in SI in terms of the Planck constant, the speed of light, and the
atomic transition frequency of of caesium-133.

81The whole history of quantum physics, arguably starting with the black-body problem, accounting
for the Rayleigh–Jeans law, and leading on to the discovery of the photoelectric effect, is a wonderful
story, but one that we do not have the space to tell here.
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3.6 Some quantum dynamics

is really all about: it is some operator whose eigenstates are solutions of
the Schrödinger equation, and whose eigenvalues are the corresponding
energy levels.

One particularly instructive situation to consider is that of a particle
in a box: we have some 1-dimensional region of space in which a particle
is free to move around, but outside of this finite segment there is infinite
potential energy, restricting the particle from moving beyond this region.
It turns out that, in this case, the Hamiltonian is given by

Ĥ = − ℏ2

2m
d2

dx2

and the general solution to the resulting Schrödinger equation can be
shown to be

ψ(x) = C sin(kx) +D cos(kx)

where k = nπ/L for some positive integer n, and where L is the length
of the potential-free region. This implies (after some algebra) that the
energy E = En of the solution with k = nπ/L is equal to

En = (2πnℏ)
8mL2 .

What is utterly unique and important to quantum physics is not really
this specific fraction, but the fact that the possible energy levels of the sys-
tem are purely discrete — energy cannot be any real value, as is the case
in the classical world, but it can only take values within some discrete set
{E1, E2, . . .}.

But what are the applications of this particle in a box? Well, this phe-
nomena of a system having a discrete energy spectrum when restrained
to small enough spaces is known as quantum confinement, and quan-
tum well lasers are laser diodes which have a small enough active region
for this confinement to occur. Such lasers are arguably the most impor-
tant component of fiber optic communications, which form the underly-
ing foundations of the internet itself.

Before moving on to understand the relevance of this to what we have already
been discussing, let us take a moment to see why we might have expected to
stumble across such a solution as e− i

ℏ Ĥt (or, from the opposite point of view,
how we could derive the Schrödinger equation). We start with state vectors,
which we want to evolve according to transition operators — we have already
justified why we should think about representing these transitions by matrices
(namely because matrices simply package up all the multiplication and addition
in the “right” way). But now we want these evolutions to be continuous, whatever
that might formally mean.

For a start, this means that we want not only to be able to multiply the ma-
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3.6 Some quantum dynamics

trices that represent these transitions, but also to do the inverse: take any tran-
sition and “chop it up” into smaller time chunks, viewing any evolution T as a
sequence TnTn−1 . . . T1 of evolutions Ti that take place on a shorter time scale.
Directly then, we want to be able to consider roots (square roots, cube roots,
and so on) of our matrices, which means that they must at the very least have
complex entries.

But let us try to take this continuity requirement a bit more seriously: say that
any transition T is parametrised by a real parameter t, which we will think of as
“time”. It makes sense to ask for T (t + t′) = T (t)T (t′) for any t, t′ ∈ R, and to
say that “at time 0, things are exactly how we found them”, i.e. T (0) = 1. But we
know how to solve for such requirements: take T (t) = exp(tX), where X is an
arbitrary complex matrix! This also solves the problem of wanting to take roots,
since T (t) 1

n = T (t/n), and T (t)−1 = T (−t).
Next, as we’ve already mentioned, complex matrices have a polar form —

analogous to how any z ∈ C can be written as z = reiϕ, we can write any complex
matrix Z as Z = RU , where R is positive semi-definite and U is unitary. In this
decomposition, just as for the polar decomposition z = reiϕ, the R corresponds
to “stretching” and the U corresponds to “rotation”. But we don’t want to have to
worry about convergence issues, and the idea of “exponential stretching” sounds
like it might give us some problems, so let us just consider Z = RU with R = 1,
i.e. just unitary matrices. And if we want T (t) to be unitary, then it suffices to
take X to be anti-Hermitian.

In summary, from just asking for our evolutions to be continuous and not have
any convergence issues, we end up with the conclusion that we are interested
in evolutions described by exponentials of anti-Hermitian matrices, i.e. U(t) =
exp(itX) for some Hermitian matrix X.

Stone’s theorem.

This correspondence between so-called one-parameter unitary groups
— families (Ut)t∈R of unitary operators (satisfying some analytic prop-
erty) — and Hermitian operators, given by Ut = eitA, is known as Stone’s
theorem (on one-parameter unitary groups).

For example, if we consider the translation operators Tt, which are
defined by Tt(ψ)(x) = ψ(x + t), then we have the corresponding Hermi-
tian operator −i d

dx , which is known (for good reason) as the momentum
operator. In fancy words, this says that 1-dimensional motion is infinites-
imally generated by momentum.

Now, to relate this to the earlier parts of this chapter, we note that the Hamil-
tonian of a qubit can always be written in the form H = E01 + ω(~n · ~σ), hence

U(t) = e−iωt~n·~σ

= (cosωt)1− (i sinωt)~n · ~σ

which is a rotation with angular frequency ω about the axis defined by the unit
vector ~n.
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The 4π world of qubits.

This section is not yet finished.

3.7 Remarks and exercises

3.7.1 Quantum bomb tester

You have been drafted by the government to help in the demining effort in a
former war-zone.82 In particular, retreating forces have left very sensitive bombs
in some of the sealed rooms. The bombs are configured such that if even one
photon of light is absorbed by the fuse (i.e. if someone looks into the room), the
bomb will go off. Each room has an input and output port which can be hooked
up to external devices. An empty room will let light go from the input to the
output ports unaffected, whilst a room with a bomb will explode if light is shone
into the input port and the bomb absorbs even just one photon — see Figure
3.10.

empty room
bomb

Figure 3.10: Left: the passage of a photon through an empty room. Right: the
passage of a photon through a room containing a bomb.

Your task is to find a way of determining whether a room has a bomb in it
without blowing it up, so that specialised (limited and expensive) equipment can
be devoted to defusing that particular room. You would like to know whether a
particular room has a bomb in it with as much certainty as possible.

1. To start with, consider the setup in Figure 3.11, where the input and output
ports are hooked up in the lower arm of a Mach–Zehnder interferometer.

a. Assume an empty room. Send a photon to input port |0〉. Which
detector, at the output port, will register the photon?

82This is a slightly modified version of a bomb-testing problem described by Avshalom Elitzur and
Lev Vaidman in Quantum-mechanical interaction-free measurement, Found. Phys. 47 (1993), pp. 987–
997.
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b. Now assume that the room does contain a bomb. Again, send a photon
to input port |0〉. Which detector will register the photon and with
which probability?

c. Design a scheme that allows you — at least some of the time — to
decide whether a room has a bomb in it without blowing it up. If you
iterate the procedure, what is its overall success rate for the detection
of a bomb without blowing it up?

2

1

|0⟩

|1⟩

room

Figure 3.11: The Mach–Zehnder interferometer hooked up to the bomb-testing
room.

2. Assume that the two beam splitters in the interferometer are different. Say
the first beam-splitter reflects incoming light with probability R and trans-
mits with probability T = 1− R, but the second one transmits with proba-
bility R and reflects with probability T (that is, the two beam-splitters are
asymmetric, but “inverse” to one another). Would the new setup improve
the overall success rate of the detection of a bomb without blowing it up?

3. There exists a scheme, involving many beam-splitters and something called
the quantum Zeno effect, such that the success rate for detecting a bomb
without blowing it up approaches 100%. Try to work it out, or find a solu-
tion on the internet.83

3.7.2 Orthonormal Pauli basis

Show that {1, σx, σy, σz} is an orthonormal basis of the space of complex (2× 2)
matrices with respect to the Hilbert-Schmidt product.

83You can play around with this setup on the Quantum Flytrap Virtual Lab.
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3.7.3 Pauli matrix expansion coefficients

Recall that any (2× 2) complex matrix A has a unique expansion in the form

A =
[
a0 + az ax − iay

ax + iay a0 − az

]
= a01 + axσx + ayσy + azσz

= a01 + ~a · ~σ.

(?)

for some complex numbers a0, ax, ay, and az.

1. Show that the coefficients ak (for k = x, y, z) are given by the inner product
ak = (σk|A) = 1

2 trσkA.

In these notes, we usually deal with matrices that are Hermitian (A = A†) or
unitary (AA† = 1). It is easy to see that, if A is Hermitian, then a0 and the three
components of ~a are all real. The (2× 2) unitaries are usually parametrised as

U = eiϕ
(
u01 + i(uxσx + uyσy + uzσz)

)
where eiϕ is an overall multiplicative phase factor, with ϕ real, and u0 and the
three components ux, uy, uz are all real numbers.

2. Show that the unitarity condition implies that

u2
0 + u2

x + u2
y + u2

z = 1

and show, using this parametrisation, that the determinant of U is ei2ϕ.

3.7.4 Linear algebra of the Pauli vector

In what follows, we use the notation from our algebraic treatment of Pauli oper-
ators in Section 3.3, where we defined the Pauli vector ~σ.

1. Show that84 1
2 tr(~a · ~σ)(~b · ~σ) = ~a ·~b.

2. Show that any ~n · ~σ has eigenvalues ±|~n|.

3. Show that, if ~n · ~m = 0, then the operators ~n · ~σ and ~m · ~σ anticommute.

3.7.5 Matrix Euler formula

1. Show that, if A2 = 1, then we can manipulate the power series expansion
of eiA into a simple expression: for any real α,

eiαA = (cosα)1 + (i sinα)A.

2. Show that any (2 × 2) unitary matrix U can be written, up to an overall
multiplicative phase factor, as85

U = eiθ~n·~σ = (cos θ)1 + (i sin θ)~n · ~σ.
84Hint: you may find Exercise 2.14.9 helpful.
85Hint: the argument here is the same as the argument that eiθ = cos θ + i sin θ.
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3.7.6 Special orthogonal matrix calculations

1. Show that trσxσyσz = 2i.

2. Let U be a unitary matrix, and write ~ex, ~ey, and ~ez to mean the unit vectors
along the x-, y-, and z-axis, respectively. We define new unit vectors ~fx, ~fy,
and ~fz by applying U to our existing unit vectors. Then

U(~ek · σk)U† = UσkU
† = ~fk · ~σ.

We already know that, in Euclidean space, this transformation is described
by a (3 × 3) orthogonal matrix RU . How are the three vectors ~fx, ~fy, and
~fz related to the entries in matrix RU ?

3. Show that

trσxσyσz = tr(~fx · ~σ)(~fy · ~σ)(~fz · ~σ)
= 2i detRU

(which implies that detRU = 1).

4. Use the orthonormality of the Pauli basis along with Equation (‡) to show
that the elements of the matrix R = RU can be expressed in terms of those
of the matrix U , in the form

Rij = 1
2

tr
(
σiUσjU

†) .
Here, i and j take values in {1, 2, 3}, and σ1 ≡ σx, σ2 ≡ σy, σ3 ≡ σz.

3.7.7 Phase as rotation

1. Show that86 the phase gate

Pϕ =
[
1 0
0 eiϕ

]
represents an anticlockwise rotation about the z-axis through the angle ϕ.

86Hint: it might be helpful to start with the SU(2) version of the phase gate:

Pϕ = e−iϕ
2 σz

=
[
e−iϕ

2 0
0 ei

ϕ
2

]
which gives

RPϕ =

[
cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

]
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3.7 Remarks and exercises

3.7.8 Calculating a Pauli rotation

1. Express the Pauli rotation eiσyπ/3 as a matrix.
2. Give a decomposition of this rotation in the form87

RZ(α)HRZ(β)HRZ(γ)

where RZ(θ) denotes a Pauli σz-rotation by angle θ.

3.7.9 Geometry of the Hadamard

1. Express the Hadamard gate H in terms of ~n · ~σ, and show that

HZH = X

HXH = Z

HYH = −Y.

2. Show that the Hadamard gate H turns rotations about the x-axis into rota-
tions about the z-axis, and vice versa. That is,

H
(
e−i ϕ

2 Z
)
H = e−i ϕ

2 X

H
(
e−i ϕ

2 X
)
H = e−i ϕ

2 Z .

3.7.10 Swiss Granite Fountain

In the Singapore Botanic Gardens, there is a sculpture by Ueli Fausch called
“Swiss Granite Fountain”. It is a spherical granite ball which measures 80cm
in diameter and weighs 700kg, and is kept afloat by strong water pressure di-
rected through a basal block. It is easy to set the ball in motion, and it keeps
rotating in whatever way you start for a long time. Suppose you are given access
to this ball only near the top, so that you can push it to make it rotate around
any horizontal axis, but you don’t have enough of a grip to make it turn around
the vertical axis. Can you make it rotate around the vertical axis anyway?

3.7.11 Dynamics in a magnetic field

A qubit initially in state |0〉 is placed in a uniform magnetic field. The interaction
between the field and the qubit is described by the Hamiltonian

H = ω

[
0 −i
i 0

]
where ω is proportional to the strength of the field.88 What is the state of the
qubit after time t = π/4ω?

87Hint: recall Section 3.5.
88In Earth’s magnetic field, which is about 0.5 gauss, the value of ω is of the order of 106 cycles per

second.
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4 Measurements

About the Hilbert-space formalism of quantum theory, and the
role of measurements in quantum information theory, as well
as introducing the quantum dramas of Alice and Bob.

Eventually we have to talk about quantum measurements, since, at some
point, someone has to look at a measuring device and register the outcome of
whatever quantum circuits we’ve been designing. It turns out that this is a bit
more tricky than one might think. Quantum measurement is not a passive acqui-
sition of information: if you measure, you disturb. Even though it is a physical
process, like any other quantum evolution, it is traditionally described by a dif-
ferent set of mathematical tools.

4.1 Hilbert spaces, briefly

A formal mathematical setting for a quantum system is that of a Hilbert space
H, which is (for us89) just a vector space along with an inner product.

Given a Hilbert space corresponding to our system, the result of any prepara-
tion of the system is then represented by some unit vector |ψ〉 ∈ H, and any test
is represented by some other unit vector |e〉 ∈ H. The inner product of these two
vectors, 〈e|ψ〉, gives the probability amplitude that an object prepared in state
|ψ〉 will pass a test for being in state |e〉. As always, probabilities are obtained by
squaring absolute values of probability amplitudes:

|〈e|ψ〉|2 = 〈ψ|e〉〈e|ψ〉.

After the test, in which the object was found to be in state |e〉, say, the object
forgets about its previous state |ψ〉 and is, indeed, actually now in state |e〉. That
is, if we immediately measure the object again, we will find it to still be in state
|e〉 with probability 1. This is the mysterious quantum collapse, which we will
further discuss later on.

A more complete test involves multiple states ek that form an orthonormal
basis {|e1〉, . . . , |en〉}. These states are perfectly distinguishable from each other:
the condition 〈ek|el〉 = δkl implies that a quantum system prepared in state |el〉
will never be found in state |ek〉 (unless k = l). The probability amplitude that
the system in state |ψ〉 will be found in state |ek〉 is 〈ek|ψ〉 and, given that the
vectors |ek〉 span the whole vector space, the system will be always found in one
of the basis states, whence∑

k

|〈ek|ψ〉|2 = 1.

As a result:

89As mentioned in Section 0.3, we only work with finite dimensional vector spaces, and it is a very
convenient fact that any finite dimensional inner product space is automatically a Hilbert space.
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4.2 Complete measurements

A complete measurement in quantum theory is determined by the choice
of an orthonormal basis {|ei〉} in H, and every such basis (in principle)
represents a possible complete measurement.

4.2 Complete measurements

A projector is any Hermitian (P = P †) operator which is idempotent
(P 2 = P ). The rank of P is given by tr(P ). In the Dirac notation, if |e〉 is
a unit vector, then |e〉〈e| is a rank-one projector on the subspace spanned
by |e〉, and it acts on any vector |v〉 via (|e〉〈e|)|v〉 = |e〉〈e|v〉.

The most common measurement in quantum information science is the stan-
dard measurement on a qubit, also referred to as the measurement in the stan-
dard (or computational) basis: {|0〉, |1〉}. When we draw circuit diagrams it is
tacitly assumed that such a measurement is performed on each qubit at the end
of quantum evolution.

|0⟩

|1⟩

|ψ⟩

α0

α1

Figure 4.1: The standard/computational basis defines the so-called standard
measurements.

However, if we want to emphasise the role of the measurement, then we can
include it explicitly in the diagram as a special quantum gate, e.g. as

|ψ⟩ = α0 |0⟩+ α1 |1⟩

{
|0⟩ with probability |α0|2

|1⟩ with probability |α1|2

or, in an alternative notation, as

k|ψ⟩ = α0 |0⟩+ α1 |1⟩ |k⟩ with probability |αk|2 (k = 0, 1).
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4.2 Complete measurements

As we can see, if the qubit is prepared in state |ψ〉 = α0|0〉 + α1|1〉 and sub-
sequently measured in the standard basis, then the outcome is |k〉 (for k = 0, 1)
with probability90

|αk|2 = |〈k|ψ〉|2

= 〈ψ|k〉︸ ︷︷ ︸
α?

k

〈k|ψ〉︸ ︷︷ ︸
αk

= 〈ψ| |k〉〈k|︸ ︷︷ ︸
projector

|ψ〉

= 〈ψ|Pk|ψ〉

where Pk = |k〉〈k| is the projector on |k〉. If the outcome of the measurement is
|k〉, then the output state of the measurement gate is |k〉. The original state |ψ〉
is irretrievably lost. This sudden change of the state, from the pre-measurement
state |ψ〉 to the post-measurement state, either |0〉 or |1〉, is often called a collapse
or a reduction of the state.

So it looks like there are two distinct ways for a quantum state to change:
on the one hand we have unitary evolutions, and on the other hand we have
an abrupt change during the measurement process. Surely, the measurement
process is not governed by any different laws of physics?

No, it is not!

Quantum collapse.

The subtleties (both mathematical and philosophical) of quantum col-
lapse are still very much active topics of research, and we could spend an
entire book discussing them. There are a lot of other sources where you
can read about such things — here is a very short list to start:

• T. Norson, Foundations of Quantum Mechanics: An Exploration of
the Physical Meaning of Quantum Theory. Springer, 2017. ISBN:
978-3-319-65867-4. DOI: 10.1007/978-3-319-65867-4.

• M. Schlosshauer, “Decoherence, the measurement problem, and in-
terpretations of quantum mechanics”. Rev. Mod. Phys. 76 (2004),
pp. 1267–1305. arXiv:quant-ph/0312059.

• F. Giacosa, “On unitary evolution and collapse in Quantum Mechan-
ics”. Quanta 3 (2014), pp. 156–170. arXiv:1406.2344.

A measurement is a physical process and can be explained without any “col-
lapse”, but it is usually a complicated process in which one complex system (a
measuring apparatus or an observer) interacts and gets correlated with a physi-
cal system being measured. We will discuss this more later on, but for now let

90This slick argument is a good example of how nice the bra-ket notation can be when we leverage
the ambiguity of an expression like 〈a||b〉〈b||a〉, which we can read as the scalar product of two scalars
or as a projector sandwiched between a bra and a ket.
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4.3 The projection rule, and incomplete measurements

us accept a “collapse” as a convenient mathematical shortcut, and describe it in
terms of projectors rather than unitary operators.

For our purposes, the idea of “quantum collapse” is simply a way of black
boxing the irreversible interaction between a quantum system and its sur-
rounding classical environment.

On a practical level, it means that we describe measurement and ob-
servation with projectors instead of unitary operators.

4.3 The projection rule, and incomplete measurements

So far we have identified measurements with orthonormal bases, or, if you wish,
with a set of orthonormal projectors on the basis vectors.

An orthonormal basis satisfies two conditions:
• Orthonormality: 〈ek|el〉 = δkl

• Completeness:
∑

k |ek〉〈ek| = 1

Given a quantum system in state |ψ〉 such that |ψ〉 =
∑

k αk|ek〉, we can write

|ψ〉 = 1|ψ〉

=
∑

k

(|ek〉〈ek|)|ψ〉

=
∑

k

|ek〉〈ek|ψ〉

=
∑

k

|ek〉αk

=
∑

k

αk|ek〉

which tells us that any vector inH can be expressed as the sum of the orthogonal
projections on the |ek〉, whence the name of the “completeness” condition. This
says that the measurement in the basis {|ei〉} gives the outcome labelled by ek

with probability

|〈ek|ψ〉|2 = 〈ψ|ek〉〈ek|ψ〉

and leaves the system in state |ek〉. This is a complete measurement, which rep-
resents the best we can do in terms of resolving state vectors in the basis states.
But sometimes we do not want our measurement to distinguish all the elements
of an orthonormal basis.

For example, a complete measurement in a four-dimensional Hilbert space
will have four distinct outcomes: |e1〉, |e2〉, |e3〉, and |e4〉, but we may want to
lump together some of the outcomes and distinguish, say, only between {|e1〉,
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4.4 Example of an incomplete measurement

|e2〉}, and {|e3〉, |e4〉}. In other words, we might be trying to distinguish one
subspace from another, without separating vectors that lie in the same subspace.
Such measurements (said to be incomplete) are indeed possible, and they can
be less disruptive than the complete measurements.

Intuitively, an incomplete measurement has fewer outcomes and is hence
less informative, but the state after such a measurement is usually less
disturbed.

In general, instead of projecting on one dimensional subspaces spanned by
vectors from an orthonormal basis, we can decompose our Hilbert space into
mutually orthogonal subspaces of various dimensions and project onto them.

A full system of projectors satisfies two conditions: Conditions on projec-
tors:

• Orthogonality: PkPl = Pkδkl

• Completeness:
∑

k Pk = 1

For any decomposition of the identity into orthogonal projectors Pk (using the
completeness condition), there exists a measurement that takes a quantum sys-
tem in state |ψ〉, gives the output labelled k with probability 〈ψ|Pk|ψ〉, and leaves
the system in the state Pk|ψ〉 (multiplied by the normalisation factor, i.e. divided
by the length of Pk|ψ〉):

|ψ〉 7→ Pk|ψ〉√
〈ψ|Pk|ψ〉

.

4.4 Example of an incomplete measurement

Take a three-dimensional Hilbert space H with basis {|e1〉, |e2〉, |e3〉}, and con-
sider the two orthogonal projectors

P = |e1〉〈e1|+ |e2〉〈e2|
Q = |e3〉〈e3|

These form the decomposition of the identity: P + Q = 1. Now suppose that a
physical system is prepared in state |ψ〉 = α1|e1〉 + α2|e2〉 + α3|e3〉. Ideally, we
would like to perform a complete measurement that would resolve the state |ψ〉
into the three basis states, but suppose our experimental apparatus is not good
enough, and lumps together |e1〉 and |e2〉. In other words, it can only differentiate
between the two subspaces associated with projectors P and Q.

The apparatus, in this incomplete measurement, may find the system in the
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4.5 Observables

subspace associated with P . This happens with probability

〈ψ|P |ψ〉 = 〈ψ|e1〉〈e1|ψ〉+ 〈ψ|e2〉〈e2|ψ〉
= |α1|2 + |α2|2,

and the state right after the measurement is the normalised vector P |ψ〉, i.e.

α1|e1〉+ α2|e2〉√
|α1|2 + |α2|2

.

The measurement may also find the system in the subspace associated with
Q with the probability 〈ψ|Q|ψ〉 = |α3|2, resulting in the post-measurement state
|e3〉.

|e1⟩
|e2⟩

|e3⟩

|ψ⟩

P |ψ⟩

Q |ψ⟩

4.5 Observables

An observable A is a measurable physical property which has a numerical value,
for example, spin, position, momentum, or energy. The term “observable” also
extends to any basic measurement in which each outcome has an associated nu-
merical value. If λk is the numerical value associated to the outcome |ek〉, then
the observable A is represented by the operator

A =
∑

k

λk|ek〉〈ek|

=
∑

k

λkPk,

where λk is now the eigenvalue corresponding to the eigenvector |ek〉, or to the
projector Pk.
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4.5 Observables

We have already seen the following types of operators:

normal AA† = A†A
unitary A† = A−1

Hermitian (or self-adjoint) A† = A
positive semi-definite 〈v|A|v〉 ⩾ 0 for all |v〉

The spectral theorem says that an operator A is normal if and only
if it is unitarily diagonalisable: there exists some unitary U and some
diagonal D such that A = U†DU .

Note that unitary, Hermitian, and positive semi-definite operators are
all, in particular, normal.

Since (|a〉〈b|)† = |b〉〈a|, the projectors Pk = |ek〉〈ek| are Hermitian, and thus
normal, which means that A itself is a normal operator.

Conversely, given any normal operator A, we can associate a measurement
defined by the eigenvectors of A, which form an orthonormal basis, and use
the eigenvalues of A to label the outcomes of this measurement. If we choose
the eigenvalues to be real numbers then A becomes a Hermitian operator. For
example, the standard measurement on a single qubit is often called the Z-
measurement, because the Pauli Z operator can be diagonalised in the standard
basis and written as Z = (+1)|0〉〈0|+ (−1)|1〉〈1|. The two outcomes, |0〉 and |1〉,
are now labelled as +1 and −1, respectively. Using the same association we also
have the X- and the Y -measurements, defined by the Pauli X and Y operators,
respectively.

The outcomes can be labelled by any symbols of your choice — it is the
decomposition of the Hilbert space into mutually orthogonal subspaces that
defines a measurement, not the labels.

This said, labelling outcomes with real numbers is very useful. Some text-
books describe observables in terms of Hermitian operators, claiming that the
corresponding operators have to be Hermitian “because the outcomes are real
numbers”. This is actually a bit backwards. As we say above, the labels can be
arbitrary, but, since real number labels are often useful (as we’re about to justify),
we tend to only work with Hermitian operators.

For example, the expected value 〈A〉 (also known as the mean), which is
the average of the numerical values λk weighted by their probabilities, is a very
useful quantity and can be easily expressed in terms of the operator A and the
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4.6 Compatible observables and the uncertainty relation

state of the system |ψ〉 as follows:91

〈A〉 =
∑

k

λk Pr(k)

=
∑

k

λk|〈ek|ψ〉|2

=
∑

k

λk〈ψ|ek〉〈ek|ψ〉

= 〈ψ|

(∑
k

λk|ek〉〈ek|

)
|ψ〉

= 〈ψ|A|ψ〉.

To be clear, this is not a value we expect to see in one particular run of the
experiment, but instead a statistical average. Imagine a huge number of quantum
objects, all prepared in the state |ψ〉 and think about the observable A being
measured on each of the objects. Statistically, we expect the average of our
measurement results to be roughly 〈A〉. Note that when A is, in particular, a
single projector A = λk|ek〉〈ek| then 〈ψ|A|ψ〉 is the probability of the outcome
associated with A.

4.6 Compatible observables and the uncertainty relation

Now that we have explained how observables correspond to normal operators,
we can try to understand what implications follow from the fact that matrix mul-
tiplication does not generally commute: AB 6= BA. We can start by trying to
figure out when exactly two given operators A and B will or will not commute,
ideally in terms of eigenvectors (since this will let us talk about outcomes and
their numerical values, using the language we have just built up). An important
definition is the following: if a basis {|e1〉, . . . , |en〉} is such that each |ek〉 is an
eigenvector of an operator A, then we call it an eigenbasis of A.

First of all, assume that A and B do commute, so that AB = BA, and let |e〉
be some eigenvector of A with eigenvalue λ. Then

AB|e〉 = BA|e〉
= Bλ|e〉
= λ(B|e〉)

which says that B|e〉 is also an eigenvector of A, with eigenvalue λ. If λ 6= 0, then
this says92 thatB|e〉 is proportional to |e〉, which is simply saying that |e〉 is also an
eigenvector of B. This means that any eigenbasis of A is also an eigenbasis of B.
Another way of saying this is that A and B are simultaneously diagonalisable:

91It is important to note here that the notation 〈A〉 is slightly misleading, as it omits the dependence
on the initial state |ψ〉. Some authors thus write 〈A〉|ψ〉 instead, but many opt (as we do) for the
more succinct notation.

92To make this argument fully formal, and to deal with the case where λ is degenerate, isn’t too
hard, but we don’t want to get too involved with the necessary linear algebra here.
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4.6 Compatible observables and the uncertainty relation

there exists a basis in which both A and B are diagonal, namely any common
eigenbasis of the two.

Conversely, say that A and B have some common eigenbasis {|e1〉, . . . , |en〉},
with A|ek〉 = αk|ek〉 and B|ek〉 = βk|ek〉. To show that AB = BA, it suffices to
show that (AB)|ψ〉 = (BA)|ψ〉 for any state |ψ〉. But we can write any |ψ〉 in the
common eigenbasis as |ψ〉 =

∑
k λk|ek〉 for some λk, and then

(AB)|ψ〉 = AB
∑

k

λk|ek〉

=
∑

k

λkAB|ek〉

=
∑

k

λkAβk|ek〉

=
∑

k

λkβkA|ek〉

=
∑

k

λkβkαk|ek〉

and αk and βk commute, since they are just complex numbers. This means that
running the same calculation for (BA)|ψ〉 would give exactly the same result,
and so AB = BA.

Two operators A and B commute if and only if there exists some common
eigenbasis. In this case, we say that A and B are compatible; if A and B
do not commute then we say that they are incompatible.

We have said that eigenvectors |ek〉 of an operator A correspond to outcomes
of the observable, where the eigenvalue λk is the associated numerical value.
So if we have two compatible operators A and B, then we have a complete
system of measurements for both observables at once, given by their common
eigenbasis, say {|e1〉, . . . , |ek〉}. What does this mean in terms of measurements?
Well, if we measure A on some system initially in state |ψ〉, then we know that
the system will collapse into one of the states |ek〉. But this is also an eigenvector
for B, so measuring B won’t affect the state at all, and similarly for a subsequent
measurement of A.

If, however, A and B are incompatible operators, then things are very differ-
ent. If we measure A, then B, and then A again, there is absolutely no guarantee
that the two measurements of A will be the same. In other words, measuring
B somehow makes the system “forget” the result of the first measurement of A.
We see this in the lab if we measure position and momentum of a particle: taking
the momentum measurement “spreads out” the position of the particle through-
out space, meaning that a position measurement taken immediately prior will
have no reason to be the same as a position measurement taken immediately
afterwards.

Incompatible operators turn up all over the place, and actually turn out to be
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4.6 Compatible observables and the uncertainty relation

very interesting — sometimes it’s good when things don’t work too simply! One
particularly interesting question we can ask is the following: can we quantify how
far away from being compatible two incompatible operators are? We can make this
question more mathematically concrete by rephrasing it slightly, asking if we can
find at least some states that are close to being common eigenstates.

Imagine preparing a huge number of systems into the same initial state |ψ〉,
and then measuring A on half of them and B on the other half. Doing so we
can obtain the expected values 〈A〉 and 〈B〉, and we can calculate (using classi-
cal statistics) the standard deviation of these variables, σA and σB , respectively.
The standard deviation of a random variable is basically a measurement of “how
close to the expected value are all the resulting values”.93 The smaller the stan-
dard deviation, the more “well defined” the measurement is. In particular, given
any single operator A, we can always make the standard deviation exactly 0, by
just preparing our system in an eigenstate of A. If A and B are compatible, then
we can simultaneously make σA and σB exactly 0 as well, since we know that A
and B have a common eigenbasis.

The really interesting, purely quantum, phenomena, however, comes when A
and B are incompatible: we can prove that the standard deviations cannot both
be made simultaneously arbitrarily small.

The uncertainty principle for operators A and B says that

σAσB ⩾
∣∣∣∣ 1
2i
〈[A,B]〉

∣∣∣∣
where [A,B] = AB −BA is the commutator.

This says that there does not exist any state for which σAσB is less than some
specific value, which is determined entirely by the operators A and B. Of course,
if A and B are compatible, then [A,B] = 0, and so the uncertainty principle
doesn’t tell us anything at all — it simply says that the product of two non-
negative numbers is greater than or equal to 0, which is always the case!

You have maybe heard elsewhere of Heisenberg’s uncertainty principle,
which is indeed a special case of this: one can show that the commutator of the
(one-dimensional) position and momentum operators is exactly iℏ (where ℏ is
again the very small number known as the Planck constant), whence σxσp ⩾ ℏ

2 .

93For example, if the random variable is normally distributed, then around 68% of the results will
lie within one standard deviation from the expected value.
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4.6 Compatible observables and the uncertainty relation

Quantization.

We said that ℏ is very small, and this is fundamental to the relationship
between quantum and classic physics. Most of the things that we deal
with in day-to-day life are on the macroscopic level, and are many, many
orders of magnitude larger than the Planck constant. Indeed, if we wave
our hands quite a lot, then we can say that “we see quantum effects only
when dealing with things on the same order of magnitude as the Planck
constant”. For example, a single photon of green light (roughly midway
through the visible spectrum) has energy ≈ 3.5 × 10−19 joules, whereas
a mole of such photons (which is a “reasonable” number to encounter
when talking about things that actually look green in day-to-day life) has
energy ≈ 200× 103 joules, so we would expect a single photon to exhibit
quantum behaviour much more measurably than, for example, the light
emitted from a green light bulb.

In a way which we shall not make precise, the fact that ℏ is strictly
greater than zero (albeit very small) is what makes quantum physics in-
herently discrete, in contrast to classical physics which treats things like
energy continuously. Quite wondrously, it is very often the case that tak-
ing a limit ℏ → 0 in some formula in quantum physics recovers the cor-
responding formula in classical physics — this is known as the classical
limit or correspondence principle. This isn’t unique to quantum physics:
special relativity reduces to classical mechanics if we take all velocities to
be much smaller than the speed of light; general relativity reduces to the
classical theory of gravity if we take all gravitational fields to be weak
enough; statistical mechanics reduces to thermodynamics when we take
the number of particles to be large enough; and so on.

This idea, that classical systems can be recovered from quantum ones
by taking ℏ → 0, poses a question: can we go in the other direction? That
is, given some classical theory that we know agrees with physical exper-
iments, can we formulate some corresponding quantum version which
we might hope to be correct on much smaller scales? Trying to answer
this question has led to some incredibly deep (and very technical) mathe-
matics known as quantization theory, with geometric quantization and
deformation quantization being two key areas.

Before moving on, let us consider one more quantum phenomena that arises
when we look at incompatible operators. Suppose that we have three operators,
sayA, B, and C, and we wish to let these act on our quantum system sequentially,
but throwing away any results which are not a given outcome. That is, if we
start (for simplicity) with some eigenstate |a〉 of A, then we want to know the
probability of measuring some specific output |c〉. But we know how to calculate
this!

First of all, we know the probability of measuring outcome |c〉 given that |a〉
first evolves into the intermediate state |bk〉: this is the probability of |a〉 evolving
under B into |bk〉 multiplied by the probability of |bk〉 evolving under C into |c〉,
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4.7 Quantum communication

i.e.

Pr(c|bk) = |〈c|bk〉|2|〈bk|a〉|2.

Then to obtain the probability of measuring outcome |c〉 we can just sum over all
possible intermediate states:

Pr(c) =
∑

k

|〈c|bk〉|2|〈bk|a〉|2.

But now, if we forget entirely about B then we could calculate Pr(c) in a
different way: it is simply given by

Pr(c) = |〈c|a〉|2.

Using the fact that
∑

k |bk〉〈bk| = 1, we can rewrite this as

Pr(c) =

∣∣∣∣∣∑
k

〈c|bk〉〈bk|a〉

∣∣∣∣∣
2

and this is not generally equal to the previous expression for Pr(c). In fact, you
can show that these two expressions agree if and only if [A,B] = 0 or [B,C] = 0,
i.e. if and only if either A and B or B and C are compatible.

We briefly discuss an explicit scenario of where three evolutions behave in
such a paradoxical way later on in Chapter 6, when we introduce Bell’s theorem,
in what is sometimes known as the quantum Venn diagram paradox.

4.7 Quantum communication

Now is a good moment to introduce Alice and Bob (not their real names): our
two protagonists who always need to communicate with each other, in scenar-
ios of varying complexity and danger. These two play the major role in many
communication dramas, though they remain rather lacking in character devel-
opment. In this episode of their story, Alice is sending quantum states, called
carriers, to Bob, and Bob is trying his best to correctly identify them by choosing
appropriate measurements.

Let us start with a simple observation: if the carriers are described by state
vectors in a 2n-dimensional Hilbert space, then they can encode at most n bits
of information.94 For example, Alice can choose one of the 2n states from a
pre-agreed orthonormal basis {|ek〉}k=1,...,2n , and Bob will be able to distinguish
them reliably by choosing the same basis for his measurement.

But can Alice and Bob do better than that? Can Alice send more than n bits of
information per carrier by encoding them in states |s1〉, . . . , |sN 〉 where N ⩾ 2n?
Can Bob choose a clever measurement and reliably distinguish between all such
states?

The answer is no.
94This is just like the classical scenario: the space of binary strings of length n (which encode

exactly n bits of information, by definition) is of dimension 2n, since we describe any such string by
picking between 0 and 1 for each digit, and we have n-many digits.
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4.8 Basic quantum coding and decoding

4.8 Basic quantum coding and decoding

Suppose Alice uniformly at random chooses one of the pre-agreed N signal states
|s1〉, . . . |sN 〉 and sends it to Bob, who tries to identify the signal states by perform-
ing a measurement defined by the projectors P1, . . . , PN . Let P be a projector on
the subspace spanned by the signal states |s1〉, . . . |sN 〉, i.e. P |sk〉 = |sk〉 for all
k = 1, . . . , N . The dimension d of this subspace is given by d = trP . We shall
assume, without any loss of generality, that Bob designed his measurement in
such a way that, whenever he gets outcome Pk, he concludes that Alice sent state
|sk〉. His probability of successfully identifying which state Alice sent to him is
given by

Pr(success) = 1
N

∑
k

〈sk|Pk|sk〉

which is the probability that signal state |sk〉 is selected (here equal to 1/N ,
since Alice chose between all N signal states with equal probability) times the
probability that the selected signal state is correctly identified by Bob (which is
〈sk|Pk|sk〉), and we sum over all possible signal states.

Let us use this as a chance to practice some of the trace identities. In partic-
ular, it is often convenient to write expressions such as 〈ψ|A|ψ〉 in terms of the
trace: for any vector |ψ〉 and operator A we have

〈ψ|A|ψ〉 = tr(A|ψ〉〈ψ|)
= tr(|ψ〉〈ψ|A).

In our case,

Pr(success) = 1
N

∑
k

〈sk|Pk|sk〉

= 1
N

∑
k

〈sk|PPkP |sk〉

= 1
N

∑
k

tr(PPkP |sk〉〈sk|)

where we have also used that P |sk〉 = |sk〉.

If B is a positive semi-definite operator, and P is a projector, then

trBP ⩽ trB.

To prove this, consider the projector Q = 1− P , and note that

trB = trB(P +Q)
= trBP + trBQ

and that trBQ is non-negative.
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We can use this inequality to bound the expression above:

∑
k

1
N
〈sk|Pk|sk〉 = 1

N

∑
k

tr(PPkP |sk〉〈sk|)

⩽ 1
N

∑
k

tr(PPkP )

= 1
N

tr

(
P

(∑
k

Pk

)
P

)

= 1
N

tr(P 3)

= 1
N

tr(P )

= d

N
.

So if Alice encodes N equally likely messages as states in a quantum system
that, mathematically speaking, lives in the Hilbert space of dimension d, and if
Bob decodes by performing a measurement and inferring the message from the
result, then Bob’s probability of success is bounded above by d

N . If the number
N of possible signals exceeds the dimension d, then Bob will not be able to reliably
distinguish between the signals by any measurement. In particular:95

With this setup, one qubit can store at most one bit of information that
can reliably be read by a measurement.

4.9 Distinguishing non-orthogonal states

We have already mentioned (Section 4.3) that non-orthogonal states cannot be
reliably distinguished, and now we can make this statement more precise. Sup-
pose Alice sends Bob a message by choosing one of the two non-orthogonal states
|s1〉 and |s2〉, where both are equally likely to be chosen. What is the probability
that Bob will decode the message correctly, and what is the best (i.e. the one that
maximises this probability) choice of measurement?96

95There is something called superdense coding, where one qubit can actually store two classical
bits, but this relies on Alice and Bob both having access to a shared entangled state right from the
very start of the experiment. We shall eventually study this in Exercise 5.14.9.

96As a general rule, before you embark on any calculations, check for symmetries, special cases,
and anything that may help you to visualise the problem and make intelligent guesses about the
solution. One of the most powerful research tools is a good guess! In fact, this is what real research
is about: educated guesses that guide your calculations. In this particular case you can use symmetry
arguments to guess the optimal measurement — see Figure 4.2. Once you have guessed the answer,
you might as well do the calculations.

116



4.9 Distinguishing non-orthogonal states

|s2⟩

|s1⟩

|d2⟩

|d1⟩

Figure 4.2: The optimal measurement to distinguish between the two equally
likely non-orthogonal signal states |s1〉 and |s2〉 is described by the two orthogo-
nal vectors |d1〉 and |d2〉 placed symmetrically around the signal states.

Thinking about what we have already seen, we should expect that how well
we can correctly distinguish between |s1〉 and |s2〉 is directly proportional to “how
close” they are to being orthogonal — if they are orthogonal, then we can distin-
guish perfectly; if they are identical (i.e. collinear), then we cannot distinguish
between them at all. Hopefully, then, our final answer will depend on the angle
between |s1〉 and |s2〉.

So suppose Bob’s measurement is described by projectors P1 and P2, chosen
such that “P1 implies |s1〉, and P2 implies |s2〉”. Then

Pr(success) = 1
2

(〈s1|P1|s1〉+ 〈s2|P2|s2〉)

= 1
2

(trP1|s1〉〈s1|+ trP2|s2〉〈s2|)

= 1
2

(trP1|s1〉〈s1|+ tr(1− P1)|s2〉〈s2|)

= 1
2

(1 + trP1 (|s1〉〈s1| − |s2〉〈s2|)) .

Let us look at the operator D = |s1〉〈s1| − |s2〉〈s2| that appears in the last expres-
sion. This operator acts on the subspace spanned by |s1〉 and |s2〉; it is Hermitian;
the sum of its two (real) eigenvalues is zero (whence trD = 〈s1|s1〉−〈s2|s2〉 = 0).
Let us write D as λ(|d+〉〈d+| − |d−〉〈d−|), where |d±〉 are the two orthonormal
eigenstates of D, and ±λ are the corresponding eigenvalues.

Now we write

Pr(success) = 1
2

(1 + λ trP1 (|d+〉〈d+| − |d−〉〈d−|))

⩽ 1
2

(1 + λ〈d+|P1|d+〉)

where we have dropped the non-negative term trP1|d−〉〈d−|. In fact, it is easy to
see that we will maximise the expression above by choosing P1 = |d+〉〈d+| and
P2 = |d−〉〈d−|. The probability of success is then bounded by 1

2 (1 + λ). All we
have to do now is to find the positive eigenvalue λ for the operator D.

We can do this, of course, by solving the characteristic equation for a matrix
representation of D, but, since we are practising using the trace identities, we
can also notice that trD2 = 2λ2, and then evaluate the trace of D2. We use the
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trace identities and obtain

trD2 = tr (|s1〉〈s1| − |s2〉〈s2|) (|s1〉〈s1| − |s2〉〈s2|)
= 2− 2|〈s1|s2〉|2

which gives λ =
√

1− |〈s1|s2〉|2. Bringing it all together we have the final ex-
pression:

Pr(success) ⩽ 1
2

(
1 +

√
1− |〈s1|s2〉|2

)
.

We can parametrise |〈s1|s2〉| = cosα, where α is then the angle between |s1〉
and |s2〉.

|s2⟩

|s1⟩α

This allows us to express our findings in a clearer way: given two equally
likely states, |s1〉 and |s2〉, such that |〈s1|s2〉| = cosα, the probability of correctly
identifying the state by a projective measurement is bounded by97

Pr(success) ⩽ 1
2

(1 + sinα),

and the optimal measurement that achieves this bound is determined by the
eigenvectors of D = |s1〉〈s1| − |s2〉〈s2| (try to visualise these eigenvectors).

It makes sense, right? If we try just guessing the state, without any mea-
surement, then we expect Pr(success) = 1

2 . This is our lower bound, and in any
attempt to distinguish the two states we should do better than that. If the two
signal states are very close to each other, then sinα is small and we are slightly
better off than guessing. As we increase α, the two states become more distin-
guishable, and, as we can see from the formula, when the two states become
orthogonal they also become completely distinguishable.

We will return to this same problem later on, in Section 12.8, where we will
use a different, less ad-hoc, approach, working in the more general setting of
so-called density operators.

4.10 Wiesner’s quantum money

This section is not yet finished.

4.11 Quantum theory, formally

Even though multiplying and adding probability amplitudes is essentially all
there is to quantum theory, we hardly ever multiply and add amplitudes in a

97Here we use that cos2 α+ sin2 α = 1 for any α.
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pedestrian way. Instead, as we have seen, we neatly tabulate the amplitudes into
vectors and matrices and let the matrix multiplication take care of multiplication
and addition of amplitudes corresponding to different alternatives. Thus vectors
and matrices appear naturally as our bookkeeping tools: we use vectors to de-
scribe quantum states, and matrices (operators) to describe quantum evolutions
and measurements. This leads to a convenient mathematical setting for quan-
tum theory: a complex vector space with an inner product (which is exactly a
Hilbert space, since we only work in finite dimension). It turns out, somewhat
miraculously, that this pure mathematical construct is exactly what we need to
formalise quantum theory. It gives us a precise language which is appropriate for
making empirically testable predictions. At a very instrumental level, quantum
theory is a set of rules designed to answer questions such as “given a specific
preparation and a subsequent evolution, how can we compute probabilities for
the outcomes of such-and-such measurement”. Here is how we represent prepa-
rations, evolutions and measurements in mathematical terms, and how we get
probabilities.

Note that we have already said much of the below, but we are summarising it
again now in a more precise way, formally defining the mathematical framework
of quantum theory that we use.

We also need to point out that a vital part of the formalism of quantum theory
is missing from the following description, namely the idea of tensor products.
To talk about this, we need to introduce the notion of entanglement, and this
will be the subject of the next chapter.

Axiomatic quantum theory.

It is a very reasonable question to ask why this formalism (Hilbert spaces,
unitary operators, the Born rule) is “the good one”. One answer is that
“it just works” — the calculations that we do in this framework give us
answers which are in agreement with the results of physical experiments
— but this can be rather unsatisfying as an answer.

Quite beautifully, it turns out that if we start from just five axioms, then
we can prove that our choice of formalism is actually the only one that
makes sense. This is the result of L. Hardy’s “Quantum Theory From Five
Reasonable Axioms”, arXiv:quant-ph/0101012. We start by saying that
a quantum system should be characterised by two integers: the number
of degrees of freedom K, and the dimension N . The former is (roughly)
the minimum number of real numbers needed to specify any state; the
latter is the maximum number of states that can be distinguished from
one another in one single measurement. The five axioms are then as
follows.

1. Probabilities. Relative frequencies of observed outcomes from mea-
suring an ensemble of n systems tend to a well defined value, called
the probability, when n tends to infinity.

2. Simplicity. The integerK is a function ofN , and takes the minimum
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4.11 Quantum theory, formally

possible value consistent with these axioms for each N .
3. Subspaces. If a system is such that its states all lie within an M -

dimensional subspace (for some M < N), then it behaves exactly
like a system of dimension M .

4. Composite systems. Composite systems behave multiplicatively, i.e. if
a system is a composite of two subsystems A and B, then N =
NANB and K = KAKB .

5. Continuity. Given any two pure states (all of the states that we
have been discussing so far are pure states, but we define what
this means in Section 8.1.) of a system, there exists a continuous
reversible transformation of the system that sends one to the other.

What is particularly nice, as a bonus result, is that if we make one tiny
change to these axioms — just dropping the word “continuous” from the
fifth axiom — then the result is exactly classical probability theory.

Quantum states

With any isolated quantum system which can be prepared in n perfectly distin-
guishable states, we can associate a Hilbert space H of dimension n such that
each vector |v〉 ∈ H of unit length (〈v|v〉 = 1) represents a quantum state of
the system. The overall phase of the vector has no physical significance: |v〉 and
eiϕ|v〉, for any real ϕ, describe the same state. The inner product 〈u|v〉 is the
probability amplitude that a quantum system prepared in state |v〉 will be found
in state |u〉. States corresponding to orthogonal vectors, 〈u|v〉 = 0, are perfectly
distinguishable, since the system prepared in state |v〉 will never be found in state
|u〉, and vice versa. In particular, states forming orthonormal bases are always
perfectly distinguishable from each other.

Quantum evolutions

Any physically admissible evolution of an isolated quantum system is rep-
resented by a unitary operator.

Unitary operators describing evolutions of quantum systems are usually de-
rived from the Schrödinger equation98

d
dt
|ψ(t)〉 = − i

ℏ
Ĥ|ψ(t)〉

where Ĥ is a Hermitian operator called the Hamiltonian.
This equation contains a complete specification of all interactions both within

the system and between the system and the external potentials. For time-independent

98We briefly discussed this equation in Section 3.6.
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Hamiltonians, the formal solution of the Schrödinger equation reads

|ψ(t)〉 = U(t)|ψ(0)〉

where U(t) = e− i
ℏ Ĥt.

Any unitary matrix can be represented as the exponential of some Hermitian
matrix Ĥ and some real coefficient t:

e−itĤ = 1− itĤ + (−it)2

2
Ĥ2 + (−it)3

2 · 3
Ĥ3 + . . .

=
∞∑

n=0

(−it)n

n!
Ĥn.

The state vector changes smoothly: for t = 0 the time evolution operator is
merely the unit operator 1, and when t is very small U(t) ≈ 1 − itĤ is close to
the unit operator, differing from it by something of order t.

Quantum circuits

In this course we will hardly refer to the Schrödinger equation. Instead we will
assume that our clever colleagues — experimental physicists — are able to imple-
ment certain unitary operations, and we will use these unitaries, like lego blocks,
to construct other, more complex, unitaries. We refer to pre-selected elemen-
tary quantum operations as quantum logic gates and we often draw diagrams,
called quantum circuits, to illustrate how they act on qubits. For example, two
unitaries, U followed by V , acting on a single qubit are represented as

U V

This diagram should be read from left to right, and the horizontal line rep-
resents a qubit that is inertly carried from one quantum operation to another
(maybe through space, down a physical wire, but maybe through some other
physical implementation — we don’t particularly mind!)

Measurements

A complete measurement in quantum theory is determined by the choice of an
orthonormal basis {|e1〉, . . . , |en〉} in H, and every such basis (in principle) rep-
resents a possible measurement. Given a quantum system in state |ψ〉 such that

|ψ〉 =
∑

i

|ei〉〈ei|ψ〉,

the measurement in the basis {|e1〉, . . . , |en〉} gives the outcome labelled by ek

with probability |〈ek|ψ〉|2, and leaves the system in state |ek〉 after measurement.
This is consistent with our interpretation of the inner product 〈ek|ψ〉 as the prob-
ability amplitude that a quantum system prepared in state |ψ〉 will be found in
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state |ek〉. State vectors forming orthonormal bases are perfectly distinguishable
from each other (〈ei|ej〉 = δij), so there is no ambiguity about the outcome. A
complete measurement is the best we can do in terms of resolving state vectors
in the basis states.

In general, for any decomposition of the identity
∑

k Pk = 1 into orthogonal
projectors Pk (i.e. PkPl = Pkδkl), there exists a measurement that takes a quan-
tum system in state |ψ〉, outputs label k with probability 〈ψ|Pk|ψ〉, and leaves the
system in the state Pk|ψ〉 (multiplied by the normalisation factor i.e. divided by
the length of Pk|ψ〉):

|ψ〉 7→ Pk|ψ〉√
〈ψ|Pk|ψ〉

.

The projector formalism covers both complete and incomplete measurements.
The complete measurements are exactly those defined by rank-one projectors
Pk = |ek〉〈ek|, projecting on vectors from some orthonormal basis {|ek〉}.

4.12 Remarks and exercises

4.12.1 Projector?

Consider two unit vectors |a〉 and |b〉. Is the operator |a〉〈a|+ |b〉〈b| a projector?

4.12.2 Knowing the unknown

Suppose you are given a single qubit in some entirely unknown quantum state
|ψ〉 = α|0〉+ β|1〉.

1. Can you determine |ψ〉, using as many measurements as you want?

2. Say you measure the qubit in the standard basis, and register outcome |0〉.
What does this tell you about the pre-measurement state |ψ〉?

3. How many real parameters do you need to determine |ψ〉? Would you be
able to99 reconstruct |ψ〉 from 〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, and 〈ψ|Z|ψ〉?

4. You are given zillions of qubits, all prepared in the same quantum state |ψ〉.
How would you determine |ψ〉?

4.12.3 Measurement and idempotents

The Z measurement is defined by the projectors

P0 = 1
2

(1 + Z),

P1 = 1
2

(1− Z).

Let’s generalise this.
99Hint: it may help you to visualise |ψ〉 as a Bloch vector.
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Consider the measurement associated to any Hermitian operator S that sat-
isfies S2 = 1. Show that the two outcomes ±1 correspond to the projectors
1
2 (1± S).

4.12.4 Unitary transformations of measurements

In our quantum circuits, unless specified otherwise, all measurements are as-
sumed to be performed in the standard basis. This is because any measurement
can be reduced to the standard measurement by performing some prior unitary
transformation.

1. Show that100 any two orthonormal bases {|e1〉, . . . , |en〉} and {|d1〉, . . . , |dn〉}
are always related by some unitary U .

2. Suppose that the projectors Pk define the standard measurement. Show
that, for any unitary U , the projectors UPkU

† also define a measurement.

UPkU
†

|ψ⟩ ≡
Pk

|ψ⟩ U

4.12.5 Optimal measurement

The optimal measurement to distinguish between the two equally likely non-
orthogonal signal states, |s1〉 and |s2〉, is described by the two orthogonal vectors
|d1〉 and |d2〉, placed symmetrically around the signal states, as we saw in Section
4.9. But suppose the states are not equally likely: say |s1〉 is chosen with proba-
bility p1 and |s2〉 with probability p2. How would you modify the measurement
to maximise the probability of success in this case?

|s2⟩ with prob. p2

|s1⟩ with prob. p1

|d2⟩

|d1⟩

4.12.6 Alice knows what Bob did

Alice prepares a qubit in any state of her choosing and gives it to Bob, who
secretly measures either σx or σy. The outcome of the measurement is seen only
by Bob. Alice has no clue which measurement was chosen by Bob, but right
after his measurement she gets her qubit back and she can measure it as well.
Some time later, Bob tells Alice which of the two measurements was chosen,
i.e. whether he measured σx or σy. Alice then tells him the outcome he obtained

100Hint: it suffices to show that
∑

k
|dk〉〈ek| is unitary — why?
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in his measurement. Bob is surprised, since the two measurements have mutually
unbiased bases, and yet Alice always gets it right, no matter how many times they
repeat the experiment. How does she do it?

This is a simplified version of a beautiful quantum puzzle proposed in 1987 by
Lev Vaidman, Yakir Aharonov, and David Z. Albert in a paper with the somewhat
provocative title “How to ascertain the values of σx, σy, and σz of a spin- 1

2 particle”.
For the original, see Phys. Rev. Lett. 58 (1987), p. 1385.

4.12.7 The Zeno effect

This section is not yet finished.
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5 Entanglement

About the fundamental tool of quantum computing: entangle-
ment, via the formalism of tensor products, which was the miss-
ing ingredient from our previous formalism of quantum theory.
Also about various controlled gates, including the always useful
controlled-NOT.

We now know everything we need to know101 about a single qubit and its
quantum behaviour. But if we want to understand quantum computation — a
complicated quantum interference of many interacting qubits — then we will
need few more mathematical tools. Stepping up from one qubit to two or more
is a bigger leap than you might expect. Already, with just two qubits, we will
encounter the remarkable phenomenon of quantum entanglement and have a
chance to discuss some of the most puzzling features of quantum theory that took
people decades to understand.

5.1 A very brief history

The notion of quantum entanglement was the subject of many early debates
that focused on the meaning of quantum theory. Back in the 1930s, Albert Ein-
stein, Niels Bohr, Werner Heisenberg, and Erwin Schrödinger (to mention just the
usual suspects) were trying hard to understand its conceptual consequences.102

Einstein, the most sceptical of them all, claimed that it was pointing toward the
fatal flaw in quantum theory, and referred to it as “spooky action at a distance”
(“spukhafte Fernwirkung”). In contrast, Schrödinger was much more prepared to
accept quantum theory exactly as it was formulated, along with all its predic-
tions, no matter how weird they might be. In his 1935 paper, which introduced
quantum entanglement, he wrote “I would not call it one but rather the char-
acteristic trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought”.

Today we still talk a lot about quantum entanglement, but more often it is
viewed as a physical resource which enables us to communicate with perfect se-
curity, build very precise atomic clocks, and even teleport small quantum objects!
But what exactly is quantum entanglement?

5.2 From one qubit to two

In classical physics, the transition from a single object to a composite system of
many objects is trivial: in order to describe the state of, say, 42 objects at any
given moment of time, it is sufficient to describe the state of each of the objects

101For our purposes! Of course, there is a lot that we could still ask, but we leave these questions to
quantum physicists, or scientists working in a lab.

102E. Schrödinger, “Discussion of probability relations between separated system”. Mathematical
Proceedings of the Cambridge Philosophical Society 31 (1935), pp. 555–563.
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separately. Indeed, the classical state of 42 point-like particles is described by
specifying the position and the momentum of each particle.

In the classical world, “the whole is exactly the sum of its parts”; in the
quantum world, Aristotle had it right when he said “the whole is greater
than the sum of its parts”.

Consider, for example, a pair of qubits. Suppose that each one is described by
a state vector: the first one by |a〉, and the second one by |b〉. One might therefore
think that the most general state of the two qubits should be represented by a pair
of state vectors, |a〉|b〉, with one for each qubit. Indeed, such a state is certainly
possible, but there are other states that cannot be expressed in this form. In
order to write down the most general state of two qubits we first focus on the
basis states.

For a single qubit we have been using the standard basis {|0〉, |1〉}. For two
qubits we may choose the following as our standard basis states:103

|00〉 ≡ |0〉|0〉 |01〉 ≡ |0〉|1〉
|10〉 ≡ |1〉|0〉 |11〉 ≡ |1〉|1〉.

Within each ket, the first symbol refers to the first qubit, and the second to the
second, and we have tacitly assumed that we can distinguish the two qubits by
their location, or some other means.

Now, the most general state of the two qubits (a bipartite state) is a nor-
malised linear combination of these four basis states, i.e. a vector of the form

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉.

Physical interpretation aside, let us count how many real parameters are needed
to specify this state. Six, right? We have four complex numbers (the cij), which
gives eight real parameters; we then restrict by the normalisation condition, along
with the fact that states differing only by a global phase factor are equivalent,
which leaves us with six real parameters. Now, by the same line of argument, we
need only two real parameters to specify the state of a single qubit, and hence
need four real parameters to specify any state of two qubits of the form |a〉|b〉.

But four is less than six! So it cannot be the case that every state of two qubits
can be expressed as a pair of states |a〉|b〉, simply for “dimension reasons”.

For example, compare the two states of two qubits,

1√
2
|00〉+ 1√

2
|01〉 and

1√
2
|00〉+ 1√

2
|11〉.

The first one is separable, i.e. we can view it as a pair of state vectors where each

103It looks like we are defining some sort of “multiplication rule” for kets here, saying that |a〉|b〉 :=
|ab〉. This is indeed the case, but to talk about this properly we need to introduce the idea of tensor
products (which we do very soon, in Section 5.3).
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one pertains to one of the two qubits:

1√
2
|00〉+ 1√

2
|01〉 = 1√

2
|0〉︸︷︷︸

qubit 1

(|0〉+ |1〉)︸ ︷︷ ︸
qubit 2

,

The second state, however, does not admit such a decomposition: there do not
exist any ψ1, ψ2 such that

1√
2
|00〉+ 1√

2
|11〉 = |ψ1〉|ψ2〉

and so we say that it is an entangled state.
Any bipartite state that cannot be viewed as a pair of two states pertaining to

the constituent subsystems is said to be entangled.
We’ll give another, equivalent but more mathematical (and notational), defi-

nition of entanglement once we understand how tensor products work.

5.3 Quantum theory, formally (continued)

In Section 4.11, we said that we were missing a key part in our formalism of
quantum theory — now we can finally fill in this hole. Our mathematical formal-
ism of choice behind the quantum theory of composite systems is based on the
tensor product of Hilbert spaces.

Tensor products

Let the states of some system A be described by vectors in an n-dimensional
Hilbert spaceHA, and the states of some system B by vectors in anm-dimensional
Hilbert space HB. The combined system of A and B is then described by vectors
in the nm-dimensional tensor product spaceHA⊗HB. Given bases {|a1〉, . . . , |an〉}
ofHA and {|b1〉, . . . , |bm〉} ofHB, we form a basis of the tensor product by taking
the ordered pairs |ai〉 ⊗ |bj〉, for i = 1, . . . , n and j = 1, . . . ,m. For brevity, we
sometimes write |ai〉 ⊗ |bj〉 as |ai〉|bj〉, or simply |aibj〉. The tensor product space
HA ⊗ HB then consists of all linear combination of such tensor product basis
vectors:104

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉. (‡)

The tensor product operation ⊗ is distributive:

|a〉 ⊗ (β1|b1〉+ β2|b2〉) = β1|a〉 ⊗ |b1〉+ β2|a〉 ⊗ |b2〉
(α1|a1〉+ α2|a2〉)⊗ |b〉 = α1|a1〉 ⊗ |b〉+ α2|a2〉 ⊗ |b〉.

The tensor product of Hilbert spaces is again a Hilbert space: the inner prod-
ucts on HA and HB give a natural inner product on HA ⊗ HB, defined for any
two product vectors by

(〈a′| ⊗ 〈b′|) (|a〉 ⊗ |b〉) = 〈a′|a〉〈b′|b〉
104If the bases {|ai〉} and {|bj〉} are orthonormal then so too is the tensor product basis {|ai〉⊗|bj〉}.
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and extended by linearity to sums of tensor products of vectors, and, by associa-
tivity105, to any number of subsystems. Note that the bra corresponding to the
tensor product state |a〉⊗ |b〉 is written as (|a〉⊗ |b〉)† = 〈a| ⊗ 〈b|, where the order
of the factors on either side of ⊗ does not change when the dagger operation is
applied.

Some joint states of A and B can be expressed as a single tensor product, say
|ψ〉 = |a〉 ⊗ |b〉, meaning that the subsystem A is in state |a〉, and the subsystem
B in state |b〉. If we expand |a〉 =

∑
i αi|ai〉 and |b〉 =

∑
i βj |bj〉, then |ψ〉 =∑

i,j αiβj |ai〉 ⊗ |bj〉 and we see that, for all such states, the coefficients cij in
Equation (‡) are of a rather special form:

cij = αiβj .

We call such states separable (or product states). States that are not separable
are said to be entangled.

A useful fact about tensor products is that λa⊗ b = a⊗ λb (where a and b are
vectors, and λ is a scalar). This means that we don’t need to worry about where
exactly we put λ, and can write something like λ(a⊗ b).

We will also need the concept of the tensor product of two operators. If A is
an operator on HA and B an operator on HB, then the tensor product operator
A⊗B is an operator on HA ⊗HB defined by its action on product vectors via

(A⊗B)(|a〉 ⊗ |b〉) = (A|a〉)⊗ (B|b〉)

and with its action on all other vectors determined by linearity:

A⊗B

∑
i,j

cij |ai〉 ⊗ |bj〉

 =
∑
i,j

cijA|ai〉 ⊗B|bj〉.

The universal property of the tensor product.

We have described the tensor product in terms of how it acts on bases, and
then extended everything by linearity, distributivity, and associativity. But
there are other, more abstract approaches to defining the tensor product.

For example, given two vector spaces V andW , we can construct their
tensor product V ⊗W as a quotient of the cartesian product V ×W (whose
elements are simply pairs (v, w) of vectors in V and vectors in W ) by the
subspace spanned by the relations that we want the tensor product to
satisfy:

(v1 + v2, w)− (v1, w)− (v2, w),
(v, w1 + w2)− (v, w1)− (v, w2),

(λv,w)− λ(v, w),
(v, λw)− λ(v, w).

105Associativity means that (Ha ⊗ Hb) ⊗ Hc = Ha ⊗ (Hb ⊗ Hc).
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But really this is hinting at the so-called universal property that de-
fines the tensor product without giving a choice of explicit construction:
the tensor product of V and W is defined to be any vector space A along
with a bilinear map ⊗ : V ×W → A such that, for any other vector space
Z along with a bilinear map f : V ×W → Z, there exists a unique linear
map f̃ : A → Z such that f = f̃ ◦ ⊗. In the language of category theory,
the tensor product is the initial object amongst vector spaces endowed
with a bilinear map from V ×W ; any other vector space Z with a bilinear
map V ×W → Z factors through the tensor product.

One specific reason to care about giving a definition in terms of uni-
versal property is that this guarantees (by some abstract nonsense) that
the resulting object will be unique (“up to unique isomorphism”) when-
ever it exists, so you don’t need to worry about proving this separately.

Tensor products are much more general than just for vector spaces:
they can be defined for modules (which are like vector spaces over an
arbitrary commutative ring, instead of over a field), and abelian groups
are, it turns out, exactly “modules over Z”, so they also have a notion
of tensor product. Going a bit deeper, we can define tensor products for
complexes of modules and sheaves of modules, and these constructions
are absolutely fundamental to modern algebraic geometry.

Going even deeper still (and now far beyond the purview of this book),
tensor products are generalised by the notion of monoidal categories.

As a final note, the universal property of the tensor product can be
used to prove that we do not need to impose the postulate “the Hilbert
space of a composite system is the tensor product of the Hilbert spaces
of its components”, but that this actually follows “for free” from the
state and the measurement postulates. This is shown in Carcassi, Mac-
cone, and Aidala’s “The four postulates of quantum mechanics are three”,
arXiv:2003.11007.

5.4 More qubits, and binary representations

Let’s see how this formalism works for qubits. The n-fold tensor product of vec-
tors from the standard basis {|0〉, |1〉} represent binary strings of length n. For
example, for n = 3,

|0〉 ⊗ |1〉 ⊗ |1〉 ≡ |011〉
|1〉 ⊗ |1〉 ⊗ |1〉 ≡ |111〉.

A classical register (that is, a collection of bits) composed of three bits can store
only one of these two binary strings at any time; a quantum register composed of
three qubits can store both of them in a superposition.

Indeed, if we start with the state |011〉 and apply the Hadamard gate to the
first qubit (which is the same as applying H ⊗ 1 ⊗ 1), then, given that linear
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combinations distribute over tensor products, we obtain

|011〉 H⊗1⊗17−→ 1√
2
(
|0〉+ |1〉

)
⊗ |1〉 ⊗ |1〉

= 1√
2
(
|011〉+ |111〉

)
.

In fact, we can even prepare this register in a superposition of all eight pos-
sible binary strings of length 3 at once: if we apply the tensor product operation
H ⊗H ⊗H to the state |0〉 ⊗ |0〉 ⊗ |0〉 = |000〉 then we get

|0⟩ H
|0⟩+|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2


=

1

23/2

{
|000⟩+ |001⟩+ |010⟩+ |011⟩

+ |100⟩+ |101⟩+ |110⟩+ |111⟩

}
.

The resulting state is exactly a superposition of all binary strings of length 3,
and can also be written as

1√
2
(
|0〉+ |1〉

)
⊗ 1√

2
(
|0〉+ |1〉

)
⊗ 1√

2
(
|0〉+ |1〉

)
.

In general, the tensor product operationH⊗n, which means “apply the Hadamard
gate to each of your n qubits”, is known as the Hadamard transform, and it maps
product states to product states. Like the Hadamard gate in the typical quantum
interference circuit, the Hadamard transform opens (and closes) multi-qubit in-
terference.

One final note is on notation, or maybe more a shift of point-of-view. We
have just explained how applying the Hadamard transform to n qubits gives us
the equally weighted superposition of all binary strings of length n. But rather
than writing them as binary strings, we could consider the decimal number rep-
resented by each string. This means we switch from considering all binary strings
of length n to considering all natural numbers from 0 to N − 1, where N = 2n.
For example, with n = 3 qubits, we could either write

1√
2n

∑
x∈{0,1}n

|x〉

or instead switch to the decimal approach with N = 2n = 8 and write

1√
N

N−1∑
x=0
|x〉

so that we are writing |7〉 to mean |111〉, and |3〉 to mean |011〉, and |0〉 to mean
|000〉, and so on.
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5.5 Separable or entangled?

“Most” vectors inHa⊗Hb are entangled: they cannot be written as prod-
uct states |a〉 ⊗ |b〉 with |a〉 ∈ Ha and |b〉 ∈ Hb.

In order to see this, let us write any joint state |ψ〉 of A and B in a product
basis as

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

i

|ai〉 ⊗

∑
j

cij |bj〉


=
∑

i

|ai〉 ⊗ |φi〉

(‡)

where the |φi〉 =
∑

j cij |bj〉 are vectors in HB that need not be normalised.
Now, for any product state, these vectors have a special form. Indeed, if

|ψ〉 = |a〉 ⊗ |b〉 then, after expanding the first state in the |ai〉 basis, we obtain

|ψ〉 =
∑

i

|ai〉 ⊗

(∑
i

αi|b〉

)
.

This expression has the same form as Equation (‡) with |φi〉 = αi|b〉, i.e. each of
the |φi〉 vectors in this expansion is a multiple of the same vector |b〉.

Conversely, if |φi〉 = αi|b〉 for all i in Equation (‡), then |ψ〉 must be a product
state.106 So if we want to identify which joint states are product states and which
are not, we simply write the joint state according to Equation (‡) and check if
all the vectors |φi〉 are multiples of a single vector. Needless to say, if we choose
the states |φ〉 randomly, it is very unlikely that this condition is satisfied, and we
almost certainly pick an entangled state. In general, given n qubits, we need
2(2n − 1) real parameters to describe their state vector, but only 2n to describe
separable states; as n grows larger, 2n becomes much much smaller than 2(2n−1).

The Segre embedding.

The problem of deciding whether or not a given state is separable is, in
general, a hard problem (i.e. NP-hard). Because of this, it is interesting
to try to understand the notion of separability from different points of
view, and it turns out that algebraic geometry yet again has something
interesting to say. The theory relies on the notion of projective space,
which is a non-trivial topic to try to introduce here, so we do so only

106Even though an entangled state cannot be written as a single tensor product, it can always be
written as a linear combination of tensor products, since these form a basis.
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briefly, and at a very high speed.
We have repeatedly said that we only really care about state vectors

up to global phase, i.e. that |ψ〉 and |ψ′〉 are “the same” if there exists
some θ such that |ψ〉 = eiθ|ψ′〉. Combining this with our unitality require-
ment (that we want |〈ψ|ψ〉|2 = 1), we are led to studying the equivalence
relation

v ∼ w ⇐⇒ v = λw for some λ ∈ C \ {0}

on our Hilbert space. Geometrically, this can be understood as the space of
lines through the origin, i.e. of 1-dimensional subspaces, but the geometry
of projective space is a subject that really deserves many many pages to
delve into, and so we won’t talk about this point of view here.

Algebraically, it turns out that we can describe the space of such equiv-
alence classes using homogeneous coordinates. Defining projective n-
space as

Pn := Cn+1/ ∼

(where ∼ is the equivalence relation defined above), it turns out that
points in Pn are described by coordinates

[a0 : a1 : . . . : an]

where ai ∈ C are not all simultaneously zero (i.e. there exists at least one
i ∈ {0, . . . , n} such that ai 6= 0) and where we impose that

[a0 : a1 : . . . : an] = [λa0 : λa1 : . . . : λan]

for any λ ∈ C \ {0}.
Why is this useful? Well, given any pure state α0|0〉+α1|1〉 of a qubit,

we obtain a unique point in P1, namely [α0 : α1] (since |〈ψ|ψ〉|2 = 1 tells
us that at least one of α0 and α1 is non-zero); conversely, given any point
[a0 : a1] ∈ P1, we can multiply by an appropriate λ ∈ C \ {0} to assume
that |a0|2 + |a1|2 = 1, and thus obtain a unique (up to global phase) pure
state a0|0〉 + a1|1〉. That is, points in the (complex) projective line P1

correspond to pure states of a qubit.
Next, we can always express a pure state of two qubits in the form

β0|00〉+ β1|01〉+ β2|10〉+ β3|11〉

and we similarly find a correspondence with points [z0 : z1 : z2 : z3] in P3

(given, in one direction, by setting zi := βi).
What is of interest to us here is a particular map known as the Segre

embedding:

σ : P1 × P1 −→ P3

([a0 : a1], [b0 : bn]) 7−→ [a0b0 : a0b1 : a1b0 : a1b1].
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First of all, one needs to check that this does indeed give a well defined
function (i.e. that the resulting coordinate always has at least one non-
zero component, and that it is invariant under multiplication by a non-
zero scalar λ ∈ C \ {0}). But it turns out that, not only is this a well
defined function, but it is actually a “geometric” function, in that it re-
spects the “geometric structure” of projective space. We won’t concern
ourselves here with what that means, but we note that it is even more
well behaved than this: as its name suggests, it actually gives an embed-
ding (i.e. a “geometric” injection) of the 2-dimensional space P1×P1 into
the 3-dimensional space P3.

The image of the Segre embedding is called the Segre variety, and
you can check that it is given by the set of points

Σ := Im(σ) =
{

[z0 : z1 : z2 : z3] ∈ P3 | z0z3 − z1z2 = 0
}

(in algebraic-geometry language, it is the zero-locus of a single polyno-
mial).

Now here is the punchline to all this geometric meandering: a state
|φ〉 of two qubits is separable if and only if its corresponding point in P3 lies
in the Segre variety Σ.

For more, see e.g. Cirici, Salvadó, and Taron’s “Characterization
of quantum entanglement via a hypercube of Segre embeddings”,
arXiv:2008.09583).

Quantum entanglement is one of the most fascinating aspects of quantum
theory. We will now explore some of its computational implications.

5.6 Controlled-NOT

How do entangled states arise in real physical situations? The short answer is
that entanglement is the result of interactions. It is easy to see that tensor product
operations U1 ⊗ . . .⊗ Un map product states to product states:

...

|ψ1⟩ U1 |ψ′
1⟩

|ψn⟩ Un |ψ′
n⟩


|ψ′

1⟩ ⊗ . . .⊗ |ψ′
n⟩

and so any collection of separable qubits remains separable. As soon as qubits
start interacting with one another, however, they become entangled, and things
start to get really interesting. We will describe interactions that cannot be written
as tensor products of unitary operations on individual qubits.

The most popular two-qubit entangling gate is the controlled-NOT (or c-NOT),
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5.7 Bell states

also known as the controlled-X gate.107 The gate acts on two qubits: it flips
the second qubit (referred to as the target) if the first qubit (referred to as the
control) is |1〉, and does nothing if the control qubit is |0〉. In the standard basis
{|00〉, |01〉, |10〉, |11〉}, it is represented by the following unitary matrix:

Controlled-NOT:


1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0



We represent the c-NOT gate in circuit notation as shown in Figure 5.1.

|x⟩ |x⟩

|y⟩ |x⊕ y⟩

Figure 5.1: Where x, y ∈ {0, 1}, and ⊕ denotes XOR, or addition modulo 2.

Note that this gate does not admit any tensor-product decomposition, but can
be written as a sum of tensor products:108

c-NOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X

(where X is the Pauli bit-flip operation).

The c-NOT gate lets us do many interesting things, and can act in a rather
deceptive way. Let us now study some of these things.

5.7 Bell states

We start with the generation of entanglement. Here is a simple circuit that
demonstrates the entangling power of c-NOT:109

107Here, X ≡ σx refers to the Pauli operator that implements the bit-flip.
108Make sure that you understand how the Dirac notation is used here. More generally, think why

|0〉〈0| ⊗A+ |1〉〈1| ⊗B

means “if the first qubit is in state |0〉 then apply A to the second one, and if the first qubit is in state |1〉
then apply B to the second one”. What happens if the first qubit is in a superposition of |0〉 and |1〉?

109John Stewart Bell (1928–1990) was a Northern Irish physicist.
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Circuit. (Generating entanglement).

|0⟩ H
1√
2
(|00⟩+ |11⟩)

|0⟩

In this circuit, the separable input |0〉|0〉 evolves as

|0〉|0〉 H7−→ 1√
2

(|0〉+ |1〉)|0〉

= 1√
2
|0〉|0〉+ 1√

2
|1〉|0〉

c-NOT7−→ 1√
2
|0〉|0〉+ 1√

2
|1〉|1〉

resulting in the entangled output 1√
2 (|00〉+ |11〉). In fact, this circuit implements

the unitary operation which maps the standard computational basis into the four
entangled states, known as the Bell states.

The Bell states |ψij〉 are those generated by the above circuit:

|00〉 7−→ |ψ00〉 := 1√
2

(|00〉+ |11〉)

|01〉 7−→ |ψ01〉 := 1√
2

(|01〉+ |10〉)

|10〉 7−→ |ψ10〉 := 1√
2

(|00〉 − |11〉)

|11〉 7−→ |ψ11〉 := 1√
2

(|01〉 − |10〉)

The more standard notation for these states, however, is the following:

Φ+ := |ψ00〉
Ψ+ := |ψ01〉
Φ− := |ψ10〉
Ψ− := |ψ11〉

(and this is the notation that we will use from now on).

The Bell states form an orthonormal basis in the Hilbert spaceH1⊗H2 of two
qubits. We can perform measurements in the Bell basis: the easiest way to do it
in practice is to “rotate” the Bell basis to the standard basis, and then perform the
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measurement in the standard basis.110 Indeed, if we reverse the circuit (running
it from right to left), then we get a circuit which maps the Bell state |ψij〉 to
the corresponding state |ij〉 in the standard basis. This unitary mapping allows
us to “implement” the projections on Bell states by applying the reversed circuit
followed by the usual qubit-by-qubit measurement in the standard basis.

The Bell states are said to be maximally entangled, since their reduced den-
sity operators are maximally mixed (a notion that we will define in Section 8.3).
Roughly, this means that the outcomes of any measurement performed on them
are completely random. This property — having maximal entropy (in some
sense) — makes the Bell states incredibly useful for many applications, and we
shall see some of them now.

5.8 Quantum teleportation

A wonderful fact, that sounds more like science fiction than actual science, is
the following: an unknown quantum state can be teleported from one location to
another. Consider the following circuit, which is built from a Bell state generator
followed by an “offset” inverse Bell state generator:111

Circuit. (Quantum teleportation).

α |0⟩+ β |1⟩ H |x⟩

|0⟩ H |y⟩

|0⟩ |ψ⟩

The first input qubit (counting from the top) is in some arbitrary state. After
the action of the part of the circuit in the first dashed box (counting from the
left), the state of the three qubits reads112

(
α|0〉+ β|1〉

)(
|00〉+ |11〉

)
.

By regrouping the terms, but keeping the qubits in the same order, this state can

110For any state |ψ〉 of two qubits, the amplitude 〈ψij |ψ〉 can be written as 〈ij|U†|ψ〉, where U† is
such that |ψij〉 = U |ij〉.

111Divide et impera, or “divide and conquer”: a good approach to solving problems in mathematics
(and in life). Start with the smaller circuits in the dashed boxes, which we have just seen introduced
above.

112We don’t worry about writing the normalisation factors.
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be written as the sum

(|00〉+ |11〉)⊗ (α|0〉+ β|1〉)
+(|01〉+ |10〉)⊗ (α|1〉+ β|0〉)
+(|00〉 − |11〉)⊗ (α|0〉 − β|1〉)
+(|01〉 − |10〉)⊗ (α|1〉 − β|0〉).

Then the part of the circuit in the second dashed box maps the four Bell states of
the first two qubits to the corresponding states from the computational basis:

|00〉 ⊗ (α|0〉+ β|1〉)
+|01〉 ⊗ (α|1〉+ β|0〉)
+|10〉 ⊗ (α|0〉 − β|1〉)
+|11〉 ⊗ (α|1〉 − β|0〉).

Upon performing the standard measurement and learning the values of x and y,
we choose one of the four following transformations depending on these values:

00 7→ 1 01 7→ X

10 7→ Z 11 7→ ZX
(⊛)

(e.g. if x = 0 and y = 1, then we choose X). We then apply this transformation
to the third qubit, which restores the original state of the first qubit.

If you understand how this circuit works113, then you are ready for quantum
teleportation. Here is a dramatic version.

Suppose that three qubits, which all look very similar, are initially
in the possession of an absent-minded Oxford student, Alice. The
first qubit is in a precious quantum state and this state is needed
urgently for an experiment in Cambridge. The other two qubits
are entangled, in the Φ+ = |ψ00〉 state. Alice’s colleague, Bob,
pops in to collect the qubit. Once he is gone, Alice realises that,
by mistake, she gave him not the first but the third qubit: the one
which is entangled with the second qubit.

2

1

Alice,
in Oxford

3

Bob,
in Cambridge

Φ+ = 1√
2
(|00⟩+ |11⟩)

The situation seems to be hopeless — Alice does not know the
quantum state of the first qubit, and Bob is now miles away

113You can play around with this on the Quantum Flytrap Virtual Lab.
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and her communication with him is limited to few bits. How-
ever, Alice and Bob are both very clever and they both diligently
attended their “Introduction to Quantum Information Science”
classes. Can Alice rectify her mistake and save Cambridge sci-
ence?

. . .

Of course: Alice can teleport the state of the first qubit! She
performs the Bell measurement on the first two qubits, which
gives her two binary digits, x and y. She then broadcasts x and
y to Bob, who chooses the corresponding transformation, as in
Equation (⊛), performs it, and recovers the original state.

This raises a natural “philosophical” question: what do we really mean by
teleportation? A key part of this question is understanding what happens to
our original qubit when we teleport it. Note that the actual physical electron
(or whatever implementation of qubits we are using) does not suddenly move
through space — what is teleported is the state of the qubit, but the argument
can be made that if two qubits are entirely indistinguishable from one another
by any measurements that we can make, then they really are “the same” in every
way that matters, and so the qubit which now has the original qubit’s state “is
the same as” the original qubit. As it turns out, this process necessarily destroys
the original qubit’s state, as we now explain.

Teleportation experiments and verification.

The first actual teleportation experiment was successfully achieved in
1997 (arXiv:quant-ph/9710013); in 2012 a record distance was set: an
entangled photon pair was used to teleport a state 143 kilometres/88
miles (arXiv:1205.3909); in 2017, successful ground-to-satellite telepor-
tation was achieved (arXiv:1707.00934). This is not science fiction!

But there is a fundamental question to ask: if the original state is de-
stroyed, then how can we really verify that teleportation has taken place?
We can’t compare the purportedly teleported state to the original one!
The answer to this involves certain no-go theorems and statistical meth-
ods, where we can show that classical physics gives some strict upper
bound on a certain fidelity, but which is clearly surpassed by these phys-
ical experiments. We will better explain the ideas behind these sorts of
arguments later on, in Chapter 6, when we introduce Bell’s theorem.
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5.9 No-cloning, and other no-go theorems

Let us now look at something that the controlled-NOT seems to be doing but, in
fact, isn’t. It is easy to see that the c-NOT can copy the bit value of the first qubit:

|x〉|0〉 c-NOT7−→ |x〉|x〉 (for x = 0, 1)

so one might suppose that this gate could also be used to copy superpositions,
such as |ψ〉 = α|0〉+ β|1〉, so that

|ψ〉|0〉 c-NOT7−→ |ψ〉|ψ〉

for any |ψ〉. But this is not true!
The unitarity of the c-NOT means that it turns superpositions in the control

qubit into entanglement of the control and the target: if the control qubit is in the
a superposition state |ψ〉 = α|0〉 + β|1〉 (with α, β 6= 0), and the target is in |0〉,
then the c-NOT gate generates the entangled state(

α|0〉+ β|1〉
)
|0〉 c-NOT7−→ α|00〉+ β|11〉.

In fact, it is impossible to clone an unknown quantum state, and we can prove
this!

To prove this via contradiction, let us assume that we could build a universal
quantum cloner, and then take any two normalised states |ψ〉 and |φ〉 that are
non-identical (i.e. |〈ψ|φ〉| 6= 1) and non-orthogonal (i.e. 〈ψ|φ〉 6= 0). If we then
run our hypothetical cloning machine we get

|ψ〉|0〉|W 〉 7−→ |ψ〉|ψ〉|W ′〉
|φ〉|0〉|W 〉 7−→ |φ〉|φ〉|W ′′〉

where the third system, initially in state |W 〉, represents everything else (say, the
internal state of the cloning machine). For this transformation to be unitary, it
must preserve the inner product, and so we require that

〈ψ|φ〉 = 〈ψ|φ〉2〈W ′|W ′′〉

which can only be satisfied if |〈ψ|φ〉| is equal to 1 or 0, but this contradicts our
assumptions!

Thus, states of qubits, unlike states of classical bits, cannot be faithfully
cloned. Note that, in quantum teleportation, the original state must therefore
be destroyed, since otherwise we would be producing a clone of an unknown
quantum state. The no-cloning property of quantum states leads to interesting
applications, of which quantum cryptography is one.

The no-cloning theorem. Universal quantum cloners are impossible.
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Approximate quantum cloning.

This section is not yet finished.

The no-cloning theorem is one of many so-called “no-go” theorems in quan-
tum information. We won’t look at all of them in depth, but it’s worth mentioning
them here and giving a very rough idea of what each one says.

• No-teleportation. An arbitrary quantum state cannot be entirely expressed
with classical information. In other words, the process of converting quantum
information to classical information cannot be reversed: classical channels
cannot transmit quantum information.

This can be seen as a consequence of no-cloning: if we were able to turn
a quantum state into classical information and then back again, we could
simply clone the classical information and then get a cloned copy of our
quantum state.

The name is a bit confusing, because we have just seen that quantum tele-
portation is possible through the use of entanglement, but it refers to the
idea of classical teleportation of quantum states.

Note that the “converse” to this is possible though: if we start with some
classical information then we can convert it to quantum information and
then back again perfectly fine (for example, using the fact that orthogonal
states can be perfectly distinguished).

• No-broadcasting. Given a single copy of a quantum state, it cannot be shared
with two or more parties.

This is an even more direct consequence of no-cloning: if we can’t copy a
state, then we have no way of sharing it with multiple people. However, the
real technical statement of this theorem involves non-pure states, which
require the language of density operators to talk about — something that
we will not see until Chapter 8.

One particularly unexpected detail here is that the theorem is no longer true
if we’re provided with more than one copy of the state to start with. For
example, in a process known as superbroadcasting114, given four copies
of an input state we can actually broadcast six copies!

• No-deleting. Given two copies of an arbitrary quantum state, it is impossible
to delete one.

You might hear people saying that the fact that we require our quantum op-
erations to be unitary is to do with reversibility115, and so there is a general
pattern in quantum theory where theorems will have time-dual versions,

114This is shown in D’Ariano, Macchiavello, and Perinotti’s “Superbroadcasting of mixed states”,
arXiv:quant-ph/0506251.

115In fact, we’ll talk a bit about reversibility of computation in Section 10.1.
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giving by taking the same theorem but imagining that time goes in the op-
posite direction. No-deleting is the time dual of no-cloning, and whereas
the latter tells us that quantum states are pretty delicate, the former tells
us that they are also in some sense rather robust.

We might as well state this theorem a bit more precisely, because we have
seen almost all of the necessary definitions already: given a qubit in an
unknown state |ψ〉, there is no isometry V (Section 9.3) such that

V : |ψ〉|ψ〉|W 〉 7−→ |ψ〉|0〉|W ′〉

with |W ′〉 being independent of |ψ〉. Just as for no-cloning, we can of course
delete some qubits (for example those in orthogonal states, since these be-
have a lot like classical bits), but there is no V that works universally, for
any arbitrary state |ψ〉.

• No-communication. An entangled state cannot be used to transmit informa-
tion by measurement of a subsystem.

We talk about this theorem in the context of a worked example in Exer-
cise 5.14.3, and we delve into the details when we talk about Bell tests in
Chapter 6, but it is basically the answer to Einstein’s worry about “spooky
action at a distance” that we mentioned back in Section 5.1: the seemingly
infinitely fast sending of information between entangled qubits cannot ac-
tually send any meaningful information, but only purely random bits.

This theorem is actually stronger than no-cloning, in that we can prove
no-cloning from no-communication.

Yet again we see another example of how the quantum whole is much
greater than the sum of its parts: no-teleportation says that classical chan-
nels alone cannot send quantum information; no-communication says that
entanglement and measurement alone cannot send quantum information;
the quantum teleportation protocol of Section 5.8 says that you can send
quantum information if you combine both methods together.

• No-hiding. Quantum information cannot be lost, even through decoherence.

This theorem is related to no-deletion, in that it shows the robustness of
quantum states. In Chapter 13 we will study the notion of decoherence,
which is sort of like “quantum noise”, and is one of the main problems faced
when actually trying to design and build quantum computers in reality. The
no-hiding theorem says that, when quantum information is “lost” through
decoherence, it actually merely moves into the subspace corresponding to
the environment — we might have lost it, but nature hasn’t.116

5.10 Controlled-phase and controlled-U

Needless to say, not everything is about the controlled-NOT gate. Another com-
mon two-qubit gate is the controlled-phase gate, denoted c-Pϕ.

116This theorem is of particular interest to physicists studying black holes, since it leads to the black
hole information paradox.
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Controlled-phase:


1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 eiϕ



We can also represent the c-Pϕ gate using the circuit notation, as in Figure
5.2.

|x⟩
eixyφ |x⟩ |y⟩

|y⟩

Figure 5.2: Where x, y ∈ {0, 1}.

Again, the matrix is written in the computational basis {|00〉, |01〉, |10〉, |11〉}.
If we do not specify the phase then we usually assume that ϕ = π, in which case
we call this operation the controlled-Z gate, which acts as |0〉〈0|⊗1+ |1〉〈1|⊗Z.
Here Z refers again to the Pauli phase-flip σz ≡ Z operation.

In order to see the entangling power of the controlled-phase shift gate, con-
sider the following circuit.

Circuit. (Generating entanglement, again).

|0⟩ H

|0⟩ H

In this circuit, first the two Hadamard gates prepare the equally-weighted
superposition of all states from the computational basis

|0⟩ H
1
2

(
|00⟩+ |01⟩+ |10⟩+ |11⟩

)
|0⟩ H

and then the controlled-Z operation flips the sign in front of |11〉

|0⟩ H
1
2

(
|00⟩+ |01⟩+ |10⟩ − |11⟩

)
|0⟩ H
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which results in an entangled state.
In fact, both c-NOT and c-Pϕ are specific examples of the more general con-

struction of a controlled-U gate:

c-U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U

where U is an arbitrary single-qubit unitary transformation U .

Controlled-U :


1 0
0 1

0 0
0 0

0 0
0 0 U



We can also represent the c-U gate using the circuit notation, as in Figure
5.3.

|x⟩

|y⟩ U

Figure 5.3: The controlled-U gate, where x, y ∈ {0, 1}.

We can go even further and consider a more general unitary operation: the
two-qubit x-controlled-U gate:∑

x

|x〉〈x| ⊗ Ux ≡ |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1

where each Ux is a unitary transformation that is applied to the second qubit only
if the first one is in state |x〉. In general, an x-controlled-U gate can be defined
on two registers of arbitrary size n and m, with x ∈ {0, 1}n and the Ux being
(2m × 2m) unitary matrices acting on the second register.

5.11 Universality, revisited

We will come across few more gates in this course, but at this stage you already
know all the elementary unitary operations that are needed to construct any
unitary operation on any number of qubits:

• the Hadamard gate,
• all phase gates, and
• the c-NOT

These gates form a universal set of gates: with O(4nn) of these gates, we
can construct any n-qubit unitary operation.117 We should mention that there are

117Recall the big-O asymptotic notation introduced in Exercise 1.11.7: given a positive function
f(n), we write O(f(n)) to mean “bounded above by c f(n) for some constant c > 0 (for sufficiently
large n)”. For example, 15n2 + 4n+ 7 is O(n2).
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many different universal sets of gates. In fact, almost any gate that can entangle
two qubits can be used as a universal gate.

We are particularly interested in any finite universal set of gates118 that can
approximate any unitary operation on n qubits with arbitrary precision. The price
to pay is the number of gates — better precision requires more gates.

5.12 Phase kick-back

Before moving on, we first describe a simple yet omnipresent “trick” — an un-
usual way of introducing phase shifts that will be essential for our analysis of
quantum algorithms. Consider the following circuit.

Circuit. (Controlled-U interference).

|0⟩ H H cos φ
2 |0⟩ − i sin φ

2 |1⟩

|u⟩ U |u⟩

where |u〉 is an eigenstate of U , so that U |u〉 = eiϕ|u〉 for some ϕ.

This should look familiar: it is the usual interference circuit, but with the
phase gate replaced by a controlled-U gate, which will mimic the phase gate, as
we shall soon see. Note that the second qubit is prepared in state |u〉, which is
required to be an eigenstate of U . The circuit effects the following sequence of
transformations:119

|0〉|u〉 H7−→ (|0〉+ |1〉)|u〉
= |0〉|u〉+ |1〉|u〉

c-U7−→ |0〉|u〉+ |1〉U |u〉
= |0〉|u〉+ eiϕ|1〉|u〉
= (|0〉+ eiϕ|1〉)|u〉

H7−→
(

cos ϕ
2
|0〉 − i sin ϕ

2
|1〉
)
|u〉.

Note that the second qubit does not get entangled with the first one: it remains in
its original state |u〉. However, the interaction between the two qubits introduces
a phase shift on the first qubit. This may look like an unnecessarily complicated
way of introducing phase shifts, but, as we shall soon see, this is how quantum
computers do it. Here is a preview of things to come.

118One particular example that we will see again is the Hadamard, c-NOT, and T = Pπ/4.
119Omitting, as per usual, the normalisation factors.
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Consider the following x-controlled-U operation:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 X

 =

|00〉〈00| ⊗ 1
+ |01〉〈01| ⊗ 1
+ |10〉〈10| ⊗ 1
+ |11〉〈11| ⊗X.

The first register is of size 2 (corresponding to the top-left 2 × 2 block, which is
simply the identity matrix), and the second register is of size 1 (corresponding to
the two bottom-right 1× 1 blocks, namely an identity matrix and X). If the first
register is prepared in state |11〉, then the qubit in the second register is flipped
(by the Pauli bit-flip X); otherwise, nothing happens.

This unitary operation is a quantum version of the Boolean function evalua-
tion: it corresponds to the Boolean function

f : {0, 1}2 −→ {0, 1}
00 7−→ 0
01 7−→ 0
10 7−→ 0
11 7−→ 1.

If f(x) = 1, then we flip the bit value in the second register (with operation X);
if f(x) = 0, then we do nothing.

Now, prepare the qubit in the second register in state |0〉 − |1〉, which is an
eigenstate of X with eigenvalue eπi = −1. So whenever X is applied to the
second register, the phase factor −1 appears in front of the corresponding term
in the first register. If we prepare the first register in the superposition |00〉 +
|01〉+ |10〉+ |11〉 then the result of applying the above x-controlled-U operation
is the entangled state |00〉 + |01〉 + |10〉 − |11〉. That is, the phase kick-back
mechanism introduces a relative phase in the equally-weighted superposition of all
binary strings of length two.

Phase kick-back is how we control quantum interference in quantum com-
putation.

We will return to this topic later on in Section 10.2, when we discuss quantum
evaluation of Boolean functions and quantum algorithms.

5.13 Density operators, and other things to come

The existence of entangled states leads to an obvious question: if we cannot
attribute a state vector to an individual qubit, then how can we describe its quan-
tum state? In the next few chapters we will see that, when we limit our attentions
to a part of a larger system, states are not represented by vectors, measurements
are not described by orthogonal projections, and evolution is not unitary. As a
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spoiler, here is a dictionary of some of the new concepts that will soon be intro-
duced:

state vectors ⇝ density operators
orthogonal
projectors

⇝ positive
operator-valued
measures

unitary evolutions ⇝ completely-positive
trace-preserving
maps

5.14 Remarks and exercises

5.14.1 Why qubits, subsystems, and entanglement?

One question that is rather natural to ask at this point is the following:

If entanglement is so fragile and difficult to control, then why
bother? Why not perform your computations in one singly physi-
cal system that has as many quantum states as we normally have
labels for the states of qubits? Then we could label these quantum
states in the same way as we normally label the qubits, and give
them computational meaning.

This suggestion, although possible, gives a very inefficient way of represent-
ing data, known as the unary encoding. For serious computations, we need
subsystems. Here is why.

Suppose you have n physical objects, and each object has k distinguishable
states. If you can access each object separately and put it into any of the k states,
then, with only n operations, you can prepare any of the kn different configura-
tions of the combined systems. Without any loss of generality, let us take k = 2
and refer to each object of this type as a physical bit. We label the two states of a
physical bit as 0 and 1. So any collection of n physical bits can be prepared in 2n

different configurations, which can be used to store up to 2n numbers (or binary
strings, or messages, or however you want to interpret these things). In order to
represent numbers from 0 to N − 1 we just have to choose n such that 2n ⩾ N .

Suppose the two states in the physical bit are separated by the energy differ-
ence ∆E > 0, i.e. that it costs ∆E units of energy to switch a physical bit from
one state to the other. Then a preparation of any particular configuration will
cost no more than E = n∆E = (log2 N)∆E units of energy.120

In contrast, if we choose to encodeN configurations into one chunk of matter,
say, into the first N energy states of a single harmonic oscillator with the same
energy separation ∆E between states, then, in the worst case (i.e. going from
the ground state 0 to the most excited state N) one has to use E = N∆E units

120For simplicity here, we’re assuming that N = 2n.

146



5.14 Remarks and exercises

of energy. For large N this gives an exponential gap in the energy expenditure
between the binary encoding using physical bits, and the unary encoding using
energy levels of harmonic oscillators: (log2 N)∆E vs N∆E .

Of course, you might try to switch to a different choice of realisation for the
unary encoding, such as a quantum system that has a finite spread in the energy
spectrum. For example, by operating on the energy states of the hydrogen atom,
you can encode any number from 0 to N − 1, and we are guaranteed not to
spend more than Emax = 13.6 eV (otherwise the atom is ionised). The snag is
that, in this case, some of the electronic states will be separated by an energy
difference to the order of Emax/N , and to drive the system selectively from one
state to another one has to tune into the frequency Emax/ℏN , which requires a
sufficiently long wave packet in order for the frequency to be well defined, and
consequently the interaction time is of order N(ℏ/Emax).

That is, we spend less energy, but the trade off is that we have to spend more
time.

It turns out that whichever way we try to represent the number N in the
unary encoding (i.e. using N different states of a single chunk of matter), we end
up depleting our physical resources (such as energy or time, or even space) at
a much greater rate than in the case when we use subsystems. This plausibility
argument indicates that, for efficient processing of information, the system must
be divided into subsystems — for example, into physical bits.

5.14.2 Entangled or not?

Let a joint state of A and B be written in a product basis as

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉.

Assume that HA and HB are of equal dimension.

1. Show that, if |ψ〉 is a product state, then det(cij) = 0.

2. Show that the converse (det(cij) = 0 =⇒ |ψ〉 = |a〉|b〉) holds only for
qubits. Explain why.

3. Deduce that the state

1
2
(
|00〉+ |01〉+ |10〉+ (−1)k|11〉

)
is entangled for odd values of k and unentangled for even values of k.
Express the latter case explicitly as a product state.

5.14.3 Instantaneous communication

There is a lot of interesting physics behind the innocuous-looking mathematical
statement of Exercise 5.14.2. For example, think again about the state (|00〉 +
|11〉)/

√
2. What happens if you measure just the first qubit? It is equally likely

that you get |0〉 or |1〉, right? But after your measurement the two qubits are
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either in state |00〉 or in |11〉, i.e. they show the same bit value. Now, why might
that be disturbing? Well, imagine the second qubit to be light-years away from
the first one. It seems that the measurement of the first qubit affects the second
qubit right away, which seems to imply faster-than-light communication! This is
what Einstein called “spooky action as a distance” in his 1947 letter to Max Born.

But can you actually use this effect to send a message faster than light? What
would happen if you tried?

Hopefully you can see that it would not work, since the result of the mea-
surement is random: you cannot choose the bit value you want to send. We shall
return to this, and other related phenomena, later on — it is not at all a lost
cause!

5.14.4 SWAP circuit

Show that, for any states |ψ1〉 and |ψ2〉 of two qubits, the circuit below imple-
ments the SWAP operation |ψ1〉|ψ2〉 7→ |ψ2〉|ψ1〉.

Circuit. (Swapping).

|ψ1⟩ |ψ2⟩

|ψ2⟩ |ψ1⟩

5.14.5 Controlled-NOT circuit

Show that the circuit below gives another implementation of the controlled-NOT
gate.

Circuit. (Controlled-NOT, again).

H H

5.14.6 Measuring with controlled-NOT

The controlled-NOT gate can act as a measurement gate: if you prepare the target
in state |0〉 then the gate acts as |x〉|0〉 7→ |x〉|x〉, and so the target learns the bit
value of the control qubit. If you wish, you can think about a subsequent mea-
surement of the target qubit in the computational basis as an observer learning
about the bit value of the control qubit.
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Take a look at the circuit below, where M stands for measurement in the
standard basis.

Circuit. (?).

M

|ψ⟩

|0⟩

Now assume that the top two qubits are in the state

|ψ〉 = 1√
3
(
|01〉 − |10〉+ i|11〉

)
.

The measurement M gives two possible outcomes: 0 and 1. What are the proba-
bilities of each outcome, and what is the post-measurement state in each case?

What is this circuit actually measuring?

5.14.7 Arbitrary controlled-U on two qubits

Recall Section 3.5: any unitary operation U on a single qubit can be expressed as

U = B†XBA†XA

for some unitaries A and B, where X ≡ σx is the Pauli bit-flip operator.
Suppose that you can implement any single-qubit gate, and that you have a

bunch of controlled-NOT gates at your disposal. How would you implement any
controlled-U operation on two qubits?

5.14.8 Entangled qubits

Two entangled qubits in the state 1√
2 (|00〉+|11〉) are generated by some source S.

One qubit is sent to Alice, and one to Bob, who then both perform measurements
in the computational basis.

1. What is the probability that Alice and Bob will register identical results?
Can any correlations they observe be used for instantaneous communica-
tion?

2. Prior to the measurements in the computational basis, Alice and Bob apply
unitary operations Rα and Rβ (respectively), for some fixed values α, β ∈
R, to their respective qubits:
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S

Alice

Bob

Rα

Rβ

where the gate Rθ is defined by its action on the basis states:

|0〉 7−→ cos θ|0〉+ sin θ|1〉
|1〉 7−→ − sin θ|0〉+ cos θ|1〉.

Show that the state of the two qubits prior to the measurements is

1√
2

cos(α− β)
(
|00〉+ |11〉

)
− 1√

2
sin(α− β)

(
|01〉 − |10〉

)
.

3. What is the probability that Alice and Bob’s outcomes are identical?

4. What is the geometric interpretation of the operator Rθ?

5.14.9 Quantum dense coding

This section is not yet finished.

5.14.10 Playing with conditional unitaries

The swap gate SWAP on two qubits is defined first on product vectors by SWAP : |a〉|b〉 7→
|b〉|a〉 and then extended to sums of product vectors by linearity (see Exercise
5.14.4).

1. Show that the four Bell states 1√
2 (|00〉±|11〉) and 1√

2 (|01〉±|10〉) are eigen-
vectors of SWAP that form an orthonormal basis in the Hilbert space associ-
ated to two qubits. Which Bell states span the symmetric subspace (i.e. the
space spanned by all eigenvectors with eigenvalue 1), and which the anti-
symmetric one (i.e. that spanned by eigenvectors with eigenvalue −1)? Can
SWAP have any eigenvalues apart from ±1?

2. Show that P± = 1
2 (1 ± SWAP) are two orthogonal projectors which form

the decomposition of the identity and project onto the symmetric and anti-
symmetric subspaces. Decompose the state vector |a〉|b〉 of two qubits into
symmetric and antisymmetric components.

3. Consider the quantum circuit below, composed of two Hadamard gates, one
controlled-SWAP operation (also known as the controlled-swap, or Fredkin
gate), and the measurement M in the computational basis. Suppose that
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the state vectors |a〉 and |b〉 are normalised but not orthogonal to one an-
other. Step through the execution of this network, writing down the quan-
tum states of the three qubits after each of the four computational steps.
What are the probabilities of observing 0 or 1 when the measurement M is
finally performed?

Circuit. (Symmetric and antisymmetric projection).

M|0⟩ H H

|a⟩
SWAP

|b⟩

4. Explain why this quantum network implements projections on the symmet-
ric and antisymmetric subspaces of the two qubits.

5. Two qubits are transmitted through a quantum channel which applies the
same randomly chosen unitary operation U to each of them, i.e. U ⊗ U .
Show that the symmetric and antisymmetric subspaces are invariant under
this operation.

6. Polarised photons are transmitted through an optical fibre. Due to the vari-
ation of the refractive index along the fibre, the polarisation of each photon
is rotated by the same unknown angle. This makes communication based
on polarisation encoding unreliable. However, if you are able to prepare
any polarisation state of the two photons then you can still use the channel
to communicate without any errors — how?

5.14.11 Tensor products in components

In our discussion of tensor products we have so far taken a rather abstract ap-
proach. There are, however, situations in which we have to put numbers in, and
write tensor products of vectors and matrices explicitly. For example, here is the
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standard basis of two qubits written explicitly as column vectors:121

|00〉 ≡ |0〉 ⊗ |0〉 =
[
1
0

]
⊗
[
1
0

]
=


1
0
0
0



|01〉 ≡ |0〉 ⊗ |1〉 =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0



|10〉 ≡ |1〉 ⊗ |0〉 =
[
0
1

]
⊗
[
1
0

]
=


0
0
1
0



|11〉 ≡ |1〉 ⊗ |1〉 =
[
0
1

]
⊗
[
0
1

]
=


0
0
0
1


Given |a〉 = α0|0〉+ α1|1〉 and |b〉 = β0|0〉+ β1|1〉, we write |a〉 ⊗ |b〉 as

|a〉 ⊗ |b〉 =
[
α0
α1

]
⊗
[
β0
β1

]

=

α0

[
β0
β1

]
α1

[
β0
β1

]


=


α0β0
α0β1
α1β0
α1β1

 .
Note that each element of the first vector multiplies the entire second vector. This
is often the easiest way to get the tensor products in practice.

The matrix elements of the tensor product operation A⊗B

A

B

are given by

(A⊗B)ik,jl = AijBkl

121We always use the lexicographic order 00 < 01 < 10 < 11.
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where ik ∈ {00, 01, 10, 11} labels the rows, and kl ∈ {00, 01, 10, 11} labels columns,
when forming the block matrix:

A⊗B =
[
A00 A01
A10 A11

]
⊗
[
B00 B01
B10 B11

]
=
[
A00B A01B
A10B A11B

]

=


A00B00 A00B01
A00B10 A00B11

A01B00 A01B01
A01B10 A01B11

A10B00 A10B01
A10B10 A10B11

A11B00 A11B01
A11B10 A11B11



The Kronecker product.

This product A ⊗ B also known as the Kronecker product of matrices,
which generalises the outer product of two vectors that we saw in Sec-
tion 0.8.

The tensor product induces a natural partition of matrices into blocks. Multi-
plication of block matrices works pretty much the same as regular matrix multi-
plication (assuming the dimensions of the sub-matrices are appropriate), except
that the entries are now matrices rather than numbers, and so may not commute.

1. Evaluate the following matrix product of (4× 4) block matrices:[
1 X
Y Z

] [
1 Y
X Z

]
(where X, Y , and Z are the Pauli matrices).

2. Using the block matrix form of A⊗B expressed in terms of Aij and Bij (as
described above), explain how the following operations are performed on
the block matrix:

• transposition (A⊗B)T ;
• partial transpositions AT ⊗B and A⊗BT ;
• trace tr(A⊗B);
• partial traces (trA)⊗B and A⊗ (trB).

5.14.12 Hadamard transforms in components

Consider the Hadamard transform H⊗H⊗H on three qubits, which is described
by a (23 × 23) matrix. We know that

H = 1√
2

[
1 1
1 −1

]
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and so we can calculate that

H ⊗H = 1
2


1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1


and thus that

H ⊗H ⊗H =
√

1
23



1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

1 1
1 −1

−1 −1
−1 1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

−1 −1
−1 1

1 1
1 −1

−1 −1
−1 1

−1 −1
−1 1

1 1
1 −1


.

The rows and columns of H ⊗H ⊗H are labelled by the triples 000, 001, . . . , 111.
Now, suppose we apply H ⊗H ⊗H to the state |110〉:

|1⟩ H
|0⟩−|1⟩√

2

|1⟩ H
|0⟩−|1⟩√

2

|0⟩ H
|0⟩+|1⟩√

2


=

1

23/2

(
|000⟩+ |001⟩ − |010⟩ − |011⟩

− |100⟩ − |101⟩+ |110⟩+ |111⟩

)

1. The output state is a superposition of all binary strings:
∑

x∈{0,1}3 cx|x〉.
Where in the H⊗3 matrix will you find the coefficients cx?

Do you want to write down H ⊗ H ⊗ H ⊗ H? Probably not! This is an
exponentially growing monster and you may soon run out of space if you actually
do try to write it down. Instead, let us try to spot the pattern of the entries ±1 in
these matrices.

Consider again the single-qubit Hadamard gate matrix H = (Hab), where
a, b = 0, 1 are the labels for the rows and the columns. Observe that Hab =
(−1)ab/

√
2. (This may look like a needlessly fancy way of writing the entries of

the Hadamard matrix, but it will pay off in a moment).

2. Using the fact that (A⊗B)ik,jl = AijBkl, or any other method, analyse the
pattern of the ±1 in the tensor product of Hadamard matrices. What is the
entry H⊗4

0101,1110?

3. For any two binary strings a = (a1, . . . , an) and b = (b1, . . . , bn) of the same
length we can define their “scalar” product as a · b = (a1b1 ⊕ . . . ⊕ anbn).
Show that, up to the constant (1/

√
2)n, the entry H⊗n

a,b is (−1)a·b for any n
and for any binary strings a and b of length n.
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4. Show that H⊗n acts as

|a〉 7−→
(

1√
2

)n ∑
b∈{0,1}n

(−1)a·b|b〉

5. A quantum register of 10 qubits holds the binary string 0110101001. The
Hadamard Transform is then applied to this register yielding a superpo-
sition of all binary strings of length 10. What is the sign in front of the
|0101010101〉 term?

5.14.13 The Schmidt decomposition

An arbitrary vector in the Hilbert space HA ⊗HB can be expanded in a product
basis as

|ψ〉 =
∑
i,j

cij |ai〉|bj〉.

Moreover, for any given joint state |ψ〉, we can find orthonormal bases, {|ãi〉} in
HA and {|b̃j〉} in HB, such that |ψ〉 can be expressed as

|ψ〉 =
∑

i

di|ãi〉|b̃i〉,

where the coefficients di are non-negative numbers. This is known as the Schmidt
decomposition of |ψ〉.

Any bipartite state can be expressed in this form, but remember that the bases
used depend on the state being expanded. Indeed, given two bipartite states |ψ〉
and |φ〉, we usually cannot perform the Schmidt decomposition using the same
orthonormal bases in HA and HB. The number of terms in the Schmidt decom-
position is, at most, the minimum of dimHA and dimHB.

The Schmidt decomposition follows from the singular value decomposition
(often abbreviated to SVD): any (n×m) matrix C can be written as

C = UDV

where U and V are (respectively) (n×n) and (m×m) unitary matrices, and D is
an (n×m) diagonal matrix with real, non-negative elements in descending order
d1 ⩾ d2 ⩾ . . . ⩾ dmin{n,m} (and with the rest of the matrix is filled with zeros).
The elements dk are called the singular values of C. We will return to the SVD
in more detail later on, in Section 12.11.1.

You can visualize the SVD by thinking of C as representing a linear transfor-
mation from m-dimensional to n-dimensional Euclidean space: it maps the unit
ball in the m-dimensional space to an ellipsoid in the n-dimensional space; the
singular values are the lengths of the semi-axes of that ellipsoid; the matrices U
and V carry information about the locations of those axes and the vectors in the
first space which map into them. Thus SVD tells us that the transformation C
consists of rotating the unit ball (the transformation V ), stretching the k-th axis
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by a factor of dk (the transformation D), and then rotating the resulting ellipsoid
(the transformation U).

Using the index notation Cij =
∑

k UikdkVkj , we can thus apply SVD to cij:

|ψ〉 =
∑
i,j

cij |aibj〉

=
∑
i,j

∑
k

UikdkVkj |aibj〉

=
∑

k

dk

(∑
i

Uik|ai〉

)
⊗

∑
j

Vkj |bj〉

 .

The Schmidt decomposition of a separable state of the form |a〉 ⊗ |b〉 is trivially
just this state. The Bell states Ψ+ and Φ+ are already written in their Schmidt
form, whereas Ψ− and Φ− can be easily expressed in the Schmidt form. For
example, for |Ψ−〉 we have d1 = d2 = 1√

2 , and the Schmidt basis is

|ã1〉 = |0〉
|ã2〉 = |1〉
|b̃1〉 = |1〉
|b̃2〉 = −|0〉.

The number of non-zero singular values of cij is called the rank of cij , or the
rank of the corresponding quantum state, or sometimes, the Schmidt number.
You should be able to see that all bipartite states of rank-one are separable.

The Schmidt decomposition is almost unique. The ambiguity arises when we
have two or more identical singular values, as, for example, in the case of the
Bell states. Then any unitary transformation of the basis vectors corresponding
to a degenerate singular value, both in Ha and in Hb, generates another set of
basis vectors.
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6 Bell’s theorem

About quantum correlations, which are stronger than any cor-
relations allowed by classical physics, and about the CHSH in-
equality (used to prove a variant of Bell’s theorem) which
demonstrates this fact.

Every now and then, it is nice to put down your lecture notes and go and see
how things actually work in the real world. What is particularly wonderful (and
maybe surprising) about quantum theory is that it turns up in many places where
we might not expect it to. One such example is in the polarisation of light, where
we stumble across an intriguing paradox.

The (much-simplified) one sentence introduction to light polarisation is this:
light is made of transverse waves, and transverse waves have a “direction”,
which we call polarisation; a polarising filter only allows waves of a certain
polarisation to pass through. If we take two polarising filters, and place them
on top of each other with their polarisations oriented at 90◦ to one another, then
basically no light will pass through, since the only light that can pass through
the first filter is orthogonally polarised with respect to the second filter, and is
thus blocked from passing through. But then, if we take a third filter, and place
it in between the other two, at an angle in the middle of both (i.e. at 45◦), then
somehow more light is let through than if the middle filter weren’t there at all.122

This is intrinsically linked to Bell’s theorem, which proves the technical
sounding statement that “any local real hidden variable theory must satisfy cer-
tain statistical properties”, which is not satisfied in reality, as many quantum
mechanical experiments (such as the above) show!

6.1 Hidden variables

The story of “hidden variables” dates back to 1935 and grew out of Einstein’s
worries about the completeness of quantum theory. Consider, for example, a
single qubit. Recalling our previous discussion on compatible operators (Section
4.6), we know that no quantum state of a qubit can be a simultaneous eigenstate
of two non-commuting operators, such as σx and σz. Physically, this means that if
the qubit has a definite value of σx then its value of σz must be indeterminate, and
vice versa. If we take quantum theory to be a complete description of the world,
then we must accept that it is impossible for both σx and σz to have definite
values for the same qubit at the same time.123 Einstein felt very uncomfortable
about all this: he argued that quantum theory is incomplete, and that observables
σx and σz may both have simultaneous definite values, although we only have
knowledge of one of them at a time. This is the hypothesis of hidden variables.

122For the more visually inclined, there is a video on YouTube by minutephysics about this experi-
ment, or you can play with a virtual version on the Quantum Flytrap Virtual Lab.

123Here it’s important that we’re really talking about so-called local hidden variable theories. We
discuss the technical details in 6.7.
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6.1 Hidden variables

In this view, the indeterminacy found in quantum theory is merely due to
our ignorance of these “hidden variables” that are present in nature but not ac-
counted for in the theory. Einstein came up with a number of pretty good ar-
guments for the existence of “hidden variables”, perhaps the most compelling of
which was described in his 1935 paper (known as “the EPR paper”), co-authored
with his younger colleagues, Boris Podolsky and Nathan Rosen. It stood for al-
most three decades as the most significant challenge to the completeness of quan-
tum theory. Then, in 1964, John Bell showed that the local124 hidden variable
hypothesis can be tested and refuted.

Any theory can make predictions, but just because the predictions turn
out to be correct, this does not make the theory true — there may be
other, maybe equivalent, explanations. The key to the scientific method
is falsifiability: make one prediction incorrectly, and you have proven
your theory is not true.

Hidden-variable no-go theorems.

We already saw some no-go theorems in Section 5.9 that set limits on
what we can do with quantum states. In this chapter we’re going to
see one no-go theorem relating to the foundations of quantum theory,
in particular concerning these local “hidden variables”. Again, there are
many related no-go theorems, and again they fall beyond the scope of
this book, but it’s worth mentioning them by name at least. They all state
that a certain type of (realistic, in some technical sense of the word)
hidden-variable theory is inconsistent with reality:

• Bell’s theorem (which we will see in Section 6.4) is for local
hidden-variable theories.

• The Kochen–Specker theorem is for non-contextual hidden-
variable theories.

• The Pusey–Barret–Rudolph theorem (often simply called the PBR
theorem) is for preparation independent hidden-variable theo-
ries.

All together, these three theorems say that, if some hidden-variable
theory does exist, then it has to be non-local, contextual, and preparation
dependent. But what do these words mean?

Preparation independence is the assumption that, if we independently
prepare two quantum states, then their hidden variables are also inde-
pendent. Locality is the idea that things can only be directly affected
by their surroundings, i.e. the exact opposite of “spooky action at a dis-
tance”. Contextuality is a bit more subtle, and can actually be seen as

124This key word “local” is very important for those who care about the subtle technical details, but
we won’t explain it here.
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6.2 Quantum correlations

a direct generalisation of non-locality (by Fine’s theorem), but it talks
about how results of measurements depend on the commutator of the
observable being measured, i.e. on its “context”.

A particularly useful way of formally defining non-locality and contex-
tuality is by using the language of sheaf theory, which is an inherently
topological and category-theoretic notion. This approach was cemented
by Abramsky and Bradenburger’s “The Sheaf-Theoretic Structure Of Non-
Locality and Contextuality”, arXiv:1102.0264.

6.2 Quantum correlations

Consider two entangled qubits in the singlet125 state

|ψ〉 = 1√
2

(|01〉 − |10〉)

and note that the projector |ψ〉〈ψ| can be written as

|ψ〉〈ψ| = 1
4

(1⊗ 1− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)

where σx, σy, and σz are our old friends the Pauli matrices.
Also recall that any single-qubit observable126 with values ±1 can be repre-

sented by the operator

~a · ~σ = axσx + ayσy + azσz,

where ~a is a unit vector in the three-dimensional Euclidean space.
So if Alice and Bob both choose observables, then we can characterise their

choice127 by vectors ~a and ~b, respectively. If Alice measures the first qubit in
our singlet state |ψ〉, and Bob the second, then the corresponding observable is
described by the tensor product

A⊗B = (~a · ~σ)⊗ (~b · ~σ).

The eigenvalues of A⊗B are the products of eigenvalues of A and B. Thus A⊗B
has two eigenvalues: +1, corresponding to the instances when Alice and Bob
registered identical outcomes, i.e. (+1,+1) or (−1,−1); and −1, corresponding
to the instances when Alice and Bob registered different outcomes, i.e. (+1,−1)
or (−1,+1).

125We say that a system is singlet if all the qubits involved are entangled. For example, the Bell
states (Section 5.7) are all (maximally entangled) singlet states. This is related to the notion of
singlet states in quantum mechanics, which are those with zero net angular momentum.

126We say “observable” and “value” instead of “Hermitian operator” and “eigenvalue” because it’s
useful to be able to switch between speaking like a mathematician and like a physicist!

127For example, if the two qubits are spin-half particles, they may measure the spin components
along the directions ~a and ~b.
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6.3 The CHSH inequality

This means that the expected value128 of A ⊗ B, in any state, has a simple
interpretation:

〈A⊗B〉 = Pr(outcomes are the same)− Pr(outcomes are different).

This expression can take any real value in the interval [−1, 1], where −1 means
we have perfect anti-correlations, 0 means no correlations, and +1 means
perfect correlations.

We can evaluate the expectation value in the singlet state:

〈ψ|A⊗B|ψ〉 = tr
[
(~a · ~σ)⊗ (~b · ~σ)|ψ〉〈ψ|

]
= −1

4
tr
[
(~a · ~σ)σx ⊗ (~b · ~σ)σx + (~a · ~σ)σy ⊗ (~b · ~σ)σy + (~a · ~σ)σz ⊗ (~b · ~σ)σz

]
= −1

4
tr
[
4(axbx + ayby + azbz)1⊗ 1

]
= −~a ·~b

where we have used the fact that tr(~a · ~σ)σk = 2ak (for k = x, y, z). So if Alice
and Bob choose the same observable ~a = ~b, then the expected value 〈A ⊗ B〉
will be equal to −1, and their outcomes will always be opposite: whenever Alice
registers +1 (resp. −1) Bob is bound to register −1 (resp. +1).

6.3 The CHSH inequality

An upper bound on classical correlations.

We will describe the most popular version of Bell’s argument, introduced
in 1969 by John Clauser, Michael Horne, Abner Shimony, and Richard Holt
(whence the name “CHSH”).

Let us start by making this assumption that the results of any measurement
on any individual system are predetermined — any probabilities we may use to
describe the system merely reflect our ignorance of these hidden variables.

Imagine the following scenario. Alice and Bob, our two characters with a
predilection for wacky experiments, are equipped with appropriate measuring
devices and sent to two distant locations. Assume that Alice and Bob each have a
choice of two observables that they can measure, each with well defined129 values
+1 and −1. Let’s say that Alice can choose between observables A1 and A2, and
Bob between B1 and B2. Now, somewhere in between them there is a source that
emits pairs of qubits that fly apart, one towards Alice and one towards Bob. For
each incoming qubit, Alice and Bob choose randomly, and independently from
each other, which particular observable will be measured. This means we can

128Recall Section 4.5: the expected value of an operator E in the state |φ〉 is equal to 〈φ|E|φ〉.
129The phrase “well defined” corresponds to our “hidden variable” assumption, i.e. that the observ-

ables always have definite values.
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6.3 The CHSH inequality

think of the observables as random variablesAk, Bk (for k = 1, 2) that take values
±1. Using these, we can define a new random variable: the CHSH quantity

S = A1(B1 −B2) +A2(B1 +B2).

By a case-by-case analysis of the four possible outcomes for the pair (B1, B2),
we see that one of the terms B1 ± B2 must be equal to zero and the other to ±2
(basically depending on if B1 = B2 or not), and so (looking at the four possible
outcomes for the pair (A1, A2)) we see that S = ±2. But the average value of S
must lie in between these two possible outcomes, i.e.

−2 ⩽ 〈S〉 ⩽ 2.

That’s it! Such a simple and yet profound mathematical statement about correla-
tions, which we refer simply to as the CHSH inequality.

There is absolutely no quantum theory involved in the CHSH inequality

−2 ⩽ 〈S〉 ⩽ 2

because the CHSH inequality is not specific to quantum theory: it does
not really matter what kind of physical process is behind the appearance
of binary values of A1, A2, B1, and B2; it is merely a statement about
correlations, and for all classical correlations we must have

|〈A1B1〉 − 〈A1B2〉+ 〈A2B1〉+ 〈A2B2〉| ⩽ 2

(which is just another way of phrasing the CHSH inequality).

There are essentially two (very important) assumptions here:

1. Hidden variables. Observables have definite values.
2. Locality. Alice’s choice of measurements (choosing between A1 and A2)

does not affect the outcomes of Bob’s measurement, and vice versa.

We will not discuss the locality assumption right now in detail (see Section
6.7), but let us just give one brief comment. In the hidden variable world a state-
ment such as “if Bob were to measure B1 then he would register +1” must be
either true or false (and not “undecidable” or some other such thing!) prior to
Bob’s measurement. Without the locality hypothesis, such a statement is ambigu-
ous, since the value of B1 could depend on whether A1 or A2 will be chosen
by Alice. We do not want this since it implies instantaneous communication —
it means that, say, Alice by making a choice between A1 and A2 affects Bob’s
results: Bob can immediately “see” what Alice “does”.

Now let’s see how quantum theory fundamentally disagrees with the CHSH
inequality.
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6.4 Bell’s theorem via CHSH

Continuing this story of Alice and Bob with their observables and pairs of qubits,
let us first rephrase things in the formalism of quantum mechanics that we’ve
been building up. The observables A1, A2, B1, B2 become (2 × 2) Hermitian
matrices, each with the two eigenvalues ±1, and 〈S〉 becomes the expected value
of the (4× 4) CHSH matrix

S = A1 ⊗ (B1 −B2) +A2 ⊗ (B1 +B2).

We can now evaluate 〈S〉 using quantum theory.

Actually performing these measurements described by S on a pair of
qubits is known as a CHSH test, or Bell test.

If the two qubits are in the singlet state

|ψ〉 = 1√
2

(|01〉 − |10〉)

then we have already seen (Section 6.2) that

〈A⊗B〉 = −~a ·~b.

So if we choose vectors ~a1, ~a2, ~b1, and ~b2 as shown in Figure 6.1, then the corre-
sponding matrices130 satisfy

〈A1 ⊗B1〉 = 〈A2 ⊗B1〉 = 〈A2 ⊗B2〉 = 1√
2

〈A1 ⊗B2〉 = − 1√
2
.

b1

b2

a1

a2

Figure 6.1: The relative angle between the two perpendicular pairs is 45◦.

Plugging these values in, we get that

〈A1B1〉 − 〈A1B2〉+ 〈A2B1〉+ 〈A2B2〉 = −2
√

2,
130That is, A1 = ~a1 · ~σ, and so on.
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which obviously violates the CHSH inequality: −2
√

2 is strictly less than −2!
But here is the really important part of this discussion: this violation of the

CHSH has been observed in a number of painstakingly careful experiments — this is
not just theoretical! The early efforts in these experiments were truly heroic, with
many many layers of complexity; today, however, such experiments are routine.

Bell’s theorem. The behaviour of entangled quantum systems cannot be
explained by local hidden variables. In other words, outcomes in quan-
tum mechanics really are random, and it’s not simply our lack of knowl-
edge about some background process.

If we can enforce locality in an experimental setup (for example, by ensuring
that Alice and Bob are sufficiently far apart so that there is not enough time
between Alice making a measurement and Bob receiving his measurement result)
then an experimental verification of the CHSH test proves to us that the system is
behaving in an inherently non-classical and, importantly, unpredictable manner.
This means that this is a good test to see if our devices are performing as they are
supposed to, and are untampered by any potential eavesdroppers.131 In other
words, the CHSH test is key for securing quantum protocols, as we will explain
in Section 6.6.

6.5 Tsirelson’s inequality

An upper bound on quantum correlations.

One may ask if |〈S〉| = 2
√

2 is the maximal violation of the CHSH inequality,
and the answer is “yes, it is”: quantum correlations always satisfy the bound
|〈S〉| ⩽ 2

√
2. This is because, no matter which state |ψ〉 we pick, the expected

value 〈S〉 = 〈ψ|S|ψ〉 cannot exceed the largest eigenvalue of S, and we can put
an upper bound on the largest eigenvalues of S. To start with, taking the largest
eigenvalue (in absolute value) of a Hermitian matrix M , which we denote by
‖M‖, gives a matrix norm, i.e. it has the following properties:

‖M ⊗N‖ = ‖M‖‖N‖
‖MN‖ ⩽ ‖M‖‖N‖

‖M +N‖ ⩽ ‖M‖+ ‖N‖

Given that ‖Ak‖ = ‖Bk‖ = 1 (for k = 1, 2), it is easy to use these properties
to show that ‖S‖ ⩽ 4, but this is a much weaker bound than we want. However,

131If an eavesdropper has observed our system to the extent that they can predict out outcomes,
then that very predictability means that there is a hidden-variable description of the system, and the
CHSH inequality is not violated.
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one can show132 that

S2 = 4(1⊗ 1) + [A1, A2]⊗ [B1, B2].

Now, the norms of the commutators ‖[A1, A2]‖ and ‖[B1, B2]‖ are bounded
by133 2, and ‖S2‖ = ‖S‖2. All together, this gives

‖S2‖ ⩽ 8

=⇒ ‖S‖ ⩽ 2
√

2

=⇒ |〈S〉| ⩽ 2
√

2

This result is known as the Tsirelson inequality.

In classical probability theory, the (absolute value of the) average value of
the CHSH quantity

S = A1(B1 −B2) +A2(B1 +B2)

is bounded by 2, and this bound can be attained.
In quantum theory, the same value is bounded by 2

√
2, and this bound

can also be attained.

6.6 Quantum randomness

The experimental violations of the CHSH inequality have shown us that there are
situations in which the measurement outcomes are truly unknown the instant
before the measurement is made, and so the answer must be “chosen” randomly.
We can make use of this randomness in a number of different ways, the most
obvious example of which being a random number generator. Indeed, we have
already met one suitable implementation:

|0⟩ H

The state before measurement is (|0〉+ |1〉)/
√

2, so the two possible outcomes
occur with equal probability. This is a truly random number generator, not like
the pseudorandom one that is used if you ask your computer for some random
data.

This randomness generator works well as long as we know how it’s been
built, i.e. that it really is just a Hadamard gate, that the input qubit really has
been prepared in the state |0〉, and that the measurement device is accurate and
honest. However, we don’t all have a Hadamard gate and a supply of prepared
qubits lying around at home, so it seems likely that at some point we might have
to buy or borrow such a device from a third party. But then how can we know that

132Exercise 6.8.6.
133Exercise 6.8.6.
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it really is doing what it promises, and not just supplying some pseudorandom
numbers that might, for example, already be known to the manufacturer? This
would render the device useless for cryptographic purposes! But not only do we
want to know that this isn’t the case, we would also like the average user to
be able to verify this for themselves, without having to know about the internal
details. In other words, can we find a way of verifying the device via some
analysis of just inputs and outputs? This is the question of device independence.

A protocol is device independent if its security doesn’t depend on trust-
ing the devices on which it is implemented. In other words, it has no
reliance on trusting the third party who supply you with the devices.

We can rule out one thing from the start, namely deterministic behaviour. If
we behave deterministically then we have no hope, since the third party can take
this into account and potentially find a way to always fool us. But there is another
approach that we can try: rather than directly trying to verify the veracity of any
given device, we can try to use it to turn a small amount of true randomness into
a larger amount. This is the idea of randomness expansion.

Starting from an initial seed of private randomness (completely unknown
to any other party), randomness expansion is the process of extending
this to a larger amount of randomness that remains completely private.

Let’s consider a different device: one that produces pairs of qubits in singlet
states and gives one of its qubits to Alice and one to Bob. If Alice then measures
her qubit in the X basis, and Bob measures his in the Z basis (each keeping their
outcomes private), they each obtain random bits that are independent of one
another. However, this is only really true if the device truly is giving them singlet
states, and not predetermined unentangled states. How can they test for this?

Using the idea of randomness expansion, let’s assume that they start with
some shared random private seed: some m-bit string that only they know.134

They start by generating n of these putative singlet states, and publicly decide
on some value 0 < p < 1. With this, they randomly select dpne of the pairs to
perform a CHSH test on. Each test requires two random bits (to determine Alice
and Bob’s choice of measurement), so in total we will need the length m of their
shared random private seed be roughly

m ≈ 2pn− pn log2 p− n(1− p) log2(1− p)

where the log terms are approximately how many bits are required to randomly
choose the subset of pairs to test.

134Note that we’re pushing the problem somewhere else: how can they come up with this shared
private seed in the first place? This is the problem of key distribution, and we’ll return to this again
later.
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Why does this help? Well, if somebody has manipulated the device that pro-
duces the pairs, then they need to be sure that they haven’t altered the pairs that
Alice and Bob are testing on. But they cannot know in advance which pairs that
will be, and so they cannot risk manipulating anything.135

In the fraction p of pairs where a CHSH test is performed, we get at least 1
bit of randomness out: Alice’s measurement result is always chosen at random.
In fact, Bob’s result will be partially correlated to Alice’s, so we should be able to
extract some more randomness from this as well, but we ignore this possibility
for the sake of simplicity. Thus in the end we create (2− p)n bits of randomness.

6.7 Loopholes in Bell tests

When we introduced the idea of hidden variable theories in Section 6.1, we made
some assumptions to simplify the exposition, but these have a big impact on
the practical reality of violating Bell tests. Any test that does not satisfy one or
more of these assumptions is said to have a loophole. For verifying fundamental
physics, we are not so worried about these loopholes — it feels very unlikely that
the putative classicality of the experiment is hiding in whatever loophole might
be available in a given system. But for cryptographic purposes, an adversary will
use and loophole at their disposal to try to trick you!

There are three types of key assumptions that we will talk about here, and for
each one we provide some exercises to work through in order to explore them
further:

• detector efficiency (Exercise 6.8.7)
• locality (Exercise 6.8.8)
• free will (Exercise 6.8.9).

Let’s start with the first, which gives rise to the detector loophole. When
we make a measurement with a real-life device, in practice it doesn’t always
work — maybe it just fails to notice a photon flying past. Each detector has a
parameter η known as its efficiency: η is the probability that the measurement
succeeds. For testing fundamental physics, it seems reasonable to assume that
the successful measurements are a fair sample of what’s really going on. But if
there’s an adversary, they might substitute our detectors for completely perfect
one, and then deliberately choose to fake a failure whenever their eavesdropping
attempts fail.

The next crucial assumption in the CHSH test is that Alice and Bob are sepa-
rated by a “large enough” distance in space and time. More precisely, if they are
physical at distance L from each other, then their random choices of measure-
ment setting, followed by their corresponding carrying out of the measurement,
and receipt of the answers, should all be accomplished within a time approxi-
mately136 L/c of each other, where c is the speed of light. If Alice and Bob are

135One can be much more quantitative about this by using Chernoff bounds for a simple strategy
of “choose at random which pairs to manipulate”, but a full proof of security is much more involved
than we would like to be here.

136We say “approximately” here because we are avoiding being specific about how we actually define
distance.
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not far enough away from each other, then they are said to be within each other’s
locality, and so this is known as the locality loophole.

The final important assumption that we will mention here involves the avail-
ability of true randomness, and emphasises the importance of randomness ex-
pansion. It asserts that Alice and Bob must be able to choose their measurement
settings randomly. This freedom to make their own choices is glibly referred to as
them having “free will”, and so this is known as the free-will loophole. Resolv-
ing the locality loophole puts extremely tight constraints on how quickly choices
must be made,137 to the extent that Alice and Bob cannot make those choices
manually — they need to use random number generators. But then they need
to able to trust that these generators are indeed random, not merely pseudoran-
dom, otherwise somebody else could know the origin of the “random” numbers
and use that information to their advantage.

6.8 Remarks and exercises

6.8.1 XOR games

The setup of the CHSH inequality that we have described can instead be imagined
as a two-player all-or-nothing game between Alice and Bob, so let’s study this
type of game more generally.

• Alice and Bob each start with an integer prompt a and b (respectively),
with 1 ⩽ a, b ⩽ n. This integer can come from anywhere: they could pick it
themselves, or it could be given to them. Having seen this integer, a round
of the game consists of them returning an answer, x and y (respectively),
of length m bits to an oracle. Both the prompt and the answer are kept
secret, so that only the corresponding player knows them.

• They win if the winning condition computed by the oracle is 1, and lose if
it is 0. The winning condition is given by{

1 if gA(x, a, b) = gB(y, a, b)
0 if gA(x, a, b) 6= gB(y, a, b)

where gA and gB are deterministic one-bit-valued functions whose output
values are equally likely to be 0 or 1 (i.e. they return the value 0 for exactly
half of the possible input triples).

• There exists a quantum strategy that always wins. It uses sets of m mea-
surements on a maximally entangled state, and the measurement operators
for all possible settings either commute or anticommute with one another.
The measurements are specified by observables that are traceless (i.e. their
trace is equal to 0) and square to the identity.

• The best possible classical strategy fails f of the time, for some fraction f .
137If we say that Alice and Bob are L = 30 km apart from each other, then we’re talking of timescales

on the order of 10−4 s, which is not very long!
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6.8.2 XOR games for quantum key distribution

We can use the setup from Exercise 6.8.1 as the basis for a quantum key distri-
bution scheme: a process that allows two people to produce a shared random
string known only to them.

For the i-th round of the game, Alice and Bob randomly (and privately) select
their prompts ai and bi, which they then use to play one round of the game,
giving answers xi and yi. They keep a note of all their prompts and answers, as
well as the result of the winning condition for each round. After many rounds,
Alice and Bob publicly announce all their prompts {a1, . . . , an} and {b1, . . . , bn}.

This means that Alice, for example, now knows the following:138

• both sets of prompts {a1, . . . , an} and {b1, . . . , bn}
• her answers {x1, . . . , xn}
• the values of i ∈ {1, . . . , n} for which gA(xi, ai, bi) = gB(yi, ai, bi), i.e. the

numbers i1, . . . , ik of the rounds that they won.

This is enough information (given that we have run enough rounds) for Al-
ice to determine gA and Bob to determine gB . The two of them can then each
compute the k-bit string

gA(xi1 , ai1 , bi1) . . . gA(xik
, aik

, bik
) = gB(xi1 , ai1 , bi1) . . . gB(xik

, aik
, bik

)

which gives their shared key. Now they just need to deal with eavesdropping.
By publicly selecting a random selection of rounds and announcing the results

of their putative gA and gB for these rounds, they can check whether or not their
values are coherent with the result of the winning conditions determined by the
oracle.139

• If everything is coherent with the results, then they can be sure (if they
have played enough rounds and compared enough results) that there was
no eavesdropping.

• If the fraction of tests that are coherent with the results is less than f , then
they must assume that somebody has been eavesdropping, and they should
cease communication.

• Anywhere in between these two cases, they can quantify how much an
eavesdropper might know, and then run some method of privacy amplifi-
cation to further exclude the eavesdropper (at the cost of shortening the
key).

6.8.3 XOR games for randomness expansion

Consider again the scenario of Exercise 6.8.1. Explain how Alice by herself can
treat this as a single-player game and use it as the basis for a randomness expan-
sion scheme.140

138Bob knows the same, but instead of Alice’s answers {x1, . . . , xn} he knows his own {y1, . . . , yn}.
139For example, if they know that they lost round i, then it should be the case that gA(xi, ai, bi) 6=
gB(yi, ai, bi).

140Hint: unlike in Exercise 6.8.2, Alice no longer needs to choose a random subset of rounds to check
the winning condition for: she can check all of them.
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6.8.4 Prescribed binary randomness

Find a quantum circuit141 that can act as a random source that outputs 0 with
probability (2 +

√
2)/4 and 1 with probability (2−

√
2)/4.

6.8.5 Unbiasing bias

Suppose you have a source that produces random bits, but operates with a bias: it
outputs 0 with probability p and 1 with probability 1−p, for some fixed 0 < p < 1.

Find a method such that, given two outputs from this source, you successfully
obtain a single unbiased random bit (i.e. as if the source had p = 1/2) with
probability 2p(1− p).

6.8.6 Proving Tsirelson’s inequality

Let Ai, Bi, and ‖ − ‖ be as in Section 6.5.

1. Prove that

(A1 ⊗ (B1 −B2) +A2 ⊗ (B1 +B2))2 = 4(1⊗ 1) + [A1, A2]⊗ [B1, B2].

2. Prove that

‖[A1, A2]‖ ⩽ 2

(and the same argument should also apply to ‖[B1, B2]‖).

6.8.7 Detector loophole

Say we have a detector with efficiency η, and an otherwise perfect CHSH test
with 〈S〉 = 2

√
2.

1. With what probability do both detections succeed? With what probability
does exactly one detection fail? With what probability do both detectors
fail?

2. Imagine that one detector successfully measures a qubit of a Bell state,
while the other detector fails and notifies us of this fact. If we replace
the reading of the failed detector by +1, what is the average value of the
outcome?

3. Now imagine that both detections fail, and both readings are replaced by
+1. What is the average value of the outcome?

4. Using the above, show that the critical detector efficiency for being able to
rely on the outcome of the CHSH test is given by142

η = 2(
√

2− 1).
141Hint: what is cos2(π/4)?
142Hint: if both detections succeed, then we can achieve 〈S〉 = 2

√
2; the previous questions calculate

〈S〉 in the other possible cases; so what is the sum of these values, weighted by their probabilities of
occurring?
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6.8.8 Locality loophole

1. Imagine that Alice and Bob are not very far from each other, and that they
are going to perform a CHSH test using devices given to them by Eve,
who has tampered with the devices and knows both of the measurement
settings. How can Eve make Alice and Bob believe that they are sharing
Bell pairs when, in reality, they are not?

To really get into the details of locality, we need to use some tools from spe-
cial relativity: the theory of how non-accelerating observers measure times and
distances. The main assertion of special relativity is that nothing can travel faster
than the speed of light. These next exercises will be much easier if you have al-
ready seen things such as Minkowski diagrams before, but do not worry if you
haven’t.

2. We are going to plot a Minkowski diagram of the CHSH test scenario. This
is a plot of physical position along the horizontal axis143 against time on the
vertical axis. We place one event — let’s pick Alice choosing her measure-
ment setting and getting a measurement result — at the origin. Include on
this diagram all the “places” (a pair consisting of a space coordinate and a
time coordinate) that can receive a message about what measurement set-
ting Alice chose, appealing to the main assertion of special relativity. This
set of places is called the future of the event.

3. Add to the Minkowski diagram all the places that can send a message that
could influence Alice’s outcomes. This set of places is called the past of the
event.

4. If an event (such as Bob choosing a measurement setting and getting a re-
sult) occurs in a region that is in neither the future nor the past of the event
at the origin, what influence can these two events have over one another?
If Bob’s event is at a distance L along the x-axis from the origin, then what
is the maximal permissible time difference between the two events?144

5. If we wish to be really careful, then we should separate out the four events:

a. Alice chooses a measurement setting
b. Alice gets a measurement result
c. Bob chooses a measurement setting
d. Bob gets a measurement result.

Draw a Minkowski diagram that includes all four events. Assuming that
Alice and Bob are stationary, use this diagram to more explicitly describe
the timing constraints of when each event should happen relative to one
another if we wish to avoid the locality loophole.

143To make things easy, we assume that space is one-dimensional: Alice and Bob live on a line.
144Hint: we already said in Section 6.7 that the maximal permissible time difference should be L/c, so

prove this.
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6.8.9 Free-will loophole

1. Assume that Eve, the manufacturer of the devices performing the CHSH
test, knows what settings Alice and Bob are going to use. Explain how Eve
can have faked the outputs, making the predetermined, while still seeming
to be producing results consistent with quantum violation of the CHSH
inequality.145

2. Say that Eve only knows a fraction p of the random outcomes (separately
for both Alice and Bob). What is the maximum value of p that still allows
〈S〉 = 2

√
2? What about merely allowing 〈S〉 > 2? (Assume that, whenever

at least one random number is known, both devices know that value, and
also know that they don’t know the other value, but that one device will
learn it when Alice or Bob chooses the measurement setting).

3. Imagine that Alice has a string of length k of (apparently) randomly chosen
bits. She believes that Eve knows a fraction p of these bits. In an attempt
to thwart Eve’s attempts at eavesdropping, Alice computes the addition
modulo 2 of all k bits, resulting in a single bit. What is the probability that
Eve can know this final value?

145Depending on how you answered Exercise 6.8.8, you might be able to use exactly the same idea
here.
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About the structure of the Pauli group, which is the group gener-
ated by tensor products of the Pauli matrices, including the iden-
tity. It has nice algebraic properties which are useful in many
areas of quantum information science, in particular quantum er-
ror correction and classical simulations of some types of quantum
computation. We will discuss how certain subgroups of the Pauli
group, and in particular stabilisers and normalisers of these
subgroups, slice the Pauli group into interesting cosets that have
a group structure of their own. We will also look at the Clif-
ford group, which is a set of unitary operators that preserve the
Pauli group under conjugation and describes the “easy” part of
quantum computation.

N.B. This section is sort of an odd-one-out, since we won’t need any of this for-
malism until Sections 13 and 14. However, if you’re reading this book in order, then
you might find this a nice detour halfway through, and it gives a taste of things to
come.

We have already seen the (single-qubit) Pauli matrices, along with a brief look
into their algebraic structure, in Section 3.3.

1 =
[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Recall that these matrices span the entire space of (2 × 2) complex matrices,

square to the identity (and thus can only have eigenvalues in the set {+1,−1}),
and are both Hermitian and unitary. As such, they can represent both observ-
ables and unitary evolutions. Any two given Pauli matrices either commute or
anticommute.

As one final reminder, we often refer to the Pauli matrices as “matrices”, but
they are defined as operators by the commutations relations, without reference
to any particular basis. That is, the Pauli operators X, Y , and Z are defined
exactly by the relations

X2 = Y 2 = Z2 = 1
XY = iZ Y Z = iX ZX = iY

Y X = −iZ ZY = −iX XZ = −iY.

7.1 Pauli groups

When we multiply the four Pauli matrices with one another we get Pauli matrices
in return, but with possible phase factors ±1 and ±i (e.g. XY = iZ). Once
we include these phase factors, ensuring that we have a set that is closed under
matrix multiplication, we obtain the single qubit Pauli group, which we denote
by P1.
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7.1 Pauli groups

In order to characterise a group, we can simply list all its elements and de-
fine the group operation on each possible pair, but it is usually more efficient to
use the notion of group generators.146 Given a group G, these are elements
g1, . . . , gn of the group that are independent (we cannot write any one of them
as a product of some of the others) and such that every element of G can be writ-
ten as a product of (possibly repeated) elements of {g1, . . . , gn}. If G is generated
by g1, . . . , gn, then we write G = 〈g1, . . . , gn〉.

The single-qubit Pauli group P1 is defined by

P1 := 〈X,Y, Z〉
= {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}.

The n-qubit Pauli group Pn is defined to consist of all n-fold tensor
products of Pauli matrices, with possible global phase factors ±1 and ±i,
i.e.

Pn := {P1 ⊗ . . .⊗ Pn | P1, . . . , Pn ∈ P1}.

This group has 4n+1 elements: 4 × 4n, since we have to account for the
possible global phase factors (which usually aren’t very important for
practical applications, but are necessary in order to have a well defined
group).

As a small mathematical aside, we could use some group theory here: Pn has
two trivial (multiplicative) subgroups, namely Z2 = {±1} and Z4 = {±1,±i};
the quotient group Pn/Z4 is exactly the n-qubit Pauli group but with the phases
ignored.

Some researchers prefer to think of the (single-qubit) Pauli group as the group
generated only by X and Z (leaving out Y ), which then only has 8 elements: ±1,
±X, ±Z, and ±iY . We do not follow this convention.

Central products.

One abstract way of defining the Pauli group, without having to make
any reference to matrices (and thus to bases), or even to operators, is
using the notion of a central product. This is a way of combining two
smaller group into one large group, but “respecting” the commutative
parts of each, which means that it arises as a quotient of the direct prod-
uct (which is somehow the most blunt way of combining together two
groups).

The cyclic group of order 4 is the abstract manifestation of something
maybe more familiar: the additive group of integers modulo 4. That is,

146Note how similar this is to the definition of a basis for a vector space.
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7.1 Pauli groups

the numbers 0, 1, 2, and 3 form a group under addition, but where we
take the addition to be “remainder 4”, so that e.g. 3 + 2 = 1. In abstract
algebra, this group is denoted by C4.

The dihedral group of order 8 (sometimes, very confusingly, also re-
ferred to as being of order 4) arises as the symmetry group of a square:
we can rotate a square by 90◦, or reflect it along either of the axis joining
any two diagonally opposite corners, or reflect it along either of the axis
joining the midpoints of any two opposite sides — doing any of these ac-
tions leaves the square looking exactly how it started. But some of these
actions describe the same thing! For example, reflecting through the ver-
tical axis and then the horizontal axis is the same as rotating by 180◦ (try
visualising this by flipping and rotating your hand!), which is a specific
example of the more general fact (which we briefly touched upon in Sec-
tion 2.12) that the composition of two reflections is the same as a rotation
through twice the angle between the two axes. In abstract algebra, this
group is denoted by D8 (though in geometry it is often written as D4
instead).

The relevance to the Pauli group is this: the central product of C4 and
D8 is exactly P1.

If it is clear that we are working with tensor products of Pauli matrices, then we
often (as per usual) omit the tensor product symbol, writing e.g. XY 1Z instead
of X⊗Y ⊗1⊗Z when talking about P4. Note however that we only do this when
it is obvious what we mean: this is very different from the product XY 1Z = i1
inside P1!

Let’s now talk a little bit about the algebraic structure of Pn. Multiplying
together elements is fairly simple: since they are tensor products, we multiply
them component-wise, but just remembering to pay attention to the global phase.
For example, we can multiply ZXX1 and XXY Y in P4 as follows:

(ZXX1) · (XXY Y ) = (ZX)(XX)(XY )(1Y )
= (iY )(1)(iZ)(Y )
= −Y 1ZY.

Next, any pair of elements in Pn either commute or anticommute: given P =
P1 . . . Pn and Q = Q1 . . . Qn, we notice that they commute exactly whenever the
number of anticommuting components (indices j such that PjQj = −QjPj) is
even, since then the minus signs cancel out. In other words, PQ = (−1)JQP ,
where J = |{j such that PjQj = −QjPj}|. For example, if we consider two
elements of P9 and write ✓ to mean that two components commute, and ! to
mean that they don’t, we can then just count to see if there are an odd or even
number of ! overall, like so:

Z X Y X Y Z X X Y
Z X 1 Z Z X 1 Y Z
✓ ✓ ✓ ! ! ! ✓ ! !
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and since there are 5 anticommuting components, we see that ZXYXY ZXXY
and ZX1ZZX1Y Z anticommute.

Finally, the square of any element in Pn is ±1. Indeed, all the elements in
the Pauli group are unitary, and each one is either Hermitian (overall phase ±1
and squares to 1) or anti-Hermitian (overall phase ±i and squares to −1). As per
usual, we are only really interested in working with the Hermitian elements, and
we refer to these as the Pauli operators.

An n-qubit Pauli operator is a Hermitian element of the n-qubit Pauli
group Pn.

Not only do n-qubit Pauli operators have eigenvalues equal to±1, these eigen-
values must be of the same degeneracy, and the eigenspaces corresponding to
each eigenvalue are of the same dimension, as we can see by taking the trace:

tr(P1 ⊗ P2 ⊗ . . .⊗ Pn) = (trP1)(trP2) . . . (trPn)

which is zero, except in the trivial case where P1 = P2 = . . . = Pn = 1. Last but
not least, the n-qubit Pauli group spans the space of (2n × 2n) complex matrices.

7.2 Pauli stabilisers

The stabiliser (or stabilizer, if you like) formalism is an elegant technique that
is often used to describe vectors and subspaces. Suppose you want to specify
a particular vector in a Hilbert space. The most conventional way to do this
would be to pick a basis and then list the coordinate components of the vector.
But we could instead list a set of operators that leave this vector invariant. More
generally, we can define a vector subspace (rather than just a single vector, which
corresponds to a 1-dimensional subspace: its span) by giving a list of operators
that fix this subspace. Such operators are called stabilisers.

We say that an operator S stabilises a (non-zero) state |ψ〉 if S|ψ〉 = |ψ〉,
and we then call |ψ〉 a stabiliser state. We say that S stabilises a subspace
V if S stabilises every state in V , and we call the largest subspace VS that
is stabilised by S the stabiliser subspace.

In other words, an operator S stabilises a state |ψ〉 (or the state is fixed by the
operator) if |ψ〉 is an eigenstate of S with eigenvalue 1. It is very important to
note that here we have to pay attention to the global phase factor: if S|ψ〉 = −|ψ〉
then we do not say that S stabilises |ψ〉, even though |ψ〉 and −|ψ〉 describe the
same quantum state.

For example, we can look at states stabilised by the Pauli operators with fac-
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tors ±1:

Z stabilises |0〉 − Z stabilises |1〉
Y stabilises |i〉 − Y stabilises | − i〉
X stabilises |+〉 −X stabilises |−〉

where | ± i〉 = 1√
2 (|0〉 ± i|1〉) and |±〉 = 1√

2 (|0〉 ± |1〉).
On the Bloch sphere, these single-qubit stabiliser states lie at the intersection

of the three axes with the surface of the sphere.

|0⟩

|1⟩

|+ i⟩| − i⟩

|−⟩

|+⟩

We can also say something about the remaining two elements of the single-
qubit Pauli group: 1 stabilises everything, and −1 stabilises nothing (except for
the zero state, which we explicitly ignore). More generally, if S stabilises some-
thing then −S cannot stabilise the same thing.

The set of all stabilisers of a given state or given subspace form a group:
if S|ψ〉 = |ψ〉, then multiplying both sides by S−1 shows that the inverse of
a stabiliser is again a stabiliser; the composition of two stabilisers is again a
stabiliser, since (ST )|ψ〉 = S(T |ψ〉) = S|ψ〉 = |ψ〉; and as we have just said, the
identity is always a stabiliser. This group is called the stabiliser group S of the
given state or subspace.

Using this language, we can rephrase the previous example by saying that the
stabiliser group of the state |0〉 is {1, Z} = 〈Z〉, the stabiliser group of the state
|1〉 is {1,−Z} = 〈−Z〉, the stabiliser group of the state |+〉 is {1, X} = 〈X〉, and
so on. If we take the tensor product of two states, with stabiliser groups A and B
(respectively), then the resulting tensor product state has stabiliser group given
by the cartesian product A× B. For example, the state |1〉|+〉 is stabilised by the
group

{1, Z} × {1, X} = {11,1X,Z1, ZX}
= 〈Z1,1X〉.

As for the state |0〉⊗n, this is stabilised by the group generated by the n elements
Z11 . . .1, 1Z1 . . .1, . . . , 11 . . . , Z, so we often simply stack the generators and
write such generating sets as (n × n) matrices, labelling the left-hand side with
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7.2 Pauli stabilisers

the relevant signs:

|0000〉 ←→

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
+ 1 1 1 Z

and we can see that the signs determine the bit value in the computational basis
state, if we look at the generators of the stabiliser groups for some other states:

|0001〉 ←→

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

|0101〉 ←→

+ Z 1 1 1
− 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

For our purposes, we are only really interested in stabilisers that are also
elements of the n-qubit Pauli group Pn, and we shall soon see that these form
an abelian group. It turns out that such stabilisers can describe highly entangled
states. In particular, the four Bell states (which we first talked about in Section
5.7) can be defined rather succinctly by their stabiliser groups:

Bell state Stabiliser group

Φ+ = |00〉+ |11〉 〈XX,ZZ〉
Ψ+ = |01〉+ |10〉 〈XX,−ZZ〉
Φ− = |00〉 − |11〉 〈−XX,ZZ〉
Ψ− = |01〉 − |10〉 〈−XX,−ZZ〉

Not only this, but some vector spaces are also rather easily defined: the sub-
space of the three-qubit state space spanned by |000〉 and |111〉 is stabilised by

{111, ZZ1, Z1Z,1ZZ} = 〈ZZ1,1ZZ〉.

Right now, it might seem more complicated to use stabilisers to define vectors
or subspaces, but when we start looking at states with a larger and larger number
of components we will see how this approach ends up being very tidy indeed! It
is not be true that the stabiliser description of states and subspaces will always
be the most concise, but it is true in a lot of cases that are of interest to us.

Returning to our claim that stabiliser groups that are subgroups of Pn are
abelian, let us start with a definition, and then justify it afterwards.

An n-qubit Pauli stabiliser group is any subgroup of Pn that is abelian
and does not contain −1. Its elements are called Pauli stabilisers.

Recall that, in order for the subspace VS stabilised by some group S to be
non-trivial, we need −1 6∈ S. Given that all Pauli operators square to the identity,
and all pairs of Pauli operators either commute or anticommute, this implies that
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7.2 Pauli stabilisers

if we want some Pauli operators to stabilise anything then they must commute.
Indeed, if S1 and S2 are two Pauli operators that anticommute, and |ψ〉 is any
vector stabilised by both of them, then

|ψ〉 = S1S2|ψ〉
= −S2S1|ψ〉
= −|ψ〉

which means that |ψ〉 = 0. But saying that we are looking at a stabiliser group
consisting of Pauli stabilisers that all commute with one another (as opposed to
anticommuting) is exactly saying that we have an abelian subgroup of Pn; if we
want it to be non-trivial, then we need it to not contain −1. Conversely, if we
pick any abelian subgroup of Pn that does not contain −1, this stabilises some
subspace VS .

The size of any Pauli stabiliser S is |S| = 2r, where r is some positive integer,
since we can always find some choice of generators G1, . . . , Gr, and then any
operator S ∈ S can be written as147

S = Gε1
1 G

ε2
2 . . . Gεr

r

where ri ∈ {0, 1}. But given any stabiliser group, we can always express its ele-
ments using many different sets of generators; a specific choice of r independent
generators of a Pauli stabiliser S of size 2r is called a presentation. In order to
choose a presentation from the set of elements of S, we have to start by picking
any non-identity element, of which there are 2r−1. Inductively then, we pick the
next generator by picking any element which is not in the subgroup generated by
the previously selected generators, which means that there are

(2r − 1)(2r − 2)(2r − 22) . . . (2r − 2r−1)

possible generating sets of S. But these are ordered sets (i.e. we are keeping track
of the order in which we pick the elements, so G1, G2, . . . is a “different” choice
than G2, G1, . . .), so if we want to know the number of presentations then we can
simply divide the expression above by r!.

For example, the Bell state Φ+ = |00〉+|11〉 is stabilised by the group {11, XX,−Y Y, ZZ}.
This stabiliser group has (22−1)(22−2)/2! = 3 presentations, namely 〈XX,ZZ〉,
〈−Y Y,XX〉, and 〈ZZ,−Y Y 〉.

So now we know the size of a Pauli stabiliser, but what can we say about the
dimension of the subspace that it stabilises? If |S| = 2r then the corresponding
stabiliser subspace VS has dimension 2n−r (where n is the number of qubits,
i.e. such that S ⊆ Pn). To see this, we can look at the projector PS onto VS , since
once we have a projector onto any subspace we know that the dimension of that
subspace is exactly the trace of the projector (we can prove this by thinking about
the matrix of the projector in the diagonal form). In our case (using the result of

147An interesting small exercise here is to explain why the product of any independent Pauli stabilis-
ers cannot be equal to the identity.
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Exercise 7.8.5) we calculate that

trPS = tr 1
2r

(S1 + S2 + . . .+ S2r )

= 1
2r

(tr 1)

= 2n−r

since any non-identity element of the stabiliser group has trace equal to zero,
and tr 1⊗n = 2n, whence dimVs = 2n−r. If r = n then the stabilised subspace is
1-dimensional, and so we have stabiliser states.

There is a more geometric way of understanding why powers of 2 keep on
turning up in these calculations. Given independent Pauli generators, it is con-
venient to think about the state or subspace that they stabilise as being the re-
sult of repeatedly bisecting the Hilbert space. Let G1, . . . , Gr be a presentation
of a Pauli stabiliser S. For each operator Gi, half its eigenvalues are +1 and
another half are −1, so each Gi bisects the 2n-dimensional Hilbert space of n
qubits into two eigenspaces of equal size. So G1 gives two 2n−1-dimensional
subspaces: one for the +1 eigenvalue and one for the −1 eigenvalue. Forgetting
about the −1 part and just focusing on the +1 part, G2 then splits this 2n−1-
dimensional subspace into two 2n−2-dimensional subspaces, since it is indepen-
dent from G1 (as we justify in Exercise 7.8.5). Repeating this procedure, for-
getting about the −1 subspace each time, leads us to consider the simultaneous
+1-eigenspace of G1, . . . , Gr, where each time we pass from {G1, G2, . . . , Gi} to
{G1, G2, . . . , Gi, Gi+1} we bisect the subspace into two equal parts once more,
eventually ending with the 2n−2-dimensional subspace VS , as above. We can
show this pictorially, as in Figure 7.1.

++ −+

−−+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩

Figure 7.1: The stabiliser group S = 〈ZZ1,1ZZ〉 bisects the Hilbert space of
three qubits into four equal parts, and gives the stabilised subspace VS which is
spanned by |000〉 and |111〉. Think of the labels ZZ1 and 1ZZ as the x- and y-
axes, and the sign labels on each square as (x, y)-coordinates. So the two squares
on the left together make the +1-eigenspace of 1ZZ, and the two squares on the
top make the +1-eigenspace of ZZ1.

This diagram will make a reappearance in Sections 13 and 14.
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7.3 Single stabiliser states

7.3 Single stabiliser states

Given n independent generators of a stabiliser group S on a Hilbert space of n-
qubits, we end up specifying a 1-dimensional subspace, meaning it is spanned by
a single basis vector, namely the stabiliser state. We have already talked about the
single-qubit stabiliser states determined by all possible stabilisers in P1, namely
|0〉 and |1〉 for 〈±Z〉, |±〉 for 〈±X〉, and | ± i〉 for 〈±Y 〉. We have also mentioned
some of the two-qubit stabilisers states, some of which are highly entangled, such
as the Bell states, and some of which are separable, such as the computational
basis states (whose stabilisers groups we described by block matrices with Z on
the diagonal, 1 everywhere else, and signs labelling each row depending on the
binary description of the state).

Here’s another two-qubit example: that of the maximally entangled state
|00〉+ |11〉. This is stabilised by 〈XX,ZZ〉, but let’s explain how we can see this.
If we look first at the operator XX, we see that it splits the 4-dimensional Hilbert
space into two 2-dimensional subspaces, corresponding to eigenvalues ±1; by
definition, it stabilises the one corresponding to eigenvalue +1, which is spanned
by |00〉+ |11〉 and |01〉+ |10〉. Now the operator ZZ also splits the 4-dimensional
Hilbert space into two 2-dimensional subspaces, again corresponding to eigenval-
ues ±1; it stabilises the one corresponding to eigenvalue +1, which is spanned
by |00〉+ |11〉 and |00〉− |11〉. Note that |01〉+ |10〉 is in the −1-eigenspace of ZZ,
even though it is in the +1-eigenspace of XX (and vice versa for |00〉 − |11〉). So
the simultaneous +1-eigenspace of XX and ZZ is exactly the state |00〉+ |11〉.

|00〉+ |11〉 ←→ + X X
+ Z Z

|00〉 − |11〉 ←→ − X X
+ Z Z

|01〉+ |10〉 ←→ + X X
− Z Z

|01〉 − |10〉 ←→ − X X
− Z Z

As we have already mentioned when discussing presentations of a stabiliser
group, there can be multiple different generating sets, which corresponds to the
fact that there are multiple different ways of bisecting the Hilbert space. For
example, the stabiliser state |00〉 + |11〉 is completely specified by 〈XX,ZZ〉,
as shown above, but also by 〈XX,−Y Y 〉 or 〈−Y Y, ZZ〉. But, as we should
expect, these three generating sets all generate the same group, namely S =
{11, XX,−Y Y, ZZ}.

How many n-qubit stabiliser states do we have? The answer is

2n
n−1∏
k=0

(2n−k + 1)

as we can show with a counting argument: we will count the number of gener-
ating sets with n generators (since this is exactly the right number of generators
to specify a 1-dimensional stabiliser subspace) and then divide by the number
of presentations for any given stabiliser.148 There are 4n−1 choices for the first
generator G1 (ignoring overall sign), since it can be any n-fold tensor product of

148This is a common technique in combinatorial arguments: first overcount, and then fix your answer
by accounting for this.
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7.4 Measuring Pauli stabilisers

the four Pauli matrices, excluding the identity 1111. For the second generator
G2, we have (4n/2) − 2 possibilities, since it must commute with the first gen-
erator (and we know that exactly half of the operators commute with any given
operator, as shown in Exercise 7.8.3, whence 4n/2) and it cannot be 1111 or G1
(whence −2). Similarly, G3 must commute with both G1 and G2, but it cannot
be in the group generated by them, so there are (4n/4)− 4 possible choices, and
so on. This means that we have

2n(4n − 1)
(

4n

2
− 2
)(

4n

4
− 4
)
. . .

(
4n

2n−1 − 2n−1
)

possible generating sets in total. Now we need to divide by the number of pre-
sentations, but we have already calculated this in Section 7.2: it’s exactly

(2n − 1)(2n − 2)(2n − 22) . . . (2n − 2n−1).

It is a fun algebra exercise to show that this division indeed gives the number we
claimed.

As we will see, stabiliser states are ubiquitous in quantum information theory
due to their versatility and relative simplicity. They play a crucial role in areas
such as quantum error correction, measurement-based quantum computation,
and entanglement classification.

7.4 Measuring Pauli stabilisers

How do we bisect Hilbert spaces in practice? By measuring stabilisers.
Let’s start by measuring any single-qubit observable that squares to the iden-

tity. The corresponding operator P with eigenvalues ±1 is both Hermitian and
unitary, and can thus represent both an observable and a quantum gate. If we pre-
pare a qubit in some state |ψ〉 and then wish to perform a measurement that will
give us a result of ±1 and leave the qubit in a post-measurement state, namely
the corresponding eigenvector, then we can use the following circuit (where ∝
denotes that two states are multiples of one another).

|0⟩ H H

|ψ⟩ P ∝ 1± P |ψ⟩

This construction requires an auxiliary qubit (in the top register), two Hadamard
gates, and the tacit assumption that we can construct a controlled-P operator.
Stepping through the execution of this circuit, we get

|0〉|ψ〉 H⊗17−→ 1√
2

(|0〉+ |1〉)|ψ〉

c-P7−→ 1√
2
|0〉|ψ〉+ 1√

2
|1〉P |ψ〉

H⊗17−→ |0〉1
2

(1 + P )|ψ〉+ |1〉1
2

(1− P )|ψ〉.
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7.4 Measuring Pauli stabilisers

The final state of the two qubits indicates that, when the auxiliary (top) qubit is
found in state |0〉 then we projected the state |ψ〉 onto the +1-eigenspace of P
(via the projector 1

2 (1 + P )), and when it is found in state |1〉 then we projected
|ψ〉 onto the −1-eigenspace (via the projector 1

2 (1 − P )). In particular, the X,
Y , and Z observables can be measured using controlled-X, controlled-Y , and
controlled-Z gates (respectively). This pattern can easily be extended to an n-
qubit Pauli operator. For example, for n = 3, a generic circuit that implements
a projective measurement onto the ±1-eigenspaces of S = P1 ⊗ P2 ⊗ P3 has the
form

|0⟩ H H

|ψ⟩
P1

P2

P3

and is usually drawn more compactly as

|0⟩ H H

|ψ⟩

P1

P2

P3

In this way, we can measure stabilisers and project onto the subspaces that
they stabilise. For example, take the stabiliser group S = 〈XX,ZZ〉, and consider
the circuit below:

|0⟩ H H

|0⟩ H H

|ψ⟩
X Z

X Z

The registered bit values from the first and second (counting from the top)
auxiliary qubits tell us how we bisect the Hilbert space with XX and ZZ (re-
spectively), recalling that a bit value of 0 corresponds to the +1 Pauli eigenvalue,
and a bit value of 1 to the −1 eigenvalue. The first measurement can apply one
of two projectors to |ψ〉:
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7.5 Normal subgroups

a. 1
2 (1 +XX), in which case the first auxiliary qubit will show 0, correspond-
ing to the eigenvalue +1, and the subspace spanned by |00〉 + |11〉 and
|01〉+ |10〉

b. 1
2 (1−XX), in which case the first auxiliary qubit will show 1, correspond-
ing to the eigenvalue −1, and the subspace spanned by |00〉 − |11〉 and
|01〉 − |10〉.

The second measurement can further project the resulting post-measurement
state of the two qubits in one of two ways:

a. 1
2 (1 + ZZ), in which case the second auxiliary qubit will show 0, corre-
sponding to the eigenvalue +1, and the subspace spanned by |00〉 + |11〉
and |00〉 − |11〉

b. 1
2 (1 − ZZ), in which case the second auxiliary qubit will show 1, corre-
sponding to the eigenvalue −1, and the subspace spanned by |01〉 + |10〉
and |01〉 − |10〉.

So if both auxiliary qubits show bit value outcome 0 (corresponding to the
Pauli outcome (+1,+1) of eigenvalues), then we have successfully projected
onto the state stabilised by XX and ZZ, which is exactly |00〉 + |11〉. More
generally, in Pauli notation, the outcome (±1,±1) corresponds to the projection
onto the stabiliser state stabilised by 〈±XX,±ZZ〉.

Needless to say, we do not have any control over the actual outcomes of
the measurement, but we do now know which post-measurement state we have
generated. This means that we can use the circuit to prepare a desired state
by applying an appropriate unitary operation to the final state. For example,
if we want to generate the state |00〉 + |11〉 but actually end up with the state
|00〉 − |11〉, then we can simply apply the Z operation to any of the two qubits to
get the desired result. This generic method is not the only way of constructing
projective measurements of Pauli observables, however — see Exercise 7.8.7

7.5 Normal subgroups

Before continuing our exploration of Pauli stabilisers, we need a bit more abstract
mathematics.

Let H be a subgroup of G, written H ⩽ G. We say that H is a normal
subgroup of G, and write H / G, if H is invariant under conjugation by
all elements of G, i.e. ghg−1 ∈ H for all g ∈ G and all h ∈ H.

Note that we only require that ghg−1 be some arbitrary element in H, not
that ghg−1 = h.

If H ⩽ G is an arbitrary (not necessarily normal) subgroup, then we can use
it to “slice up” G into subsets of equal size called cosets, one of which is H itself.
We define a (left) coset to be a set of the form

gH = {gh | h ∈ H}
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7.6 Pauli normalisers

for any fixed g ∈ G. Any two cosets (i.e. any two choices of g ∈ G) are either
entirely equal or completely disjoint. The relevance of normality here is that if H
is normal, then there is no need to distinguish between left (gH) and right (Hg)
cosets, and in this case we can construct the quotient group G/H consisting of
cosets with the operation defined by gH · g′H = (gg′)H. Here is one way to
visualise a partition into cosets:

cnH = cn cnh1 . . . cnhk

...
...

...
. . .

...
c2H = c2 c2h1 . . . c2hk

c1H = c1 c1h1 . . . c1hk

H = 1 h1 . . . hk

The bottom row represents the subgroup H, and each row above represents a
coset, i.e. a set of elements generated by picking an element ck of G that does not
belong to H nor to any of the previously generated cosets, and then multiplying
this element by all elements in H, one at a time. This picture above shows that,
for any finite group G and any subgroup H ⩽ G,

|G| = |G : H| · |H|

where |G : H| is the number of cosets of G given by H. This fact is known
as Lagrange’s theorem (although Joseph-Louis Lagrange was a rather prolific
mathematician, working in many areas, so this is only one of the theorems to
bear his name).

It seems like it was Évariste Galois who recognised that normal subgroups
were worthy of special attention. Given an arbitrary subgroup H ⩽ G, we can
construct a larger subgroup K ⩽ G in which H is normal, i.e. such that H /K ⩽
G. The largest such subgroup K is called the normaliser of H in G, denoted
by149 NG(H), and we can construct it explicitly:

NG(H) = {g ∈ G | ghg−1 ∈ H for all h ∈ H}.

In words, the normaliser consists of the set of elements of G that conjugate all
elements of H to elements of H. This suggests a very subtle question: is every
subgroup of a normal subgroup normal? The answer is most definitely no: if
H / K and K / G then it is not necessarily the case that H / G, merely that
H ⩽ G.

As we shall soon see, Pauli stabilisers are not normal subgroups of Pn, and
we will instead want to study their normalisers.

7.6 Pauli normalisers

There are two subgroups that pop up once we choose a stabiliser S. The subgroup
of Pn consisting of all elements that commute which every element of S is called

149When the ambient group G is evident, we often simply denote the normaliser by N(H). But the
choice of the group G still matters!
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the centraliser of S, denoted by150

Z(S) = {g ∈ Pn | gsg−1 = s for all s ∈ S}

and the other is the one that we have already seen: the normaliser

N(S) = {g ∈ Pn | gsg−1 ∈ S for all s ∈ S}.

These two are, in general, distinct but related: for the normaliser we ask that
gsg−1 = s′ for some arbitrary s′ ∈ S, and for the centraliser we additionally ask
that s′ = s. However, in the case of Pauli groups, these two subgroups coincide,
because gsg−1 = s′ if and only if sg = gs′, but since any two elements of the
Pauli group either commute or anticommute, this implies that s′ = s or s′ = −s;
but we have already seen (and proven, in Exercise 7.8.4) that if s is in a stabiliser
then −s cannot be, and so it must be the case that s′ = s.

In summary, given a stabiliser, we get a corresponding normaliser, and given
the normaliser (which, in our case, is the same thing as the centraliser), we get
two interesting quotient groups to study. By the definition of the normaliser, S
is normal in N(S). What is less obvious is that N(S) itself is normal in Pn. To
prove this, let g ∈ Pn and consider gng−1, for some n ∈ N(S). We need to show
that gng−1 ∈ N(S). For any s ∈ S,

(gng−1)s = s(gng−1)

because either s commutes with both g and g−1, or it anticommutes with both g
and g−1, in which case the two minus signs cancel out. Either way, s commutes
with gng−1, and so, by definition, gng−1 ∈ N(S). So S in normal in N(S) by
definition, and N(S) is normal in Pn by the above; but recall that this does not
imply that S is normal in Pn. Indeed, pick any element g ∈ Pn that anticommutes
with some s ∈ S, so that gsg−1 = −s; but we already know that if s ∈ S then
−s 6∈ S.

With these normal subgroups S /N(S)/Pn we can form two quotient groups,
arranging things into cosets: N(S)/S and Pn/N(S). This is visualised in Figure
7.2. Note that we can also form cosets of S in Pn, but since this is not a normal
subgroup the left cosets will be different from the right cosets, and we cannot
construct a quotient group Pn/S.

150The letter Z stands for the German Zentrum, which means centre.
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stabiliser S

cosets of S in N(S)normaliser N(S)

cosets of N(S) in Pn

Figure 7.2: Any Pauli stabiliser S ⩽ Pn (shown in red) slices its normaliser N(S)
(shown in blue) into cosets, and the normaliser in turn slices Pn into cosets.
There are four “sheets” in the diagram to remind us that there are four possible
global phases, so we obtain the three sheets behind the first one by multiplying
by −1, i, and −i. We give a more concrete worked example in Exercise 7.8.2.

This resulting structure — any Pauli stabiliser slicing its normaliser into cosets,
and this normaliser in turn slicing the Pauli group into cosets — will be very use-
ful when we discuss quantum error correction and fault tolerance in Sections 13
and 14, and we can explain a bit how this will work now. The stabiliser will
partition the Hilbert space of n qubits into subspaces, and the one that is fixed
by the stabiliser will be chosen as a codespace. All operators in the normaliser
will then become logical operators on the codespace, and the cosets of the nor-
maliser in Pn will group together operators that describe errors of a similar type
(those with the same error syndrome). It will be a useful fact to know that
Pn/N(S) is abelian — we show this in Exercise 7.8.6.

Finally, let’s count some elements. We have already seen that |Pn| = 4 · 4n =
4n+1, and that if S has r generators then |S| = 2r. But what about N(S)? By
definition, the normaliser consists of all the operators that commute with all the
generators of the stabiliser. There are 4 · (4n/2) that commute with the first
generator, half of which also commute with the second generator, a further half
of which also commute with the third generator, and so on. So we have that
|N(S)| = 4 · (4n/2r). Finally we have the two quotient groups: N(S)/S has
4 · (4n/4r) = 4n−r+1 elements and is isomorphic to Pn−r; and Pn/N(S) has
(4 · 4n)/(4 · (4n/2r)) = 2r elements.
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7.7 Clifford walks on stabiliser states

There are essentially two ways to define stabiliser states of n qubits. We have
already seen how we can describe them as simultaneous +1 eigenstates of n
generators of some stabiliser group S ⩽ Pn, but it turns out that we could also
define them as the states that are reachable from the |0〉⊗n state using only the
c-NOT gate, the Hadamard H, and the phase gate S = ( 1 0

0 i ). If you start playing
around with these three gates, you’ll soon notice that you tend to reach certain
discrete states, and never anything in between them. For example, in the single
qubit case (so with just the H and S gates), you’ll be able to go between |0〉, |1〉,
|±〉, and | ± i〉, but never anything like, say,

√
1
3 |0〉 +

√
2
3 |1〉. When you have

two or more qubits, you might also notice that whenever you create an n-qubit
superposition that assigns non-zero amplitudes to strings in some setA ⊂ {0, 1}n,
it’s always an equal superposition over A (though possibly with±1 or±i phases),
and |A| is always some power of 2. For example, you can generate states such as

1√
2 (|000〉+ |111〉)|010〉 or 1

2 (|000〉+ i|100〉+ |011〉 − i|111〉)|010〉, but never states
such as 1√

3 (|001〉+ |010〉+ |100〉)|010〉.

Circuits composed of only c-NOT, H, and S = Pπ/2 are special: they effect
unitaries that map stabiliser states to stabiliser states.

The n-qubit Clifford group Cn is the group generated by these three
unitaries, and it happens to be exactly the normaliser of of the n-qubit
Pauli group inside the group of all (2n × 2n) unitary matrices:

Cn = {U ∈ U(2n) | UPU† ∈ Pn for all P ∈ Pn} =: NU(2n)(Pn).

It’s a confusing (but immutable) matter of terminology that Clifford gates
(i.e. gates made from only unitaries in the Clifford group) are sometimes called
stabiliser gates, and Clifford circuits (i.e. circuits made from only Clifford gates)
are sometimes called stabiliser circuits, but stabiliser states are never called “Clif-
ford states”.

So if we have an n-qubit stabiliser state, described by n Pauli generators, then
any unitary in the Clifford group Cn will map each of the n Pauli generators to
another Pauli generator, and the set of these n new generators will define a new
stabiliser state. Indeed, suppose we have some vector space V stabilised by the
group S, and we apply some unitary operation U . If |ψ〉 is an arbitrary element
of V , then, for any element S of S,

U |ψ〉 = US|ψ〉
= US(U†U)|ψ〉
= (USU†)U |ψ〉

and so the state U |ψ〉 is stabilised by USU†, from which we deduce that the
vector space

UV := {U |ψ〉 | |ψ〉 ∈ V }
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is stabilised by the group

USU† := {USU† | S ∈ S}.

Furthermore, ifG1, . . . , Gr generate S, then UG1U
†, . . . , UGrU

† generate USU†,
so to compute the change in the stabiliser we need only compute how it affects
the generators of the stabiliser.

Since the Clifford group is generated by only three elements, we can easily
work out how each of these gates acts by conjugation on the Pauli group. For
instance, we have previously seen that the Hadamard gate performs the following
transformation:

X 7−→ HXH = Z

Z 7−→ HZH = X.

Given that Y = iXZ, there is no need to specify the action of H on Y , since we
can calculate that

Y 7−→ i(HXH)(HZH)
= iZX

= − Y.

All the basic rules for updating stabilisers with Clifford gates can be conveniently
tabulated:

Gate Input/Output

H

 X 7−→ Z
Y 7−→ −Y
Z 7−→ X


S

 X 7−→ Y
Y 7−→ −X
Z 7−→ Z



c-NOT



1X 7−→ 1X
X1 7−→ XX
1Y 7−→ ZY
Y 1 7−→ Y X
1Z 7−→ ZZ
Z1 7−→ Z1


and these rules can be expressed as circuit identities, such as

X
=

X

X
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X

=
X

Z
= Z

Z

=
Z

Z

Let’s work through an example to see how these rules work in practice. Here’s
a simple stabiliser circuit:

|0⟩ H

|0⟩ S

As we step through this circuit we embark on our Clifford walk between
two-qubit stabiliser states:

|00〉 H⊗17−→ 1√
2

(|0〉+ |1〉)|0〉

c-NOT7−→ 1√
2

(|00〉+ |11〉)

1⊗S7−→ 1√
2

(|00〉+ i|11〉).

This walk could also be described in terms of stabiliser generators:∣∣∣∣Z 1
1 Z

∣∣∣∣ H⊗17−→
∣∣∣∣X 1
1 Z

∣∣∣∣ c-NOT7−→
∣∣∣∣X X
Z Z

∣∣∣∣ 1⊗S7−→
∣∣∣∣X Y
Z Z

∣∣∣∣ .
Here the first column corresponds to the first qubit, and the second column to the
second qubit. So the first Hadamard gate flips Z1 to X1, then the c-NOT (which
acts on both qubits together, and so acts on entire rows) turns X1 into XX and
1Z into ZZ, then finally the S gate on the second qubit (thus the second column)
turns XZ into Y Z.

Despite the fact that the Clifford circuits can generate huge entangled n-qubit
superpositions starting from the single state |0〉⊗n, such circuits are easy to sim-
ulate classically because we can efficiently update the list of stabilisers following
the simple rules. Daniel Gottesman and Emanuel Knill showed that151 there is a

151This is now known as the Gottesman–Knill theorem.
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polynomial-time classical algorithm to simulate any stabiliser circuit that acts on
a stabiliser state. We can also efficiently compute the expectation values of any
physical observables by examining the updated list of stabilisers. Note that com-
puting a list of amplitudes would not be efficient, since there are exponentially
many of them.

Because they can be efficiently classically simulated, stabiliser circuits nec-
essarily do not capture the full power of quantum computation. Fully univer-
sal quantum computation requires as least one non-Clifford gate, such as the
T =

( 1 0
0 e−iπ/4

)
gate. Once we include this gate, we can create circuits that will

take us from any initial state, such as |0〉⊗n, to arbitrarily close to any other state
in the n-qubit Hilbert space. Despite this limitation of stabiliser computation,
however, it has become a central part of quantum computing, mostly because of
its role in quantum error correction and fault-tolerant computation. Almost all of
the quantum error correcting codes are stabiliser codes, and are presented using
the stabiliser formalism.

7.8 Remarks and exercises

7.8.1 Measuring parity

Suppose you have a two-qubit stabiliser ZZ. This is an observable that has
two eigenvalues and two corresponding eigenspaces, namely the +1-eigenspace
spanned by {|00〉, |11〉} and the −1-eigenspace spanned by {|01〉, |10〉}. This tells
us something about the parity of the two qubits: the +1 outcome means that the
bit values are the same, and the −1 outcome means that they are different. How-
ever, it is critical that we do not measure the bit values Z1 and 1Z separately and
then multiply the results, since this could cause the state to “collapse” to one of
the basis states in revealing the exact bit values. We don’t want this! We simply
want to know the mutual parity of the bit values, not what values they actually
are.

Mathematically speaking, the parity measurement ZZ involves two orthogo-
nal projectors

1
2

(11 + ZZ) = |00〉〈00|+ |11〉〈11|

1
2

(11− ZZ) = |01〉〈01|+ |10〉〈10|

whereas the bit-value measurements Z1 and 1Z are characterised by the four
projectors

1
2

(11 + Z1) = |0〉〈0| ⊗ 1

1
2

(11 + 1Z) = 1⊗ |0〉〈0|

1
2

(11− Z1) = |1〉〈1| ⊗ 1

1
2

(11− 1Z) = 1⊗ |1〉〈1|.
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In terms of circuits, if we want to measure the parity of two qubits prepared
in some state |ψ〉, then we can use the circuit

|ψ⟩

|0⟩

which is different from the circuit which effects the measurement of the indi-
vidual bit values of the two qubits, namely

|ψ⟩

|0⟩

|0⟩

When dealing with stabilisers, we prefer to think of the controlled-NOT gate
as a controlled-X instead. We then draw the parity-measurement circuit as

|ψ⟩

|0⟩ X X

But this is a bit confusing, since we are measuring the Z observable us-
ing controlled-X gates. Thankfully, we can use some circuit/Pauli identities to
rephrase things in terms of controlled-Z gates instead:

|0⟩ H H

|ψ⟩ Z

Z

This is a quantum version of the two-bit parity measurement. When the aux-
iliary qubit (now in the top register) is found in state |0〉 then we projected onto
the +1-eigenspace of ZZ, which is spanned by the vectors |00〉 and |11〉; oth-
erwise, we projected onto the −1-eigenspace of ZZ, which is spanned by the
vectors |01〉 and |10〉. The circuit above is more commonly drawn simply as
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|0⟩ H H

|ψ⟩
Z

Z

This scheme can be generalised and used to implement any sequence of Pauli
measurements. For example, the circuit below shows to consecutive measure-
ments: X1Z followed by 1Y Z.

|0⟩ H H

|0⟩ H H

|ψ⟩

X

Y

Z Z

7.8.2 The Pauli group of three qubits

Consider the three-qubit Pauli group P3, which has 4 · 43 = 256 elements. One
example of a stabiliser group is

S = {111, ZZ1,1ZZ,Z1Z}
= 〈ZZ1,1ZZ〉.

since it is an abelian subgroup of P3 that does not contain −111. You can check
that it fixes the subspace spanned by |000〉 and |111〉 (and note that you only
need to check this on the generators of S, not for all elements of S). We have
already seen in Figure 7.1 how these two generators bisect the Hilbert space of
three qubits, so now let’s try to understand Figure 7.2 for this specific example.

The elements of P3 that commute with the stabiliser S form the normaliser
N(S). Since the stabiliser is abelian, it itself is contained inside the normaliser,
but there are also elements in the normalised that are not in the stabiliser. All
together, there are 4 · 16 = 64 elements in the normaliser, and they can be neatly
sliced into cosets of S in N(S), as shown in Figure 7.3.
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−iZZZ −i11Z −iZ11 −i1Z1

iY Y Y −iXXY −iY XX −iXY X

−iXXX iY Y X iXY Y iY XY

−i111 −iZZ1 −i1ZZ −iZ1Z

iZZZ i11Z iZ11 i1Z1

−iY Y Y iXXY iY XX iXY X

iXXX −iY Y X −iXY Y −iY X

i111 iZZ1 i1ZZ iZ1Z

−ZZZ −11Z −Z11 −1Z1

Y Y Y −XXY −Y XX −XYX

−XXX Y Y X XY Y Y XY

−111 −ZZ1 −1ZZ −Z1Z

ZZZ 11Z Z11 1Z1

−Y Y Y XXY Y XX XYX

XXX −Y Y X −XY Y −Y XY

111 ZZ1 1ZZ Z1Z

Figure 7.3: Here we have arranged the elements of the normaliser of S so that
each row represents a coset of S in N(S). The quotient group N(S)/S is isomor-
phic to the Pauli group P1, and you can see this by considering the first column
(which is the representative for that row/coset) of the frontmost page: the four
operators 111, XXX, −Y Y Y , and ZZZ behave, algebraically, exactly the same
as 1, X, Y , and Z (in that they satisfy the same commutation relations). Note
that it is indeed −Y Y Y that behaves like Y , not +Y Y Y .

Having pictured the cosets of S inside N(S), we can now look at the cosets
of N(S) inside P3, as in Figure 7.4. A “filled in” version of this diagram (where
every element is listed, as in Figure 7.3) will be given in Figure 14.8.
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S

N(S)

(X11) ·N(S)

(1X1) ·N(S)

(11X) ·N(S)

Figure 7.4: Here the cosets of the normaliser N(S) inside P3 are given by the
representatives 111, X11, 1X1, and 11X. Each of the four cosets representing
an element of P3/N(S) is composed of 16 rows (four in each sheet). These rows
represent cosets of S in P3 but we have to be careful: within the normaliser
N(S), these are well defined, but outside of the normaliser there is a difference
between left and right cosets, since S is not normal in P3. The blue and red rows
are exactly a copy of those from Figure 7.3.

7.8.3 Half commuting

Any Pauli matrix that is not the identity commutes with exactly half of all the
Pauli matrices: namely, with the identity and with itself. For example, X com-
mutes with 1 and X, and anticommutes with Y and Z.

Extend this observation to any non-identity element in Pn. In other words,
show that, for any P ∈ Pn \ {1⊗n}, exactly half of the elements in Pn commute
with P .

7.8.4 One out of four stabilisers

Explain why, if S is an element of some stabiliser group, then none of −S, iS, or
−iS are in the same stabiliser group.

7.8.5 Stabilisers and projectors

Let S be a Pauli stabiliser group, with generators G1, . . . , Gr.

1. Show that 1
2 (1±Gj) is the projector onto the ±1-eigenspace of Gj for any

j = 1, . . . , r.
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2. Show that the projector

P = 1
2

(1 +G1)1
2

(1 +G2) . . . 1
2

(1 +Gr)

onto the simultaneous +1-eigenspace of the generators G1, . . . , Gr can be
written as

P = 1
2r

(S1 + S2 + . . .+ S2r )

where the sum contains all elements Si of S.
3. The fact that independent generators consecutively bisect the total Hilbert

space relies on the fact that, if G1 and G2 are independent generators, then
G2 restricted to the +1-eigenspace of G1 bisects it into two subspaces of
equal dimension. Explain how this fact follows from

tr
[

1
2

(1 +G1)G2
1
2

(1 +G1)
]

= 0

and prove that this trace is indeed zero. Why do the two generators G1 and
G2 have to be independent?

7.8.6 Abelian Pauli quotients

Given any group G, we define the commutator [−,−] by

[−,−] : G×G −→ G

(g1, g2) 7−→ g−1
1 g−1

2 g1g2

Now let H / G be a normal subgroup, and consider the following theorem.

Theorem. The quotient G/H is abelian if and only if [g1, g2] ∈ H for all
g1, g2 ∈ G.

Using this theorem (or otherwise),

1. Prove that Pn/N(S) is abelian for any Pauli stabiliser S ⩽ Pn.
2. Prove that Pn/C4 is abelian, where C4 ∼= Z/4Z is given by the global phase.

7.8.7 Equivalent projective measurements

In Section 7.4 we described a generic method for constructing projective mea-
surements of Pauli observables. However, sometimes it may be easier to use
equivalent, simpler constructions. For example, the following two circuit identi-
ties are often used:
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|0⟩ H H

|ψ⟩ X

=
|0⟩

|ψ⟩ H H

|0⟩ H H

|ψ⟩ Z

=
|0⟩

|ψ⟩

These both follows from the fact that HZH = X, and that the control and
the target of a controlled-Z gate can be chosen arbitrarily, since the gate itself
is symmetric with respect to this choice: the phase-flip only happens when both
qubits are in state |1〉.
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8 Density matrices

About density matrices, and how they help to solve the problem
introduced by entangled states, as well as how they let us talk
about mixtures and subsystems. Also a first look at the partial
trace.

We cannot always assign a definite state vector to a quantum system. It may
be that the system is part of a composite system that is in an entangled state, or it
may be that our knowledge of the preparation of a particular system is insufficient
to determine its state — for example, someone may prepare a particle in one of
the states |ψ1〉, |ψ2〉, . . . , |ψn〉, with (respective) probabilities p1, p2, . . . , pn, and
then give it to us without telling us which state |ψk〉 it’s actually in. Nevertheless,
in either case we are able to make statistical predictions about the outcomes
of measurements performed on the system using a more general description of
quantum states.

We have already mentioned that the existence of entangled states leads to an
obvious question: if we cannot attribute a state vectors to an individual quantum
system, then how should we describe its quantum state? In this chapter we will
introduce an alternate description of quantum states that can be applied both to
a composite system and to any of its subsystems. Our new mathematical tool
is called a density operator.152 We will start with the density operator as a
description of the mixture of quantum states, and will then discuss the partial
trace, which is a unique operation that takes care of the reduction of a density
operator of a composite system to density operators of its components.

8.1 Definitions

If you are an impatient, more mathematically minded person, who feels most
comfortable when things are properly defined right from the beginning, here is
your definition. Recall that a Hermitian matrix M is said to be non-negative, or
positive semi-definite, if 〈v|M |v〉 ⩾ 0 for any vector |v〉, or if all of its eigenval-
ues are non-negative, or if153 there exists another matrix A such that M = A†A.

A density operator ρ on a Hilbert space H is a non-negative Hermitian
operator with trace equal to one:

• Hermitian: ρ† = ρ
• Non-negative: 〈v|ρ|v〉 ⩾ 0 for all |v〉
• Trace one: tr ρ = 1.

It follows that any density operator ρ can always be diagonalised, and that

152If we choose a particular basis, operators become matrices. Throughout this book we use both
terms (density operators and density matrices) pretty interchangeably.

153(This is called a Cholesky factorization.)
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the eigenvalues154 are all real, non-negative, and sum to 1. Moreover, given two
density operators ρ1 and ρ2, we can always construct another density operator as
a convex sum of the two:

ρ = p1ρ1 + p2ρ2

where p1, p2 ⩾ 0 are such that p1 + p2 = 1. You should check that the resulting ρ
has all the defining properties of a density matrix, i.e. that it is Hermitian, non-
negative, and that its trace is 1. This means that density operators form a convex
set: a subset of a vector space is said to be convex if, for any two points in the
subset, the straight line segment joining them is also entirely contained inside
the subset.

An important example of a density operator is a rank-one projector:155 any
quantum state that can be described by the state vector |ψ〉 can be also described
by the density operator ρ = |ψ〉〈ψ|; such states are called pure states. Pure
states are the extremal points in the convex set of density operators: they cannot
be expressed as a non-trivial convex sum of other elements in the set. In contrast,
all other states, called mixed states, can be always written as the convex sum of
pure states:

∑
i pi|ψi〉〈ψi| for some pi ⩾ 0 with

∑
i pi = 1.

Convex spaces.

Convex spaces show up in many areas of mathematics: combinatorists
and discrete geometers are often interested in convex polytopes, and
the special case of simplices is even more fundamental, turning in up
in algebraic topology, higher algebraic geometry, and, more generally,
higher category theory. Closer to what we are studying, the notion of
entropy in (classical) information theory is somehow inherently convex
— see e.g. Baez, Fritz, and Leinster’s “A Characterization of Entropy in
Terms of Information Loss”, arXiv:1106.1791.

The specific type of convex polytope that we are interested in turns out
to be a convex hull, and these are also found all throughout mathematics.

Now that we have settled the mathematical essentials, we will turn to physical
applications.

8.2 Statistical mixtures

Let us start with probability distributions156 over state vectors. Suppose Alice
prepares a quantum system and hands it over to Bob, who subsequently measures
observable M . If Alice’s preparation is described by a state vector |ψ〉, then,

154Note that these properties are exactly saying that we can interpret the eigenvalues as probabilities.
155Recall that the rank of a matrix is equal to the number of its non-zero eigenvalues, or (equiva-

lently) the dimension of its image.
156For brevity, we often simply say “probability distribution” to mean “a finite set of non-negative

real numbers pk such that
∑

k
pk = 1”.
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8.2 Statistical mixtures

quantum theory declares, the average value of any observable M is given by
〈ψ|M |ψ〉, which we have previously also written as157

〈M〉 = 〈ψ|M |ψ〉 = trM |ψ〉〈ψ|.

This way of expressing the average value makes a clear separation between
the contributions from the state preparation and from the choice of the mea-
surement. We have two operators inside the trace: |ψ〉〈ψ| describes the state
preparation, and M describes the measurement.

Now, suppose Alice prepares the quantum system in one of the (normalised,
but not necessarily orthogonal) states |ψ1〉, . . . , |ψm〉, choosing state |ψi〉 with
probability pi. She then hands the system to Bob without telling him which state
she chose. We call this situation a (statistical) mixture of the states |ψi〉, or a
mixed state for short.158

It is important to note that a mixture of states is very different from a
superposition of states: a superposition always yields a definite state vec-
tor, whereas a mixture does not, and so must be described by a density
operator.

Let’s be extra clear about this distinction between superpositions and statis-
tical mixtures. If Alice had prepared the system in the superposition

∑
i pi|ψi〉,

then both her and Bob would describe it by the state vector
∑

i pi|ψi〉. If she
instead follows the above random procedure, then she knows that it is simply
described by the state vector |ψi〉, but the best “description”159 available to Bob
is
∑

i pi|ψi〉〈ψi|, as we will now justify.
What Bob does know is the ensemble of states |ψ1〉, . . . , |ψm〉 as well as the

corresponding probability distribution p1, . . . , pm. Using this, he can calculate
〈M〉 as follows:

〈M〉 =
∑

i

pi (trM |ψi〉〈ψi|)

= trM

(∑
i

pi|ψi〉〈ψi|

)
= trMρ

where we have simply defined ρ =
∑

i pi|ψi〉〈ψi|. As before, we have two opera-
tors under the trace: ρ =

∑
i pi|ψi〉〈ψi|, which pertains to the state preparation,

157If M is one of the orthogonal projectors Pk describing the measurement, then the average 〈Pk〉
is the probability of the outcome k associated with this projector.

158A pure state can be seen as a special case of a mixed state, where all but one the probabilities
pi equal zero. So by talking about mixed states, we’re still able to talk about everything that we’ve
already seen up to this point.

159This description is not one that we have seen before — it’s not a linear combination of kets, but
instead a linear combination of projectors!
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and M , which describes the measurement. We shall call the operator

ρ =
∑

i

pi|ψi〉〈ψi|

the associated density operator, since it has all the defining properties of a den-
sity operator (it is a convex sum of rank-one projectors). It depends on the con-
stituent states |ψi〉 and their probabilities, and it describes our ignorance about
the state preparation. Conversely, given a density operator ρ, then we call a
set {(pi, |ψi〉〈ψi|)} a convex decomposition if it expresses ρ as a convex sum of
rank-one projectors, i.e. if ρ =

∑
i pi|ψi〉〈ψi|.

Once we have ρ we can make statistical predictions: we have just shown that,
for any observable M , its expected value is given by

〈M〉 = trMρ.

So the exact composition of the mixture does not enter this formula: for com-
puting the statistics associated with any observable property of a system, all that
matters is the density operator itself, but not its decomposition into the mixture
of states. This is important because any given density operator, with the remark-
able exception of a pure state, can arise from many different mixtures of pure
states. Consider, for example, the following three scenarios:

1. Alice flips a fair coin. If the result is heads then she prepares the qubit in
the state |0〉, and if the result is tails then she prepares the qubit in the state
|1〉. She gives Bob the qubit without revealing the result of the coin-flip.
Bob’s knowledge of the qubit is described by the density matrix

1
2
|0〉〈0|+ 1

2
|1〉〈1| =

[ 1
2 0
0 1

2

]
.

2. Alice flips a fair coin. If the result is heads then she prepares the qubit in
the state |+〉 := 1√

2 (|0〉+ |1〉), and if the result is tails then she prepares the
qubit in the state |−〉 := 1√

2 (|0〉 − |1〉). Bob’s knowledge of the qubit is now
described by the density matrix

1
2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2

[ 1
2

1
21

2
1
2

]
+ 1

2

[ 1
2 − 1

2
− 1

2
1
2

]
=
[ 1

2 0
0 1

2

]
.

3. Alice flips a fair coin, having already picked an arbitrary pair of orthonor-
mal states |u1〉 and |u2〉. If the result is heads then she prepares the qubit
in the state |u1〉, and if the result is tails then she prepares the qubit in the
state |u2〉. Since any two orthonormal states of a qubit form a complete
basis, the mixture 1

2 |u1〉〈u1|+ 1
2 |u2〉〈u2| gives 1

2 1.

As you can see, these three different preparations yield precisely the same
density matrix and are thus statistically indistinguishable. In general, two differ-
ent mixtures can be distinguished (in a statistical, experimental sense) if and only
if they yield different density matrices. In fact, the optimal way of distinguishing
quantum states with different density operators is still an active area of research.

201



8.3 Instructive examples

8.3 Instructive examples

The density matrix corresponding to the state vector |ψ〉 is the rank-one
projector |ψ〉〈ψ|.

This correspondence is well defined: each |ψ〉 gives rise to a distinct density
matrix, and the fact that we ignore global phases for state vectors doesn’t intro-
duce any ambiguity for the density matrices, since |ψ〉 and eiφ|ψ〉 give the same
density matrix.

Let’s consider two examples, seeing again how superpositions differ from sta-
tistical mixtures.

1. If Alice prepares a qubit in the superposition state |ψ〉 = α|0〉 + β|1〉 then
the corresponding density matrix is the projector

|ψ〉〈ψ| =
[
|α|2 αβ?

α?β |β|2
]
.

2. You are given a qubit and you are told that it was prepared either in state
|0〉 with probability |α|2 or in state |1〉 with probability |β|2. In this case all
you can say is that your qubit is in a mixed state described by the density
matrix

|α|2|0〉〈0|+ |β|2|1〉〈1| =
[
|α|2 0

0 |β|2
]
.

The density matrix corresponding to a statistical mixture of states
|ψ1〉, . . . , |ψn〉 with probability distribution p1, . . . , pn is the convex com-
bination

∑
i pi|ψi〉〈ψi|. If the constituent states are orthogonal, then the

density matrix is diagonal.

Suppose you want to distinguish between preparations described by the den-
sity matrices in the above two examples. Assume that you are given sufficiently
many qubits, all identically prepared, i.e. either all described by the density ma-
trix

[
|α|2 αβ?

α?β |β|2

]
, or all described by the density matrix

[
|α|2 0

0 |β|2

]
. Which of the

two measurements would you choose: the measurement in the standard basis
{|0〉, |1〉}, or the measurement in the basis {|ψ〉, |ψ⊥〉} where |ψ⊥〉 is orthonor-
mal to |ψ〉?160

In general, the diagonal entries of a density matrix describe the probability
distributions on the set of basis vectors. They must add up to one, which is
why the trace of any density matrix is one. The off-diagonal elements, often
called coherences, signal departure from the classical probability distribution
and quantify the degree to which a quantum system can witness interference

160In fact, one of these two measurements is completely useless. Exercise. Which one, and why?
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(we will discuss this in detail later on). The process in which off-diagonal entries
go to zero is called decoherence.[

|α|2 αβ?

α?β |β|2
]
7−→

[
|α|2 ε
ε? |β|2

]
7−→

[
|α|2 0

0 |β|2
]

For ε = αβ? we have a pure quantum state (“full interference capability”) and
for ε = 0 we have a classical probability distribution over the standard basis (“no
interference capability”).

3. Suppose that your qubit was prepared either in state α|0〉+ β|1〉 or in state
α|0〉−β|1〉, with equal probability. This means that your qubit is in a mixed
state described by the density matrix

1
2

[
|α|2 αβ?

α?β |β|2
]

+ 1
2

[
|α|2 −αβ?

−α?β |β|2
]

=
[
|α|2 0

0 |β|2
]
.

There is no way to tell the difference between the equally weighted mix-
ture of α|0〉 ± β|1〉 and a mixture of |0〉 and |1〉 with (respective) proba-
bilities |α|2 and |β|2.

4. For any density matrix ρ, the most natural mixture that yields ρ is its spec-
tral decomposition: ρ =

∑
i pi|ui〉〈ui|, with eigenvectors |ui〉 and eigen-

values pi.

5. If the states |u1〉, . . . , |un〉 form an orthonormal basis, and each occurs with
equal probability 1/n, then the resulting density matrix is proportional to
the identity:

1
n

n∑
i=1
|ψi〉〈ψi| =

1
n

1.

This is a maximally mixed state. For qubits, any pair of orthogonal states
taken with equal probabilities gives the maximally mixed state 1

2 1.

A state is said to be maximally mixed if the outcomes of any measure-
ment are completely random.

It is often convenient to write density operators in terms of projectors on
states which are not normalised, incorporating the probabilities into the length
of the state vector:

ρ =
∑

i

|ψ̃i〉〈ψ̃i|

where |ψ̃i〉 = √pi|ψi〉, i.e. pi = 〈ψ̃i|ψ̃i〉. This form is more compact, but you have
to remember that the state vectors are not normalised. We tend to mark such
states with the tilde, e.g. |ψ̃〉, but you may have your own way to remember.
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8.4 The Bloch ball

We have already talked in some depth about the Bloch sphere, but now that
we are considering density operators (which are strictly more general than state
vectors), we are actually interested in the Bloch ball,161 i.e. not just the sphere of
vectors of magnitude 1, but instead the ball of vectors of magnitude less than or
equal to 1.

An arbitrary (2 × 2) Hermitian matrix has four real parameters and can be
expanded in the basis {1, σx, σy, σz} consisting of the identity and the three Pauli
matrices. Since the Pauli matrices are traceless (i.e. their trace is equal to 0), the
coefficient of 1 in the expansion of a density matrix ρ must be 1

2 , in order to have
tr ρ = 1. Thus ρ may be expressed as

ρ = 1
2

(1 + ~s · ~σ)

= 1
2

[
1 + sz sx − isy

sx + isy 1− sz

]
.

where ~s = (sx, sy, sz) and ~σ = (σx, σy, σz). The vector ~s is called the Bloch
vector for the density operator ρ. Any real Bloch vector ~s defines a Hermitian
operator ρ with tr ρ = 1, but in order for ρ to be a density operator it must also
be non-negative. Which Bloch vectors yield legitimate density operators? That
is, what does the non-negative condition on ρ translate to in terms of the Bloch
vector ~s?

To answer this, let us compute the eigenvalues of ρ. The trace of a matrix is
equal to the sum of its eigenvalues, and the determinant is equal to the product
of its eigenvalues. We know that tr ρ = 1, and we can calculate det ρ from the
matrix form above:

det ρ = 1
4

(1− s2)

= 1
2

(1 + s)1
2

(1− s)

where s = |~s| =
√
|sx|2 + |sy|2 + |sz|2. It follows that the two eigenvalues of ρ

are 1
2 (1 ± s). For ρ to be non-negative, its eigenvalues have to be non-negative,

and so s (the length of the Bloch vector) cannot exceed 1.
We can now visualise the convex set of (2× 2) density matrices as a unit ball

in three-dimensional Euclidean space: the extremal points, which represent pure
states, are the points on the boundary (~s such that s = 1), i.e. the surface of the
ball (the Bloch sphere, which we have already seen!); the maximally mixed state
1/2 corresponds to s = 0, i.e. the centre of the ball. In general, the length of the
Bloch vector s can be thought of as the “purity” of a state.

One might hope that there is an equally simple visualisation of the density
operators in higher dimensions. Unfortunately, there is not: things become much
more complicated, very quickly.

161Physicists often still refer to the Bloch ball as the Bloch sphere, even though it really is a ball now,
not a sphere.
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Bloch ball for qutrits.

Qubits are 2-dimensional and give rise to the Bloch ball, which is a 3-
dimensional object. In general, n-dimensional quantum systems give rise
to (n2 − 1)-dimensional state spaces, often denoted Qn; for n = 3, where
we study qutrits, we would need to study an 8-dimensional object Q3.

It turns out, quite surprisingly, that there exists a 3-dimensional object
that has many (but not all) of the properties that we would want from
Q3. For example, the rank-1 pure states form a connected set on the sur-
face, which lies a maximum distance of

√
2 from the maximally mixed

state 1
3 1; the other points on the surface correspond to rank-1 and rank-2

operators; the points strictly inside correspond to rank-3 (i.e. full rank)
operators. However, since it is only 3-dimensional, it can never satisfy
all the properties that we would like, since Q3 has to be 8-dimensional.
Nevertheless, the construction is both interesting and useful (and very re-
cent!) — see C Eltschka, M Huber, S Morelli, and J Siewert, “The shape of
higher-dimensional state space: Bloch-ball analog for a qutrit”, Quantum
5 (2021), DOI: 10.22331/q-2021-06-29-485.

One has to be careful when trying to use the Bloch ball to talk about multiple
qubits, precisely for the reason that “most” states are not separable states, but
instead have some amount of entanglement. If we have n qubits, then we can
describe the corresponding product state in terms of n vectors in the Bloch ball,
but this method only lets us describe product states of the n qubits — we saw in
Section 5.5 that, as n grows larger, “most” states are not separable!

For example, say that we have a system with two qubits, and we wish to un-
derstand how they move around the Bloch sphere under some unitary evolution.
If our qubits are initially in state |a〉|b〉, then evolve to the state U |a〉|b〉. Sim-
ple! But now say that, before applying our unitary U , we first rotated the Bloch
ball so that our qubits were in some other state |a′〉|b′〉, and then applied our
unitary U to this rotated state. A natural question to ask is if there exists some
rotation that takes the first result U |a〉|b〉 to the second result U |a′〉|b′〉. In other
words, if we denote our rotation by R, then does there exist a rotation S such
that U ◦R = S ◦ U?

The answer is most definitely no, as shown by a reasonably simple exam-
ple: consider the controlled-NOT gate acting on two qubits initially in some state
|0〉|ψ〉, and where the rotation R takes |0〉|ψ〉 to |ψ′〉|0〉. Then (U ◦ R)|a〉|b〉 =
|ψ′〉|ψ′〉, and U |a〉|b〉 = |0〉|ψ〉. But we cannot transform the latter into the former
by a simple rotation of the sphere, since the latter has two distinct Bloch vectors,
whereas the former has a single repeated one, and rotations never “collapse” two
distinct vectors into one. The key point here is that the angles between the Bloch
vectors can change upon applying unitary operations, and the amount by which
they change can depend on the Bloch vectors themselves, whereas rotations keep
these relative angles constant.
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8.5 Subsystems of entangled systems

8.5 Subsystems of entangled systems

Earlier, we claimed that one of the most important features of the density op-
erator formalism is its ability to describe the quantum state of a subsystem of a
composite system. Let us now show you how this works.

Given a quantum state of the composite systemAB described by some density
operator ρAB, we obtain reduced density operators ρA and ρB of the subsystems
A and B (respectively) by the partial trace:

ρAB 7−→ ρA = trB ρAB︸ ︷︷ ︸
partial trace over B

ρAB 7−→ ρB = trA ρAB︸ ︷︷ ︸
partial trace over A

We will revisit the notion of partial trace quite a few times, but for now we simply
define the partial trace over B (or A) first on a tensor product of two operators
A⊗B as

trB(A⊗B) = A(trB)
trA(A⊗B) = (trA)B,

and then extend to any operator on HA ⊗HB by linearity.
Here is a simple example. Suppose a composite system AB is in a pure entan-

gled state |ψAB〉. We can always write this as

|ψAB〉 =
∑

i

ci|ai〉 ⊗ |bi〉,

where |ai〉 and |bj〉 are two orthonormal bases (e.g. the Schmidt bases, from
Exercise 5.14.13), and where

∑
i |ci|2 = 1 (due to the normalisation). The

corresponding density operator of the composite system is the projector ρAB =
|ψAB〉〈ψAB|, which we can write as

ρAB = |ψAB〉〈ψAB| =
∑
i,j

cic
?
j |ai〉〈aj | ⊗ |bi〉〈bj |

Let us compute the reduced density operator ρA by taking the partial trace
over B:

ρA = trB ρAB

= trB |ψAB〉〈ψAB|

= trB
∑
i,j

cic
?
j |ai〉〈aj | ⊗ |bi〉〈bj |

=
∑
i,j

cic
?
j |ai〉〈aj |(tr |bi〉〈bj |)

=
∑
i,j

cic
?
j |ai〉〈aj | 〈bi|bj〉︸ ︷︷ ︸

δij

=
∑

i

|ci|2|ai〉〈ai|.
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So, in the |ai〉 basis, the reduced density matrix ρA is diagonal, with entries
pi = |ci|2. Similarly, if we take the partial trace over A, then we get ρB =∑

i |ci|2|bi〉〈bi|.
In particular, if dimHA = dimHB = d, then the maximally mixed state

|ψAB〉 = 1√
d

d∑
i

|ai〉|bi〉,

in the (d×d)-dimensional Hilbert spaceHA⊗HB is such that the reduced density
operators ρA and ρB are also the maximally mixed states of their respective sub-
systems: ρA = ρB = 1

d 1. It follows that the quantum states of individual qubits
in any of the Bell states are maximally mixed: their density matrix is 1

2 1.
A bipartite state such as

1√
2

(|00〉+ |11〉)

guarantees perfect correlations when each qubit is measured in the standard basis:
the two outcomes are “0 and 0” or “1 and 1” (which are equally likely), and we
will never observe e.g. “0 and 1”, but the outcome of either single-qubit subsystem
is completely random.

8.6 Mixtures and subsystems

So far we have used density operators to describe two distinct situations: the
statistical properties of mixtures of states, and the statistical properties of sub-
systems of composite systems. In order to see the relationship between the two,
consider a joint state of a bipartite system AB, written in a product basis of
HA ⊗HB as

|ψAB〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

j

|ψ̃j〉|bj〉 =
∑

j

√
pj |ψj〉|bj〉

where |ψ̃j〉 =
∑

i cij |ai〉, which we can also write as √pj |ψj〉 where the |ψj〉 are
the normalised versions of the |ψ̃j〉, and pj = 〈ψ̃j |ψ̃j〉.

Then the partial trace over B gives the reduced density operator of subsystem
A:

ρA = trB

∑
i,j

|ψ̃i〉〈ψ̃j | ⊗ |bi〉〈bj |


=
∑
i,j

|ψ̃i〉〈ψ̃j |(tr |bi〉〈bj |)

=
∑
i,j

|ψ̃i〉〈ψ̃j |〈bj |bi〉

=
∑

i

|ψ̃i〉〈ψ̃i| =
∑

i

pi|ψi〉〈ψi|.

207



8.6 Mixtures and subsystems

Now let us see how ρA can be understood in terms of mixtures. Imagine we
place subsystemsA and B in two separate labs, run by Alice and Bob, respectively.
Say Bob measures the B part in the |bj〉 basis and obtains result k, which happens
with probability pk. In doing so, he inevitably prepares subsystem A in the state
|ψk〉:

∑
i=1

√
pj |ψi〉|bi〉

outcome k7−→ |ψk〉|bk〉.

Bob does not communicate the outcome of his measurement. Thus, from Al-
ice’s perspective, Bob prepares a mixture of |ψ1〉, . . . , |ψm〉, with probabilities
p1, . . . , pm, which means that Alice, who knows the joint state but not the out-
comes of Bob’s measurement, may associate density matrix ρA =

∑
i pi|ψi〉〈ψi|

with her subsystem A. This is the same ρA that we obtained before by taking the
partial trace.

But suppose Bob chooses to measure his subsystem in some other basis. Will it
have any impact on Alice’s statistical predictions? Measurement in the new basis
will result in a different mixture, but Alice’s density operator will not change.

Say Bob chooses some basis |di〉 for his measurement. Any two orthonormal
bases are connected by some unitary transformation, and so we can write |bi〉 =
U |di〉 for some162 unitary U . The joint state can now be expressed as

|ψAB〉 =
∑

i

|ψ̃i〉|bi〉

=
∑

i

|ψ̃i〉

∑
j

Uij |dj〉


=
∑

j

(∑
i

Uij |ψ̃i〉

)
︸ ︷︷ ︸

|φ̃j〉

|dj〉

=
∑

j

|φ̃j〉|dj〉.

If Bob measures in the |di〉 basis then he generates a new mixture of states
|φ1〉, . . . |φm〉, which are the normalised versions of |φ̃1〉, . . . |φ̃m〉, with each |φk〉
occurring with probability pk = 〈φ̃k|φ̃k〉. But this new mixture has exactly the

162In terms of components, |bi〉 =
∑

j
Uij |dj〉
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same density operator as the previous one:∑
j

|φ̃j〉〈φ̃j | =
∑
i,j,l

Uij |ψ̃i〉〈ψ̃l|U?
lj

=
∑
i,l

∑
j

UijU
?
lj


︸ ︷︷ ︸

δil

|ψ̃i〉〈ψ̃l|

=
∑

i

|ψ̃j〉〈ψ̃j |

where we use the fact that the Uij are the entries of a unitary matrix, and so∑
k UikU

?
jk = δij . But this is exactly ρA! So does it really matter whether Bob

actually performs the measurement or not?
No — it does not.
After all, Alice and Bob may be many many miles away from each other, and

if any of Bob’s actions were to result in something that is physically detectable at
Alice’s lab, then this would amount to instantaneous communication between the
two of them.

From the operational point of view it does not really matter whether the den-
sity operator represents our ignorance of the actual state (mixtures) or provides
the only description we can have after discarding one part of an entangled state
(partial trace).163 In the former case, the system is in some definite pure state but
we do not know which. In contrast, when the density operator arises from tracing
out irrelevant, or unavailable, degrees of freedom, the individual system cannot
be thought to be in some definite state of which we are ignorant. Philosophy
aside, the fact that the two interpretations give exactly the same predictions is
useful: switching back and forth between the two pictures often offers additional
insights and may even simplify lengthy calculations.

8.7 Partial trace, revisited

You can calculate the trace of a matrix by summing its diagonal entries. Can you
do something similar to calculate the partial trace of a density matrix? Suppose
someone writes down for you a density matrix of two qubits in the standard
basis, {|00〉, |01〉, |10〉, |11〉}, and asks you to find the reduced density matrices of
the individual qubits. The tensor product structure of this (4 × 4) matrix means
that it is has a block form:

ρAB =
[
P Q
R S

]
where P,Q,R, S are (2× 2) sized sub-matrices.

163The two interpretations of density operators have filled volumes of academic journals. The terms
proper mixtures and improper mixtures are used, mostly by philosophers, to describe the statistical
mixture and the partial trace approach, respectively.
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The two partial traces can then be evaluated as164

ρA = trB ρAB =
[

trP trQ
trR trS

]
ρB = trA ρAB = P + S.

In general, for any matrix ρ in HA ⊗HB that is written in the tensor product
basis, the partial trace over A is the sum of the diagonal block matrices, and the
partial trace over B is the matrix in which the block sub-matrices are replaced by
their traces — see Figure 8.1.

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·


trA ρ


· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·

· ·
· ·


trB ρ

Figure 8.1: Visualising the two partial traces of a matrix written in the tensor
product basis.

To better understand the partial trace, it helps to give a more abstract defini-
tion. It turns out that the partial trace over B can be defined as the unique map
ρAB 7→ ρA such that165

tr[XρA] = tr[(X ⊗ 1)ρAB] (⊛)

holds for any observable X acting on A, where 1 is the identity operator acting
on B. This condition ensures the consistency of statistical predictions: any ob-
servable X on A can be viewed as an observable X ⊗ 1 on the composite system
AB; when constructing ρA, we had better make sure that for any observable X
the average value of X in the state ρA is the same as the average value of X ⊗ 1
in the state ρAB. This is exactly what the condition in (⊛) guarantees.

To show that our more ad-hoc definition of the partial trace agrees with this
slightly more abstract one, consider again some state |ψAB〉 written in the form

|ψAB〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉

=
∑

j

|ψ̃j〉|bj〉 =
∑

j

√
pj |ψj〉|bj〉.

Now assume that Alice measures some observable X on her part of the system.
Such an observable can be thought of as X ⊗ 1, acting on the entire system.

164Take any of the Bell states, write its (4 × 4)-density matrix explicitly, and then trace over each
qubit. In each case you should get the maximally mixed state.

165One can repeat the same argument for the partial trace over A: it is the unique map ρAB 7→ ρB
such that ρB satisfies tr[Y ρB] = tr[(1 ⊗ Y )ρAB] for any observable Y on B.
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The expected value of this observable in the state |ψAB〉 is, by definition, tr(X ⊗
1)|ψAB〉〈ψAB|, and

tr[(X ⊗ 1)ρAB] = tr

(X ⊗ 1)

∑
i,j

|ψ̃i〉〈ψ̃j | ⊗ |bi〉〈bj |


=
∑
i,j

[
tr
(
X|ψ̃i〉〈ψ̃j |

)]
[tr (|bi〉〈bj |)]︸ ︷︷ ︸

δij

=
∑

i

tr
[
X|ψ̃i〉〈ψ̃i|

]

= tr

X
∑

i

pi|ψi〉〈ψi|︸ ︷︷ ︸
ρA=trB ρAB


= tr[XρA]

as required.
We can also quickly prove why the partial trace is the unique map satisfying

the condition (⊛). Suppose that we had some arbitrary map T satisfying this
condition, i.e. such that

tr[XT (ρAB)] = tr[(X ⊗ 1)ρAB]

for all density matrices ρAB and for all observables X acting on A. Now, take
some orthonormal (with respect to the Hilbert–Schmidt inner product (A|B) =
1
2 trA†B) basis {Mi} of the space of Hermitian matrices. Since the Mi are Her-
mitian, the inner product (Mi|T (ρAB)) is just166 tr[MiT (ρAB)].

So when we expand T (ρAB) in this basis167 we get

T (ρAB) =
∑

i

(Mi|T (ρAB))Mi

=
∑

i

tr[MiT (ρAB)]Mi.

But now we can substitute in the condition that T satisfies, giving

T (ρAB) =
∑

i

tr[(Mi ⊗ 1)ρAB]Mi.

And we’re done! Indeed, if we had started with some other such map T ′ then we
would have arrived at the same expression, which is independent of our choice
of T or T ′, whence T = T ′.

166We ignore the normalisation factor of 1
2 in the Hilbert–Schmidt inner product here.

167Expanding an operator in a basis might seem confusing at first, but this is really just the fact
that (avoiding bra-ket notation for clarity) any vector v in an inner product space with orthonormal
basis {ei} can be expanded as v =

∑
i
〈ei, v〉ei, just applied to the specific case of a vector space of

matrices, with the Hilbert–Schmidt inner product.
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8.8 Remarks and exercises

8.8.1 Some density operator calculations

Consider two qubits in the state

|ψ〉 = 1√
2

(
|0〉 ⊗

(√
2
3
|0〉 −

√
1
3
|1〉

)
+ |1〉 ⊗

(√
2
3
|0〉+

√
1
3
|1〉

))
.

1. What is the density operator ρ of the two qubits corresponding to the state
|ψ〉? Write it in Dirac notation, and then explicitly as a matrix in the com-
putational basis {|00〉, |01〉, |10〉, |11〉}.

2. Find the reduced density operators ρ1 and ρ2 of the first and second qubit,
respectively. Again, write them in both Dirac notation as well as explicitly
as a matrix in the computational basis.

8.8.2 Purification of mixed states

Given a mixed state ρ, a purification of ρ is a pure state |ψ〉〈ψ| of some potentially
larger system such that ρ is equal to a partial trace of |ψ〉〈ψ|.

1. Show that an arbitrary mixed state ρ always has a purification.

2. Show that purification is unique up to unitary equivalence.

3. Let |ψ1〉 and |ψ2〉 in HA ⊗ HB be two pure states such that trB |ψ1〉〈ψ1| =
trB |ψ2〉〈ψ2|. Show that |ψ1〉 = 1 ⊗ U |ψ2〉 for some unitary operator U on
HB.

Well done — you have just proved the Schrödinger–HJW theorem!

8.8.3 Pure partial trace

Two qubits are in the state described by the density operator ρ = ρA ⊗ ρB. What
is the partial trace of ρ over each qubit?

8.8.4 Maximally Bell

What is the density matrix corresponding to two qubits prepared in the mixture
of the Bell state Φ+ = 1√

2 (|00〉 + |11〉) and the maximally mixed state168, both
with equal probability 1

2 ?

8.8.5 Spectral decompositions and common eigenbases

This section is not yet finished.

168The maximally mixed state of two qubits is described by a (4 × 4) matrix in HA ⊗ HB.
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9 Quantum channels

About quantum channels, which are to density operators what
unitaries are to state vectors: mathematical models for physi-
cally realisable transformations. Also about many eponymous
constructions, such as the Stinespring and the Kraus represen-
tations, the Jamiokowski isomorphism, and the Choi matrix.

Quantum evolution of any isolated system is unitary, but its constituent
parts may evolve in a more complicated way.

We have already discussed how entanglement forces us to describe quantum
states of open quantum systems (i.e. those which are only part of some larger
system) in terms of density operators. In this chapter we will describe how open
systems evolve. The question we are asking here is: what are the most general
physically admissible transformations of density operators? That is, if state vec-
tors evolve according to unitary operations, and we generalise state vectors to
density operators, then what is the “good” corresponding generalisation of uni-
tary operations?

9.1 Everything is (secretly) unitary

At the fundamental level — and this should be your quantum mantra169 — there
is only unitary evolution, and if there is any other evolution then it has to be
derived from a unitary evolution. From this perspective, any non-unitary evolu-
tion of an open system is induced by a unitary evolution of a larger system —
all evolutions become unitary when you make your system large enough! But
how? The short answer is: by adding (via tensoring) and removing (via partial
trace) physical systems. A typical combination of these operations is shown in
the following diagram:

fixed state |a⟩
U

discard

input ρ ρ′ output

Let’s explain what this diagram is really saying.
First, as always, we prepare our system of interest in an input state ρ.
Next we dilate the system by “adding” (or “taking into account”) an auxiliary

system170 which is large enough to include everything our system will interact

169. . . There is only unitary evolution. There is only unitary evolution. There is only unitary evolu-
tion. . . . . . and everything else is cheating.

170Depending on the context, the auxiliary system is either called the ancilla (usually when we can
control it) or the environment (usually when we cannot control it).
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9.1 Everything is (secretly) unitary

with, and also large enough to be in a pure state |a〉. Mathematically, we do this
by tensoring the input state ρ with |a〉〈a| to obtain |a〉〈a| ⊗ ρ (here we place the
auxiliary system first and our system of interest second). Importantly, we assume
that we have “added in” a large enough auxiliary system that the resulting dilated
system is closed, and thus undergoes unitary evolution, described by some U ,
resulting in the state U(|a〉〈a| ⊗ ρ)U†.

Finally, after all the (unitary) interactions have taken place, we trace out the
auxiliary system, turning the joint state U(|a〉〈a|⊗ρ)U† of the dilated system into
the final state of our system of interest: the output state ρ′.

We shall later show that the net effect of these three operations (adding,
unitary evolution, and tracing out) can be written, as long as the initial state |a〉
of the auxiliary system is not correlated with the input state ρ, in a nice compact
way:

ρ 7−→ ρ′ =
∑

i

EiρE
†
i

where the Ei are some operators that satisfy
∑

i E
†
iEi = 1. Such a linear map

is called a completely positive trace-preserving map, or, in the parlance of
quantum information science, a quantum channel.

We will elaborate on the mathematics behind quantum channels shortly, but
for now let us only check the essential properties, i.e. that this map preserves
both trace and positivity (as its name suggests).

• Trace preserving. Since the trace is linear, invariant under cyclic permuta-
tions of operators, and we ask that

∑
i E

†
iEi = 1, we see that

tr

(∑
k

EkρE
†
k

)
= tr

(∑
k

E†
kEkρ

)
= tr ρ.

• Positivity preserving. Since ρ is a positive171 (semi-definite) operator, so too
is
√
ρ, and we thus see that∑

k

EkρE
†
k =

∑
k

(Ek
√
ρ)(√ρE†

k).

These conditions are certainly necessary if we want to map density operators
into legal density operators, but we shall see in a moment that they are not
sufficient: quantum channels are not just positive maps, but instead completely
positive maps.

We will discuss the special properties of completely positive trace preserv-
ing maps, describe the most common examples, and, last but not least, specify
when the action of quantum channels can be reversed, or corrected, so that we
can recover the original input state. This will set the stage for our subsequent
discussion of quantum error correction.

171Recall that an operator is positive if and only if it can be written in the form XX† for some X
(here X = Ek

√
ρ). Also, the sum of positive operators is again a positive operator.
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9.2 Random unitaries

9.2 Random unitaries

As a first step toward understanding the quantum description of an evolving
open system, consider a “two-qubit universe” in which we observe only one of
the qubits. Let’s revisit the controlled-NOT gate, in which two qubits undergo the
unitary transformation

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X =
[
1 0
0 X

]
but we’re going to focus on the transformation of the target qubit alone. We
know that it depends on the state of the control qubit:

• if the input state of the control qubit is |0〉, the target qubit evolves (unitar-
ily) according to the identity operator 1;

• if the input state of the control qubit is |1〉, the target qubit evolves (unitar-
ily) according to the bit-flip operator X;

• . . . but for input states of the control that are superpositions of |0〉 and |1〉
the evolution of the target qubit is not unitary.

To justify this last point, note that, if the control qubit is in the state α0|0〉 +
α1|1〉 and the target qubit is in some state |ψ〉, then the output state can be
written as

α0|0〉 ⊗ 1|ψ〉+ α1|1〉 ⊗X|ψ〉

which shows that the control and the target become entangled. The target qubit
alone ends up in the statistical mixture of states |ψ〉 with probability |α0|2 and
X|ψ〉 with probability |α1|2.

We can verify this by expressing the above output state of the two qubits as
the density matrix

|α0|2|0〉〈0| ⊗ 1|ψ〉〈ψ|1 + |α1|2|1〉〈1| ⊗X|ψ〉〈ψ|X
+α0α

?
1|0〉〈1| ⊗ 1|ψ〉〈ψ|X + α?

0α1|1〉〈0| ⊗X|ψ〉〈ψ|1

and then tracing over the control qubit, which gives172

|α0|21|ψ〉〈ψ|1 + |α1|2X|ψ〉〈ψ|X.

Then we can say that the input state of the target qubit evolves either according
to the identity operator (with probability |α0|2) or according to the X operator
(with probability |α1|2).

This argument works even if the target qubit is initially in a mixed state:
we are dealing with a linear transformation, and any mixed state can be ex-
pressed as a statistical ensemble of pure states (via the convex decomposition
ρ =

∑
i pi|ψi〉〈ψi| of a density matrix). So, in general, we can express the evolu-

tion of the target qubit173 as

ρ 7−→ ρ′ = |α0|21ρ1 + |α1|2XρX
172Recall that, for the basis states, tr |i〉〈j| = 〈i|j〉 = δij .
173We can also focus on the evolution of the control qubit: see Exercise 9.12.5. In fact, we can

choose any subset of qubits for our inputs and outputs. For example, our input could be the control
qubit, and the output could be both the control and the target qubits.
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9.2 Random unitaries

where ρ and ρ′ are the input and the output states, respectively. We may think
about this input-output relation as a mathematical representation of a quantum
communication channel in which an input qubit is bit-flipped (via the operator
X) with some prescribed probability |α1|2. But we may also take a more “global”
view and see the action of the channel as arising from a unitary evolution on a
larger (dilated) system, here composed of two qubits (namely the target and the
control).

Our discussion can easily be extended beyond two qubits to cover any condi-
tional dynamics of the type

U =
∑

i

|i〉〈i| ⊗ Ui =


U1 0 0 . . .
0 U2 0 . . .
0 0 U3 . . .
...

...
...

. . .


where the vectors |i〉 form an orthonormal basis in the Hilbert space associated
with a control system, and the Ui are the corresponding unitary operations per-
formed on a target system. If the control system is prepared in state

∑
i αi|i〉 and

the target in state |ψ〉, then the final state of the two systems is

∑
i

αi|i〉 ⊗ Ui|ψ〉

and, by the same sequence of arguments as before, we obtain the evolution of
the target system alone, and express it as

ρ 7−→ ρ′ =
∑
i=1
|αi|2UiρU

†
i .

That is, the state of the target system is modified by the unitary Ui chosen ran-
domly with probability pi = |αi|2.

The reason we are paying particular attention to random unitaries is that each
unitary is invertible, and, as such, offers a sliver of hope for being able to reverse
the overall action of the channel. Indeed, if we can learn, post factum, which
particular unitary operation Ui was chosen, then we can simply apply the inverse
U−1

i = U†
i of that unitary and recover the original state. For example, if we can

measure the control system in the |i〉 basis, then measuring the outcome to be k
tells us that we have to apply U†

k to the target to recover its input state.
However, if we do not have access to the control system, then there is very

little we can do: we cannot figure out which particular unitary was applied by
inspecting the target system alone. In this case the best we can do is to apply the
inverse of the most likely unitary, which will then recover the input state, but only
with some probability of success. In order to do better than that we have to look
at slightly different channels.

First though, a fundamental example of a random unitary evolution:
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9.3 Random isometries

A single-qubit Pauli channel applies one of the Pauli operators, X, Y
or Z, chosen randomly with some prescribed probabilities px, py and pz,
giving

ρ 7−→ p01ρ1 + pxXρX + pyY ρY + pzZρZ.

The Pauli operators represent quantum errors: bit-flip X, phase-flip Z,
and the composition of the two Y = iXZ.

9.3 Random isometries

In many applications, including quantum communication and quantum error cor-
rection, it is useful to encode a quantum state of one system into a quantum state
of a larger system. Such operations are described by isometries.174 You may
think about isometries as a generalisation of unitaries: like unitaries, they pre-
serve inner products; unlike unitaries, they are maps between spaces of different
dimensions.

Let H and H′ be Hilbert spaces such that dimH ⩽ dimH′. An isometry
is a linear map V : H → H′ such that V †V = 1H

Isometries preserve inner products, and therefore also the norm and
the metric induced by the norm.

An isometry V : H → H′ maps the whole Hilbert space H onto a subspace of
H′. As a consequence, the matrix representation of an isometry is a rectangular
matrix formed by selecting only a few of the columns from a unitary matrix. For
example, given a unitary U we can construct an isometry V as follows:

U =


U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

 7−→ V =


U12 U14

U22 U24

U32 U34

U42 U44


The fact that an isometry V preserves the inner products comes from the fact

that we require V †V = 1H; we do not require V V † = 1H′ . Indeed, if we required
both of these, then that would be equivalent to asking for V to be unitary. The
operator V V † is a projector operator acting onH′, which projects onto the image
of H under the isometry V , as we can see by expressing V in Dirac notation:

V =
∑

i

|bi〉〈ai|,

174The word isometric (like pretty much most of the fancy words you come across in this course)
comes from Greek, meaning “of the same measures”: isos means “equal”, and metron means “a
measure”, and so an “isometry” is a transformation that preserves distances.
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9.4 Evolution of open systems

where the |ai〉 form an orthonormal basis in H, and the |bi〉 are just orthonor-
mal (but not necessarily spanning) vectors in H′; in the special case where V is
unitary, the orthonormal vectors |bi〉 form an orthonormal basis in H′. Writing V
in this form, it is clear that V †V =

∑
i |ai〉〈ai| = 1, and that V V † =

∑
i |bi〉〈bi|

projects on the subspace spanned by |bi〉.
Although isometries are strictly more general than unitaries, an fundamen-

tally important fact is that isometries still represent physically admissible opera-
tions: they can be implemented by bringing two systems together (via tensoring)
and then applying unitary transformations to the composite system. That is, take
some system A in state |ψ〉, and bring in another system B in some fixed state
|b〉; applying some unitary U to the combined system AB then gives an isometry
from H = HA to H′ = HA ⊗HB, i.e. the result is a linear map V defined by

V : |ψ〉 7−→ |ψ〉|b〉 7−→ U(|ψ〉|b〉).

Any isometry is a quantum channel, since any quantum state described by the
state vector |ψ〉 (or by a density operator ρ) is transformed as

|ψ〉 7−→ V |ψ〉

(or as ρ 7→ V ρV †), and the normalisation condition is exactly the defining prop-
erty of isometries:

V †V = 1.

Isometries are incredibly important when it comes to error correction, and we
will see them again much more in Section ??.

9.4 Evolution of open systems

Needless to say, there is more to evolutions of open systems than mere random
isometries, and what follows is the most general scenario that we will come
across in our study of quantum information.

Consider two interacting systems, A and B, but this time do not assume that
their interacting dynamics admits a control-target interpretation. We will view A
as an auxiliary system, i.e. an ancilla, and focus on175 the evolution of system B.

Let us pick an orthonormal basis |i〉 of the Hilbert space HA associated with
the ancilla. Any unitary transformation of the combined system AB can then be
written as

U =
∑
i,j

|i〉〈j| ⊗Bij =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .

...
...

...
. . .


175For now, when we write tensor products, we will place the ancilla first and the system of interest

second: HA ⊗ HB. We do this to begin with simply because block matrices on tensor products are
easier to interpret when written in this particular order. Later on we will revert to the more common
convention in which the system of interest is placed first.
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9.4 Evolution of open systems

where the Bij are operators acting on the the Hilbert space HB associated with
system B. Note that the Bij do not need to be unitary, but, for the overall trans-
formation U to be unitary, they must satisfy∑

i

B†
ikBil = δkl1AB∑

i

BkiB
†
li = δkl1B

(?)

where 1AB and 1B are the identity operators on HA ⊗HB and HB, respectively.
These two conditions correspond to the requirement that both column and row
vectors must be orthonormal for a matrix to be unitary, except that here U is
a block matrix, and the entries Bij are complex matrices rather than complex
numbers, so some care must be taken with the order of multiplication. Again,
the evolution of the system B depends on both U and on the initial state of the
auxiliary system A.

Without any loss of generality, we may assume that system A is in a pure
state176, which can be chosen to be one of the basis states |i〉, say |k〉. In this
case, U acts by

U : |k〉 ⊗ |ψ〉 7−→
∑

i

|i〉 ⊗Bik|ψ〉 (‡)

for an arbitrary state |ψ〉 of B.
The resulting density operator for B is found by taking the density operator

of the output state of AB, which is∑
i,j

|i〉〈j| ⊗Bik|ψ〉〈ψ|B†
jk

and then tracing out A, obtaining177

trA

∑
i,j

|i〉〈j| ⊗Bik|ψ〉〈ψ|B†
jk

 =
∑
i,j

〈i|j〉 ·Bik|ψ〉〈ψ|B†
jk

=
∑

i

Bik|ψ〉〈ψ|B†
ik.

In general, for any input state ρ, we obtain the map

ρ 7−→ ρ′ =
∑

i

BikρB
†
ik

=:
∑

i

BiρB
†
i

where, in the last expression on the right-hand size, we have dropped index k
(remember, it was there only to remind us about the initial state of the ancilla).

176If A were initially in a mixed state, we could always regard A as a subsystem of some larger Ã
that is in an entangled pure state.

177Recall that 〈i|j〉 = δij .

219



9.4 Evolution of open systems

Since the overall transformation U is unitary, recall that the Bi satisfy
∑

i B
†
iBi =

1. This normalisation conditions guarantees that the trace is preserved.

In summary, we can think about a quantum evolution of subsystem B as
a sequence of the three distinct operations:

ρ 7−→ |k〉〈k| ⊗ ρ︸ ︷︷ ︸
add ancilla

7−→U(|k〉〈k| ⊗ ρ)U†︸ ︷︷ ︸
unitary evolution

7−→ trA
[
U(|k〉〈k| ⊗ ρ)U†]︸ ︷︷ ︸

discard ancilla

=
∑

i

BiρB
†
i = ρ′.

In words:

• First we pick up a system of interest which, in general, can be in a mixed
state ρ. It may be the case that this system is entangled with some other
degrees of freedom or with some other physical systems, but these other
entities will remain passive and will not enter any subsequent dynamics.

• Then we dilate the system: we add an ancilla which is large enough to
include everything our system will interact with, and also large enough to
be in a pure state. The expansion ends when the composed system is (for
all practical purposes) isolated and follows a unitary evolution U .

• We allow the expanded system to evolve under the unitary evolution.
• After the unitary evolution takes place, we discard the ancilla and focus on

the system alone. In fact we do not have to discard exactly what we added:
we can discard only part of the ancilla, or any other part of the dilated
system.178

It is adding (i.e. tensoring) the auxiliary system in a fixed state, and then
discarding it (via the partial trace), that is responsible for the seemingly non-
unitary character of this evolution.

The next step is to use what we have learnt about isometries (namely that they
are like unitaries but where the dimension is allowed to increase) to combine the
first two of these operations (adding an ancilla and following some unitary evolu-
tion) into a single operation. This will lead to the so-called Stinespring dilation
theorem, as well as its ancilla-free counterpart, the Kraus decomposition.

178Because of this, the output system in this scenario does not have to be the same as the original
input system (e.g. it could be strictly larger), but usually it is.
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9.5 Stinespring’s dilation and Kraus’s ambiguity

Factorisation systems.

This three-stage process (adding an ancilla, unitary evolution, and then
tracing out the ancilla) might reasonably be called a “factorisation”, since
it factors a (non-unitary) evolution into constituent parts: first something
that looks a bit like an injection (since it maps a smaller space into a
bigger one); then something that looks a bit like an isomorphism (since
unitaries are invertible); and finally something that looks a bit like a sur-
jection (since it maps a bigger space down to a smaller one). For now,
let’s forget about this middle part of the factorisation (where we let our
system evolve unitarily), and just keep the first and last part in mind as
we look at the following construction.

Pick any function f : S → T between sets. Then we can decompose f
into an injection (↪→) and a surjection (↠) in two different ways:

1. S ↠ Im(f) ↪→ T
2. S ↪→ S t (T \ Im(f))↠ T

where the first is a surjection followed by an injection, and the second
is an injection followed by a surjection. In the first decomposition, the
middle set (namely Im(f)) is unique (up to unique isomorphism); in the
second, the middle set (namely S t (T \ Im(f))) is not unique (we can
use any set given by taking S and adding an extra arbitrary element for
each element of T that is not in the image of f).

The first of these decompositions is probably much more familiar and
friendly looking than the second, but it is indeed the second which is
of interest to us here, since it is of the same form as our three-stage
process: something injective-looking followed by something surjective-
looking. Indeed, as shown in Cunningham and Heunen’s “Purity through
Factorisation”, arXiv:1705.07652, Stinespring dilation (which is roughly
this three-stage process that we’ve been talking about) gives rise to a
weak factorisation system, but not an orthogonal one.

These notions (weak and orthogonal factorisation systems) are abso-
lutely fundamental to a large area of modern mathematics that deals with
homotopy theory and “higher structures” using the language of model
categories.

9.5 Stinespring’s dilation and Kraus’s ambiguity

Once we start playing with adding physical systems and increasing the dimen-
sion of the underlying Hilbert space, it is convenient to switch from unitaries to
isometries.179 This is more for mathematical simplicity than physical insight, but
it is always good to declutter our equations a bit if we can.

179Recall that a map V is an isometry if V †V = 1. For example, adding a system in state |k〉 gives
an isometry V : |ψ〉 7→ |k〉 ⊗ |ψ〉, and the combination of adding a system in a fixed state followed by
a unitary evolution of the combined system is also an isometry.
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9.5 Stinespring’s dilation and Kraus’s ambiguity

Recall that any unitary transformation of the combined system AB can be
written as

U =
∑
i,j

|i〉〈j| ⊗Bij =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .

...
...

...
. . .


where the Bij are operators acting on the the Hilbert space HB, and where the
Bij are not necessarily unitary, but (in order for the overall transformation U to
be unitary) satisfy∑

i

B†
ikBil = δkl1AB∑

i

BkiB
†
li = δkl1B

Also recall that, when we fix the initial state of system A to be |k〉, we know that
U acts by

U : |k〉 ⊗ |ψ〉 7−→
∑

i

|i〉 ⊗Bik|ψ〉

for an arbitrary state |ψ〉 of B.
This allows us to define an isometry V : HB → HA ⊗HB by

V : |ψ〉 7−→
∑

i

|i〉 ⊗ Ei|ψ〉

where Ei := Bik, which satisfy∑
i

E†
iEi = 1B.

The matrix representation of an isometry is a rectangular matrix given by
selecting only a few of the columns from a unitary matrix; here, with |k〉 fixed, it
is only the k-th column of the block matrix U that determines the evolution of B,
as shown in Figure 9.1.

U =


B11 B12 B13 . . .
B21 B22 B23 . . .
B31 B32 B33 . . .
...

...
...

. . .

 7−→ V =


E1

E2

E3

...


Figure 9.1: For k = 2, the second block column is selected. The matrix repre-
sentation of the isometry V on the right-hand side look like a column vector, but
remember that the entries Ei := Bik are matrices.

222



9.5 Stinespring’s dilation and Kraus’s ambiguity

Let us now rephrase our derivation of the evolution of system B using isome-
tries. Note that the isometry V in Figure 9.1 acts by

|ψ〉〈ψ| 7−→ V |ψ〉〈ψ|V † =
∑
i,j

|i〉〈j| ⊗ Ei|ψ〉〈ψ|E†
j .

We trace out A (recalling that tr |i〉〈j| = 〈i|j〉 = δij) and express the evolution of
system B (which is allowed to have a mixed input state ρ, since these can always
be expressed as statistical mixtures of pure states |ψ〉) as

ρ 7−→ ρ′ = trA V ρV
† =

∑
i

EiρE
†
i ,

where
∑

i E
†
iEi = 1. This expression shows two different ways of looking at

quantum evolutions, and both have their own name.180

Stinespring dilation. Any quantum channel E can be thought of as aris-
ing from a unitary evolution on a dilated system. When we combine ten-
soring and the unitary evolution into an isometry V , we can express the
action of the channel E as

ρ 7−→ ρ′ = trA V ρV
†,

where we trace out a suitably chosen ancilla A. This is the approach that
we discussed in Section 9.4. In quantum information science, we often
refer to this approach as the Church of the Larger Hilbert Space.

Kraus representation (a.k.a. operator-sum decomposition). It is often
more convenient to not deal with a larger Hilbert space, but to instead
work with operators directly between the input and output Hilbert spaces,
avoiding the middle one completely:

ρ 7−→ ρ′ =
∑

i

EiρE
†
i

where the Kraus operators (or effects) Ei satisfy the normalisation con-
dition

∑
i E

†
iEi = 1 (also known as the completeness relation). Here

we avoid dragging in the ancilla, which can be a good thing, since ancil-
las typically represent environments that can be very large and complex.
Note that this operator–sum decomposition is not unique, since the Kraus
operators Ei depend on the choice of basis in the ancilla.

180William Forrest “Woody” Stinespring (1929–2012) was an American mathematician specialising
in operator theory. Karl Kraus (1938–1988) was a German physicist known for his contributions
to the mathematical foundations of quantum theory. His book States, effects, and operations (Lecture
Notes in Physics, Vol. 190, Springer-Verlag, Berlin 1983) is an early account of the notion of complete
positivity in physics.
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These two representations — Stinespring and Kraus — are equivalent, and
we can easily switch between them:

• We have already seen how to go from a unitary evolution U on a larger sys-
tem to an isometry V , and then to a map on density operators represented
by a set of Kraus operators Ei (as in Figure 9.1).

• Conversely, once we have an operator-sum representation of the channel
with a set of Kraus operators Ei, we can introduce an ancilla of dimension
equal to the number of Kraus operators, and use the orthonormal basis |i〉
to form the isometry V =

∑
i |i〉⊗Ei. In terms of matrices, this corresponds

to simply “stacking up” the matrices Ei to form the block column (as shown
in Figure 9.1), which gives us the matrix representation of V . If we want
to go further, from an isometry V to a unitary U , then the next step is
somewhat arbitrary: we can choose all the remaining block columns of U
however we please, as long as we end up with a unitary matrix U .

All linear transformations of density operators that can be written in
Stinespring (or, equivalently, Kraus) form represent physically realisable
operations — we call them quantum channels, or superoperators (since
they send operators to operators).

The Stinespring form is conceptually very nice — “everything is unitary, and
if it isn’t, you’re just not looking at the big picture” — but the Kraus form tends to
be very useful computationally, since it doesn’t require bringing in ancillary data.
One useful analogy for understanding the completeness relation

∑n
i=1 E

†
iEi = 1

for Kraus operators is how a density operator ρ, written in its spectral decompo-
sition as

∑n
i=1 λi|i〉〈i|, reduces to a pure state in the case where n = 1; in the

same way, the completeness relation for Kraus operators reduces to asking that
E1 be unitary in the case where n = 1. In other words, Kraus operators generalise
unitaries in exactly the same way that density operators generalise state vectors.

We note again that the Kraus decomposition is not unique: the operators Ei

depend on the choice of the ancilla basis. Indeed, let |ei〉 and |fj〉 be two or-
thonormal bases in the Hilbert space associated with the ancilla. Then V can be
expressed as

V =
∑

i

|ei〉 ⊗ Ei

=
∑
i,j

|fj〉〈fj |ei〉 ⊗ Ei

=
∑

j

|fj〉 ⊗
∑

i

〈fj |ei〉︸ ︷︷ ︸
Rji

Ei

=
∑

j

|fj〉 ⊗ Fj

where we have used the fact that
∑

j |fj〉〈fj | = 1, and where Rji = 〈fj |ei〉 is a
unitary matrix connecting the two orthonormal bases (and also the two sets of
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9.6 Single-qubit channels

the Kraus operators) via Fj =
∑

i RjiEi. So we have a set of Kraus operators Ei

associated with basis |ei〉 and another, unitarily related, set of Kraus operators
Fj associated with basis |fj〉, and the two sets describe the same isometry, and
hence the same quantum channel. This correspondence goes both ways: if two
channels E and F have their Kraus operators related by some unitary Rji, then
the two channels are identical:

F(ρ) =
∑

j

FjρF
†
j

=
∑
i,j,k

RjiEiρE
†
kR

?
jk

=
∑
i,k

∑
j

R?
jkRji


︸ ︷︷ ︸

δki

EiρE
†
k

=
∑

i

EiρE
†
i

= E(ρ).

In summary:

Suppose E1, . . . , En and F1, . . . , Fm are Kraus operators associated with
quantum channels E and F , respectively. We can append zero operators
to the shorter list to ensure that n = m (or we could view Rij as an
isometry instead of a unitary).

Then E and F describe the same channel if and only if Fj =
∑

i RjiEi

for some unitary R.

In particular, this unitary equivalence of the Kraus operators implies that the
identity channel ρ 7→ ρ′ = 1ρ1 can only have Kraus operators that are propor-
tional to the identity.

9.6 Single-qubit channels

The best way to familiarise ourselves with the concept of a quantum channel is
to study a few examples, and we will start with the simplest case: single-qubit
channels. The single-qubit case is special since we can visualise the action of the
channel by looking at the corresponding deformation of the Bloch ball.

Recall that an arbitrary density matrix for a single qubit can be written in the
form

ρ = 1
2

(1 + ~s · ~σ)

= 1
2

(1 + sxX + syY + szZ)
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9.6 Single-qubit channels

where ~s is the Bloch vector of the qubit with components (sx, sy, sz), and X,
Y , and Z are the Pauli operators. Recall also that unitary operations rotate the
Bloch sphere. In particular the X, Y , and Z operators — viewed as unitary
transformations — rotate the Bloch sphere by 180◦ around the x-, y-, and z-axis,
respectively. General quantum channels, however, may deform it further, into
spheroids with a displaced centre, as the following examples show.

• Bit-flip with probability p.

ρ 7−→ (1− p)ρ+ pXρX.

The Kraus operators are
√

1− p1 and
√
pX; the original Bloch sphere shrinks

into a prolate spheroid aligned with the x-axis; for the specific case of
p = 1

2 , the Bloch sphere degenerates to the [−1, 1] interval on the x-axis.

• Phase-flip with probability p.

ρ 7−→ (1− p)ρ+ pZρZ.

The Kraus operators are
√

1− p1 and
√
pZ; the original Bloch sphere shrinks

into a prolate spheroid aligned with the z-axis; for the specific case of p = 1
2 ,

the Bloch sphere degenerates to the [−1, 1] interval on the z-axis.

• Depolarising channel with probability p.

ρ 7−→ (1− p)ρ+ p

3
(XρX + Y ρY + ZρZ) .

Here the qubit remains intact with probability 1− p, while a quantum error
occurs with probability p. The error can be of any one of three types: bit-flip
X, phase-flip Z, or both bit- and phase-flip Y ; each type of error is equally
likely. For p < 3

4 , the original Bloch sphere contracts uniformly under the
action of the channel, and the Bloch vector shrinks by the factor 1− 4

3p; for
the specific case of p = 3

4 , the Bloch sphere degenerates to the point at the
centre of the sphere; for p > 3

4 , the Bloch sphere is flipped, and the Bloch
vector starts pointing in the opposite direction increasing the magnitude up
to 1

3 (which occurs for p = 1).

There are two interesting points that must be mentioned here. The first one is
about the interpretation of the action of the channel in terms of Kraus operators:
our narrative may change when we switch to a different set of effects.181 For
example, take the phase-flip channel with p = 1

2 and switch from the effects Ei

to Fj as follows:
E1 = 1√

2
1

E2 = 1√
2
Z

 7−→

F1 = 1√

2
(E1 + E2) = |0〉〈0|

F2 = 1√
2

(E1 − E2) = |1〉〈1|.


181Recall that Kraus operators are also sometimes called “effects”.
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9.7 Composition of quantum channels

These two sets of Kraus operators {E1, E2} and {F1, F2} describe the same chan-
nel, but the narrative is different: the first set of effects tells us that the channel
chooses randomly, with the same probability, between two options (let the qubit
pass undisturbed or apply the phase-flip Z); the second set tells us that channel
essentially performs the measurement in the standard basis, but the outcome of
the measurement is not revealed.

Describing actions of quantum channels purely in terms of their effects
(i.e. Kraus operators) can be ambiguous.

The second interesting point is that not all transformations of the Bloch sphere
into spheroids are possible. For example, we cannot deform the Bloch sphere into
a pancake-like oblate spheroid. This is due to complete positivity (instead of mere
positivity) of quantum channels, which we will explain shortly.

9.7 Composition of quantum channels

We mentioned that quantum channels are combinations of

1. adding a physical system in a fixed state (via tensoring),
2. unitary transformations, and
3. discarding a physical system (taking a partial trace).

As expected from the fact that the Stinespring point of view is equivalent to
the Kraus point of view, each of these operations admits an operator-sum decom-
position. This is obvious for unitary evolution (ρ 7→ UρU†), but perhaps less so
for the other two operations. One reason to care about this is that the Kraus
decomposition gives a tidy way of describing composition of quantum channels.

• Adding a system. Any quantum system can be expanded by bringing in
an auxiliary system in a fixed state |a〉. This transformation takes vectors in
the Hilbert space associated with the original system and tensors them with
a fixed vector |a〉 in the Hilbert space associated with the auxiliary system:

|ψ〉 7−→ |a〉 ⊗ |ψ〉 = (|a〉 ⊗ 1)|ψ〉.

In terms of density operators, we write this “expansion” transformation as

ρ 7−→ ρ′ = |a〉〈a| ⊗ ρ
= (|a〉 ⊗ 1)ρ(〈a| ⊗ 1)
= V ρV †

where V = |a〉 ⊗ 1. We note that V †V = 〈a|a〉 ⊗ 1 = 1 is the identity in the
Hilbert space associated with the system, and so V is an isometry. Indeed,
this transformation is an isometric embedding.
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9.7 Composition of quantum channels

• Discarding a system. Conversely, given a composite system in state ρ, we
can discard one of its subsystems. The partial trace over an auxiliary system
can be written in the Kraus representation as

ρ 7−→ ρ′ = trA ρ

= (tr⊗1)ρ

=
∑

i

(〈i| ⊗ 1)ρ(|i〉 ⊗ 1)

=
∑

i

EiρE
†
i

where the vectors |i〉 form an orthonormal basis in the Hilbert space as-
sociated with the auxiliary system. Again, we can check that the Kraus
operators Ei = |i〉 ⊗ 1 satisfy the completeness relation

∑
i E

†
iEi = 1 ⊗ 1

(using the fact that
∑

i |i〉〈i| = 1).

Any sequential composition of two quantum channels E and F with Kraus
operators {Ai}i∈I and {Bj}j∈J (respectively) is another quantum channel182 de-
scribed by the Kraus operators {BjAi}i∈I,j∈J . Showing this is rather straightfor-
ward, at least in the operator-sum representation: let

E =
∑

i

Ai ·A†
i

F =
∑

j

Bj ·B†
j

where
∑

i A
†
iAi =

∑
j B

†
jBj = 1; then the sequential composition of E followed

by F can be written as

F ◦ E =
∑
i,j

(BjAi) · (BjAi)†

so that the BjAi are the Kraus operators associated with the new channel F ◦ E ,
where the normalisation condition (or completeness relation) follows from

∑
i,j

(BjAi)†(BjAi) =
∑

i

A†
i

∑
j

B†
jBj

Ai

=
∑

i

A†
iAi

= 1.

You might wonder why we explicitly called the above composition “sequen-
tial” — isn’t this how we always compose functions? In actual fact, since we have

182Here we have tacitly assumed that the dimensions agree, i.e. that the output of E and the input
of F are of the same dimension, so that the composition makes sense.

228



9.8 Completely positive trace-preserving maps

access to tensor products, there is another sort of composition, namely paral-
lel183 composition: if we have systems A and B with channels EA acting on A
and EB acting on B, then the parallel composition is denoted by EA ⊗ EB, acting
on the joint system A ⊗ B, and with Kraus operators given by the Ai ⊗ Bj . The
normalisation condition again follows from a simple calculation:∑

i,j

(Ai ⊗Bj)†(Ai ⊗Bj) =
∑
i,j

A†
iAi ⊗B†

jBj

= 1A ⊗ 1B .

Now that we know how to compose quantum channels in terms of Kraus
operators, we can see that the Stinespring representation is perfectly consistent
with the Kraus representation: the three basic operations that we are allowed
to use to build channels in the Stinespring representation (i.e. adding a system,
unitary evolution, and discarding a system) are all themselves quantum channels,
in that they admit a Kraus decomposition.

Before moving on, we make a small (but important) remark:

When we compose quantum channels, each channel needs its own inde-
pendent ancilla — do not share ancillas between different channels.

For example, say we have three channels, E1, E2, and E3, with Ei defined by
the unitary Ui and the state |ai〉 of its ancilla. Then the (sequential) composition
E3 ◦ E2 ◦ E1 is given by

|a1⟩
U1

|a2⟩
U2

|a3⟩
U3

ρ ρ′1 ρ′2 ρ′3

where each Ei has its own associated ancilla |ai〉. For more on this, see Section
9.12.2, where we talk about Markov approximation.

9.8 Completely positive trace-preserving maps

A while back we upgraded from working with state vectors |ψ〉 to working with
density operators ρ, which are positive184 Hermitian operators ρ with tr ρ = 1,
where “positive” means that 〈v|ρ|v〉 ⩾ 0 for all |v〉 (or, equivalently, that all its
eigenvalues are non-negative real numbers). It is easy to verify that quantum
channels preserve positivity and trace, but the converse is not true! That is, there
are linear maps that preserve positivity and the trace, but which are not quantum
channels, and thus which are not “physical operations”.

183You might also call this simultaneous composition, to contrast with sequential composition, but
“parallel” is by far the most commonly accepted terminology.

184It’s a small abuse of notation, but we often simply say “positive” to mean “positive semi-definite”
or “non-negative”. We write ρ ⩾ 0 to mean that ρ is positive.
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9.8 Completely positive trace-preserving maps

The matrix transpose operation ρ 7→ ρT is a good example of such an unphys-
ical operation: it preserves both trace and positivity, and if ρ is a density matrix
then so too is ρT , but we will show that the transpose cannot be written in the
Stinespring (or the Kraus) form; it is not induced by a unitary operation on some
larger Hilbert space, and it cannot be physically implemented. So, we then ask,
what is the class of physically admissible maps? That is, how can we classify
which maps are quantum channels and which are not?

First, some notation. We say that a linear operator f : H → H′ between
Hilbert spaces is bounded if there exists some real number B > 0 such that
‖f(x)‖H′ ⩽ B‖x‖H for every vector x ∈ H. Given a pair of Hilbert spaces H and
H′, we denote the set of bounded linear operators from H to H′ by B(H,H′). We
write B(H) as shorthand for B(H,H).

Bounded and unbounded operators.

One reason to care so much about bounded operators is the following fact:
a linear operator between normed vector spaces is bounded if and only if it
is continuous.

Another important fact is that the set B(H,H′) is more than just a
mere set: it has both topological structure (it has a norm and forms a
Banach space under this norm) and algebraic structure (it is an asso-
ciative algebra over C), along with the bonus feature of a particularly
well-behaved involution given by the adjoint. Formally, B(H,H′) is the
prototypical example of a C*-algebra.

Now here is another example of where working only with finite-
dimensional spaces greatly simplifies the mathematics: if X and Y are
normed vector spaces, with X finite dimensional, then every linear map
f : X → Y is bounded (or, equivalently, continuous).

In the infinite-dimensional setting, it is important to know whether or
not a given operator is bounded, but it turns out that certain unbounded
operators are still very useful. There are some technical details, but such
operators are used to model observables in the Hilbert-space formalism
of quantum mechanics.

Then, mathematically speaking, a quantum channel E is a specific type of map

E : B(H)→ B(H′)

that sends states (i.e. density operators) on some Hilbert space H to states on
some (possibly different) Hilbert space H′. But we are not interested in just any
such maps, of course — the statistical interpretation of quantum theory imposes
certain properties on the subset of maps in which we are interested.

Firstly, for such a map E to be a channel it must respect the mixing of states.
Consider an ensemble of systems, with a fraction p1 of them in the state ρ1, and
the remaining p2 of them in the state ρ2. The overall ensemble is described by
ρ = p1ρ1 +p2ρ2. If we apply E to each member of the ensemble individually, then
the overall ensemble will be described by the density operator ρ′ = E(ρ), which
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9.8 Completely positive trace-preserving maps

should be given by ρ′ = p1E(ρ1) + p2E(ρ2). We conclude that E must be a linear
map.

Next, since E must map density operators to density operators, it has to be both
positive (E(ρ) ⩾ 0 whenever ρ ⩾ 0) and trace preserving (tr E(ρ) = tr ρ for all ρ).

Finally comes a subtle point. It turns out that being positive is not good
enough; we must further require that the map E remains positive even when ex-
tended to act on a part of a larger system. Suppose that Alice and Bob share a
bipartite system AB in an entangled state ρAB, and, whilst Alice does nothing,
Bob applies the operation E to his subsystems, and his subsystems only. Then
the resulting map on the whole bipartite system is given by 1 ⊗ E , and we re-
quire that this also give a density operator ρ′

AB of the composed system. It turns
out that this is a strictly stronger property than mere positivity; we are asking
for something called complete positivity. Needless to say, complete positivity of
E implies positivity, but the converse does not hold: there are maps which are
positive but not completely positive. The matrix transpose operation ρ→ ρT is a
classic example of such a map.

Let’s study this matrix transpose example a bit more. Consider the transpose
operation on a single qubit: T : |i〉〈j| 7→ |j〉〈i| (for i, j ∈ {0, 1}). It preserves
both trace and positivity, and if ρ is a density matrix then so too is T (ρ) = ρT .
However, if the input qubit is part of a two qubit system, initially in the entangled
state |Ω〉 = 1√

2 (|0〉|0〉+ |1〉|1〉), and the transpose is applied to only one of the two
qubits (say, the second one), then the density matrix of the two qubits evolves
under the action of the partial transpose 1⊗ T as

|Ω〉〈Ω| = 1
2
∑
i,j

|i〉〈j| ⊗ |i〉〈j| 1⊗T7−→1
2
∑
i,j

|i〉〈j| ⊗ T (|i〉〈j|)

=1
2
∑
i,j

|i〉〈j| ⊗ |j〉〈i|.

The output is known as the SWAP matrix, since it describes the SWAP operation:
|j〉|i〉 7→ |i〉|j〉. Since this operation squares to the identity, we know that its
eigenvalues must be either ±1: states which are symmetric under interchange
of the two qubits have eigenvalue 1, while antisymmetric states have eigenvalue
−1. In particular then, the SWAP matrix has negative eigenvalues, which means
that 1⊗T does not preserve positivity (since 1⊗T applied to the positive operator
|Ω〉〈Ω| is not positive), and therefore T is not a completely positive map.

If you prefer to see this more explicitly, then you can use the matrix represen-
tation of |Ω〉〈Ω|, apply the partial transpose 1⊗ T , and then inspect the resulting
matrix:

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 1⊗T7−→ 1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
So the partial transpose 1 ⊗ T maps the density matrix |Ω〉〈Ω| of a maximally
mixed state |Ω〉 to the SWAP matrix, which has a negative eigenvalue (namely
−1) and thus is not a density matrix (since it is not positive).
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9.9 Channel-state duality

We have seen that, at the very least, we want to be considering completely
positive trace-preserving maps, but how do we know whether or not there are
any further restrictions left to impose? Needless to say, here is where mathemat-
ics alone cannot guide us, since we are trying to characterise maps which are
physically admissible, and mathematics knows nothing about the reality of our
universe! However, one thing that we can do is compare our abstract approach
with the derivations of quantum channels defined in terms of the Stinespring (or
Kraus) representation. As it happens, we can (and will!) show that a map is
completely positive and trace preserving if and only if it can be written in the
Stinespring (or Kraus) form. In other words:

Quantum channels are exactly the completely positive trace-preserving
(CPTP) maps.

One direction of this claim is much simpler than the other. Any quantum
channel E must be completely positive, since the Kraus decomposition guaran-
tees positivity of both E and the extended map 1 ⊗ E , since if E has Kraus de-
composition

∑
i EiE

†
i , then the extended channel 1⊗E has Kraus decomposition∑

i(1⊗Ei)(1⊗E†
i ), which means that 1⊗ E is also a positive map, whence E is

completely positive.
Conversely, showing that CPTP maps are quantum channels is less simple.

In order to prove this, we will now introduce a very convenient tool called the
Choi matrix, which gives yet another way to characterise linear maps between
operators.

9.9 Channel-state duality

Suppose that dimH = d and dimH′ = d′, and pick a basis for each space. Now
any linear map E : B(H) → B(H′) can be completely characterised by its action
on the d2-many basis matrices |i〉〈j| of B(H) (where i, j ∈ {1, 2 . . . , d}), i.e. for
any density operator ρ on H we have

E(ρ) = E

 d∑
i,j=1

ρij |i〉〈j|

 =
d∑

i,j=1
ρijE(|i〉〈j|). (\)

We can now tabulate the (d×d)-many (d′×d′) matrices E(|i〉〈j|) inH′ by forming
a bigger (dd′ × dd′) block matrix in H⊗H′:

E(|0⟩ ⟨0|) E(|0⟩ ⟨1|) E(|0⟩ ⟨2|) · · ·

E(|1⟩ ⟨0|) E(|1⟩ ⟨1|) E(|1⟩ ⟨0|) · · ·

E(|2⟩ ⟨0|) E(|2⟩ ⟨1|) E(|2⟩ ⟨2|) · · ·
...

...
...

. . .

 .

232



9.9 Channel-state duality

After scaling by a factor of 1
d , we call this block matrix Ẽ ∈ B(H ⊗ H′) the

Choi matrix185 of E .
The Choi matrix is essentially another way of representing a linear map E : B(H)→

B(H′), since if you are given the Choi matrix Ẽ of E and you want to evaluate
E(ρ), then you simply follow Equation (\), taking the values of E(|i〉〈j|) from the
Choi matrix. We can write this more formally as follows.

The Choi matrix Ẽ of a linear map E : B(H)→ B(H′) satisfies

1
d
E(ρ) = (tr⊗1)

[
(ρT ⊗ 1d′×d′)Ẽ

]
for all density matrices ρ in B(H), where d = dimH.

The expression above may look baffling at first glance, but this is often the
case when we turn something conceptually obvious into more compact mathe-
matical notation. In order to gain some intuition here, recall that, for matrices A
and B,

trATB =
∑
i,j

AijBij .

If we take A and B to be the block matrices ρ ⊗ 1 and Ẽ , respectively, then we
can use this to show that

(tr⊗1)
[
(ρT ⊗ 1)Ẽ

]
= 1
d

∑
i,j

ρijE(|i〉〈j|).

This gives us a one-to-one correspondence between linear maps E : B(H) →
B(H′) and matrices Ẽ acting on the tensor product H ⊗H′, known as the Choi–
Jamiokowski isomorphism E 7→ Ẽ .

The Choi–Jamiokowski isomorphism.

The correspondence between linear maps B(H) → B(H′) and opera-
tors in B(H ⊗ H′), known as the Choi–Jamiokowski isomorphism (or
channel-state duality in the specific setting of quantum information),
is another example of a well known correspondence between vectors in
HA ⊗HB and operators B(H?

A,HB) or B(H?
B,HA).

Take a tensor product vector in |a〉 ⊗ |b〉 ∈ HA ⊗HB. Then it defines

185Man-Duen Choi was brought up in Hong Kong. He received his Ph.D. degree under the guid-
ance of Chandler Davis at Toronto. He taught at the University of California, Berkeley, from 1973
to 1976, and has worked since then at the University of Toronto. His research has been mainly
in operator algebras, operator theory, and polynomial rings. He is particularly interested in exam-
ples/counterexamples and 2 × 2 matrix manipulations.
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9.9 Channel-state duality

natural maps in B(H?
A,HB) and B(H?

B,HA), via

〈x| 7−→ 〈x|a〉|b〉
〈y| 7−→ |a〉〈y|b〉

for any linear forms 〈x| ∈ H?
A and 〈y| ∈ H?

B . We then extend this con-
struction (by linearity) to any vector inHA⊗HB. These isomorphisms are
canonical: they do not depend on the choice of any bases in the vectors
spaces involved.

However, some care must be taken when we want to define corre-
spondence between vectors in HA ⊗HB and operators in B(HA,HB) or
B(HB,HA). For example, physicists like to “construct” B(HB,HA) in a
deceptively simple way:

|a〉|b〉 ←→ |a〉〈b|.

Flipping |b〉 and switching from HB to H?
B is an anti-linear operation

(since it involves complex conjugation). This is fine when we stick to a
specific basis |i〉|j〉 and use the ket-flipping approach only for the basis vec-
tors. This means that, for |b〉 =

∑
j βj |j〉, the correspondence looks like

|i〉|b〉 ←→
∑

j

βj |i〉〈j|

and not like

|i〉|b〉 ←→ |i〉〈b| =
∑

j

β?
j |i〉〈j|.

This isomorphism is non-canonical: it depends on the choice of the ba-
sis. But it is still a pretty useful isomorphism! The Choi–Jamiokowski
isomorphism is of this kind (i.e. non-canonical) — it works in the basis in
which you express a maximally mixed state |Ω〉 =

∑
i |i〉|i〉.

Mathematically, it is not too surprising that the matrix elements of an operator
on a tensor product can be reorganised and reinterpreted as the matrix elements
of an operator between operator spaces. What is interesting, and perhaps not so
obvious, however, is that the positivity conditions for maps correspond exactly to
conditions on their Choi matrices under this correspondence. That is, this one-
to-one correspondence between linear maps E : B(H) → B(H′) and matrices Ẽ
acting on the tensor product H ⊗ H′ descends to a one-to-one correspondence
between quantum channels and some specific family of matrices (which we will
shortly discuss). In other words, we can classify quantum channels as being
exactly those linear maps that have a certain image under the Choi–Jamiokowski
isomorphism! In order to see this, let us express the Choi matrix as the result of
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1⊗ E acting on the maximally mixed state

|Ω〉 := 1√
d

d∑
i=1
|i〉|i〉

in H⊗H.

The Choi matrix Ẽ of a linear map E : B(H)→ B(H′) is given by

Ẽ = (1d×d ⊗ E)|Ω〉〈Ω| = 1
d

∑
i,j

|i〉〈j| ⊗ E(|i〉〈j|)

where d = dimH.
Pictorially, we might represent this by something like

dimH = d 1 dimH = d

Ω

dimH = d E dimH′ = d′

In this form, we can see right away that, if E is a quantum channel, then Ẽ
is a density matrix. In fact, not just any density matrix: the first subsystem of
the maximally entangled state |Ω〉 is initially maximally, and remains maximally
mixed, since we apply the identity operator, and so (1⊗ tr)Ẽ = 1

d 1. The converse
is also true: any density matrix Ẽ such that (1 ⊗ tr)Ẽ = 1

d 1 defines a quantum
channel, i.e. a completely positive trace-preserving map. This is just one example
of how, in general, the Choi–Jamiokowski isomorphism provides a simple way of
studying linear maps on operators by means of inspecting their Choi matrices.

Let Ẽ be the Choi matrix of a linear map E : B(H)→ B(H′). Then
1. E is completely positive if and only if Ẽ is positive semi-definite.
2. E is trace preserving if and only if (1⊗ tr)Ẽ = 1

d 1.
3. E sends the identity operator to the identity operator if and only if

(tr⊗1)Ẽ = 1
d 1.

4. E sends Hermitian operators to Hermitian operators and only if Ẽ is
Hermitian.

We shall prove the first two of these correspondences here, and leave the last
two as an exercise.

Let’s start with complete positivity, since one direction is much easier: if E is a
completely positive map, then its extension 1⊗E maps |Ω〉〈Ω| to a positive semi-
definite matrix, and so Ẽ is positive semi-definite. The converse is less immediate.
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If Ẽ is positive semi-definite, then its eigenvalues pk are non-negative, and we can
write its spectral decomposition as

Ẽ =
∑

k

pk|ψk〉〈ψk| =
∑

k

|ψ̃k〉〈ψ̃k|

where the vectors |ψ̃k〉 = √pk|ψk〉 are pairwise orthogonal but not normalised.
Each of the vectors |ψ̃k〉 can be written as

|ψ̃k〉 = (1⊗ Ek)|Ω〉

for some operator Ek (Exercise 9.12.15). This means that

Ẽ =
∑

k

|ψ̃k〉〈ψ̃k|

=
∑

k

(1⊗ Ek)|Ω〉〈Ω|(1⊗ E†
k)

= 1
d

∑
i,j

|i〉〈j| ⊗
∑

k

Ek〈i||j〉E†
k︸ ︷︷ ︸

E(|i〉〈j|)

 .

Comparing this last expression with the definition of Ẽ , we conclude that E is of
the form

E(ρ) =
∑

k

EkρE
†
k

which is a completely positive map in Kraus form (though not necessarily trace
preserving, since we do not require that

∑
k EkE

†
k = 1).

For the trace-preserving correspondence, note first of all that, if E is trace
preserving, then

(1⊗ tr)Ẽ = 1
d

∑
i,j

|i〉〈j| tr E(|i〉〈j|)︸ ︷︷ ︸
δij

= 1
d

∑
i

|i〉〈i|

= 1
d

1.

Conversely, for any operator ρ in B(H), we have already seen that

1
d

tr E(ρ) = (tr⊗1)
[
(ρT ⊗ 1)Ẽ

]
and so, tracing over H′ by applying 1⊗ tr, we see that

tr E(ρ) = (1⊗ tr)
[
d(tr⊗1)

[
(ρT ⊗ 1)Ẽ

]]
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which rearranges to give

tr E(ρ) = d(tr⊗ tr)
[
(ρT ⊗ 1)Ẽ

]
= d(tr⊗1)

[
ρT (1⊗ tr)Ẽ

]
by using the fact that (tr⊗ tr)[(A ⊗ 1)C] = (tr⊗1)[A(1 ⊗ tr)C], which is just
another way of writing the defining property of the partial trace: trAB(A⊗1)C =
trA(A trB C). So if (1⊗ tr)Ẽ = 1

d 1, then

tr E(ρ) = tr ρT = tr ρ

and so E is trace preserving. Note that we have already used this defining prop-
erty of the partial trace when calculating the expectation value of an observable
A that pertains only to a subsystemA of a bipartite systemAB described by some
density operator ρAB, noting that tr[(A⊗1)ρAB] = tr[AρA], where ρA = trB ρAB.

In particular then, completely positive trace-preserving maps (quantum chan-
nels) have Choi matrices that are positive semi-definite and such that their partial
trace gives the maximally mixed state 1

d 1, and we have just shown that the con-
verse is true.

Channel–state duality. The following three things are all equivalent to
one another:

• quantum channels (i.e. linear maps that can be written in Stine-
spring or Kraus form)

• completely positive trace-preserving (CPTP) maps
• linear maps E whose Choi matrix Ẽ is positive semi-definite and

such that (1⊗ tr)Ẽ = 1
d 1.

Furthermore, all completely positive maps admit a Kraus decomposition ρ 7→∑
k EkρE

†
k, and these Kraus operators can be obtained from the spectral decom-

position of the corresponding Choi matrix. Given the Kraus decomposition, if we
also want the map to be trace preserving, then we must additional require that
the Kraus operators satisfy

∑
k E

†
kEk = 1.

9.10 The mathematics of “can” and “cannot”

So what is channel-state duality good for? To start with, it can be used to asses
whether or not a given map B(H) → B(H′) can actually be physically imple-
mented, i.e. if it is a CPTP map. Indeed, all we have to do is to check if the
corresponding Choi matrix is a density matrix. Let’s look at a simple example.

Consider the map186

E : |i〉〈j| 7−→ p|j〉〈i|+ (1− p)δij
1
2

1

186Again, δij is the Kronecker delta, which is equal to 1 if i = j and equal to 0 if i 6= j.
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where 0 ⩽ p ⩽ 1 is some fixed parameter. This map acts on a density operator ρ
via

ρ 7−→ pρT + (1− p)1
2

1

(where ρT is the transpose of ρ).
But is this map a quantum channel? That is, does it represent a physical process

that can be implemented in a lab?
We can interpret the convex-sum expression

E(|i〉〈j|) = p|j〉〈i|+ (1− p)δij
1
2
|i〉〈j|

as follows: take the input state ρ and either (i) apply the transpose, with proba-
bility p, or (ii) replace it with the maximally mixed state, with probability 1 − p.
This is fine, except that the transpose operation is not completely positive, and,
as such, is not physically admissible — it cannot be implemented. But does this
mean that the map E itself cannot be implemented? Not necessarily!

In fact, the answer depends on the value of p. The case p = 0 corresponds to
just replacing the input with the maximally mixed state, which is something that
can be easily implemented. However, as p increases from 0 to 1, at some critical
point the map switches from completely positive to merely positive. In order to
find this critical value of p, we first calculate E(|i〉〈j|) for i, j ∈ {0, 1} as follows:

|0〉〈0| =
[
1 0
0 0

]
E7−→
[ 1+p

2 0
0 1−p

2

]
|0〉〈1| =

[
0 1
0 0

]
E7−→
[
0 0
p 0

]
,

|1〉〈0| =
[
0 0
1 0

]
E7−→
[
0 p
0 0

]
|1〉〈1| =

[
0 0
0 1

]
E7−→
[ 1−p

2 0
0 1+p

2

]
,

We can then write down the Choi matrix:

Ẽ = 1
2

[
E(|0〉〈0|) E(|0〉〈1|)
E(|1〉〈0|) E(|1〉〈1|)

]
= 1

2


1+p

2 0 0 0
0 1−p

2 p 0
0 p 1−p

2 0
0 0 0 1+p

2


which lets us apply channel-state duality: E is completely positive (and hence phys-
ically realisable) if and only if Ẽ ⩾ 0, and the latter is true only when p ⩽ 1

3 (note
that the eigenvalues of Ẽ are 1

4 (1 + p) and 1
4 (1− 3p)).
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9.11 Kraus operators, revisited

Channel-state duality gives us more than just a one-to-one correspon-
dence between states Ẽ and channels E — it also gives a one-to-one cor-
respondence between vectors in the statistical ensemble Ẽ and the Kraus
operators in the decomposition of E .

With the above in mind, we see that the freedom to choose the Kraus opera-
tors representing a channel in many different ways is really the same thing as the
freedom to choose the ensemble of pure states representing a density operator in
many different ways.

We already know that if two mixtures187 (pk, |ψk〉) and (ql, |φl〉) are described
by the same density operator∑

k

|ψ̃k〉〈ψ̃k| = Ẽ =
∑

l

|φ̃l〉〈φ̃l|

(where |ψ̃k〉 = √pk|ψk〉 and |φ̃l〉 = √ql|φl〉) then they are related to one another:
there exists some unitary R such that

|ψ̃k〉 =
∑

l

Rkl|φ̃l〉.

Using the aforementioned fact that any vector |ψ〉 in H ⊗ H′ can be written as
|ψ〉 = 1 ⊗ V |Ω〉, this implies the same unitary freedom in choosing the Kraus
operators.

So how many Kraus operators do we really need? Channel-state duality tells
us that the minimal number of Kraus operators needed to express E : B(H) →
B(H′) in the operator-sum form is given by the rank of its Choi matrix Ẽ , i.e. we
need no more than dd′ such operators (where d = dimH and d′ = dimH′). In
fact, this minimal set of Kraus operators corresponds to the spectral decomposi-
tion188 of Ẽ .

Indeed, if Ẽ =
∑

k |ṽk〉〈ṽk| and |ṽk〉 = (1 ⊗ Ek)|Ω〉, then the orthogonality of
|ṽk〉 and |ṽl〉 implies the orthogonality (in the Hilbert–Schmidt sense189) of the
corresponding Kraus operators Ek and El. In order to see this, we write 〈ṽk|ṽl〉
as

〈ṽk|ṽl|ṽk|ṽl〉 = 〈Ω|(1⊗ E†
k)(1⊗ El)|Ω〉

= tr(1⊗ E†
kEl)|Ω〉〈Ω|

= 1
d

tr
∑
i,j

|i〉〈j| ⊗ E†
kEl|i〉〈j|

187The number of vectors contributing to each mixture (and hence the number of corresponding
Kraus operators) may be different, but we can always simply extend the smaller set to the required
size by adding zero operators.

188We talk about spectral decomposition in more detail in Section 12.11.1.
189Recall that the Hilbert–Schmidt product (A|B) of two operators A and B is defined by (A|B) =

1
2 trA†B.
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(using the fact that we can substitute 1
d

∑
i,j |i〉〈j| ⊗ |i〉〈j| for |Ω〉〈Ω|). Now, the

trace of the tensor product of two matrices is the product of their traces, hence

〈ṽk|ṽl〉 = 1
d

∑
i,j

〈i|j〉 trE†
kEl|i〉〈j|

= 1
d

trE†
kEl

(using the fact that 〈i|j〉 = δij and
∑

i |i〉〈i| = 1). So we have shown that if
〈ṽk|ṽl〉 = 0 then trE†

kEl = 0.

A linear map E : B(H) → B(H′) is completely positive if and only if it
admits an operator-sum decomposition of the form

E(ρ) =
∑

k

EkρE
†
k.

If this is the case, then this decomposition has the following proper-
ties:

• E is trace preserving if and only if
∑

k E
†
kEk = 1.

• Two sets of Kraus operators {Ek} and {Fl} represent the same map
E if and only if there exists a unitary R such that Ek =

∑
l RklFl

(where the smaller set of the Kraus operators is padded with zeros,
if necessary).

Note that, for any E : B(H) → B(H′), there always exists a representation
with at most dd′ mutually orthogonal Kraus operators: trE†

iEj ∝ δij .
For example, consider the simpler case where dimH = dimH′ = d Then

the Kraus operators Ek are vectors in a d2-dimensional Hilbert space, with the
Hilbert–Schmidt inner product trE†

kEl. We can pick an orthonormal basis of
operators {Bi} and express each Kraus vector in this basis as Ek =

∑
ckiBi

(where i = 1, . . . , d2 and k = 1, . . . , n, with n possibly much larger than d2). This
gives us

ρ 7−→
∑
i,j

BiρB
†
j

(∑
k

ckic
?
kj

)
=
∑
i,j

BiρB
†
jCij

The matrixCij is positive semi-definite, and hence unitarily diagonalisable: Cij =∑
k UikdkU

†
kj for some unitary U and some dk ⩾ 0. We can then unitarily “rotate”

our operator basis and use the Ck =
∑

j UjkBj

√
dk as our new Kraus operators.

The utility of Kraus operators when it comes to understanding quantum chan-
nels will be even more obvious when we prove some facts about correctable
channels in Section ??.
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9.12 Remarks and exercises

9.12.1 Purifications and isometries

All purifications of a density operator are related by an isometry acting on the
purifying system. That is, if ρ is a density operator on H, and |ψA〉 ∈ H ⊗ HA
and |ψB〉 ∈ H ⊗HB are two purifications of ρ with dimHA ⩽ dimHB, then

|ψB〉 = (1⊗ V )|ψA〉

for some isometry V .
To show this, we start with the spectral decomposition of ρ

ρ =
∑

i

pi|i〉〈i|

and note that

|ψA〉 =
∑

i

√
pi|i〉 ⊗ |ai〉

|ψB〉 =
∑

i

√
pi|i〉 ⊗ |bi〉

which defines an isometry V =
∑

i |bi〉〈ai| satisfying the desired equation.
This observation leads to a way of relating all convex decompositions of a

given density operator: let (pk, |ψk〉) and (ql, |φl〉) be convex decompositions of a
density operator ρ; then there exists an isometry V such that these two decom-
positions

n∑
k=1

|ψ̃k〉〈ψ̃k| = ρ =
m∑

l=1

|φ̃l〉〈φ̃l|

(where n ⩾ m, and |ψ̃k〉 = √pk|ψk〉 and |φ̃l〉 = √ql|φl〉) are related:

|ψ̃k〉 =
∑

l

Vkl|φ̃l〉.

9.12.2 The Markov approximation

Unitary evolutions form a group, but quantum channels form a semigroup, since
they are not necessarily invertible. Indeed, quantum operations are invertible
only if they are either unitary operations or simple isometric embeddings (such
as the process of bringing in the environment in some fixed state and then imme-
diately discarding it, without any intermediate interaction).

Anyway, composition of quantum channels in the Kraus representation is
rather straightforward, but do not be deceived by its mathematical simplicity!
We must remember that quantum channels do not capture all possible quantum
evolutions: the assumption that the system and the environment are not initially
correlated is crucial, and it does impose some restrictions on the applicability of
our formalism. Compare, for example, the following two scenarios.
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Firstly:190

ρ

UA

ρ′

UB

ρ′′

|e⟩

Here the system, initially in state ρ, undergoes two stages of evolution, and
the environment, initially in state |e〉, is not discarded after the first unitary evo-
lution UA; the environment persists and participates in the second unitary evo-
lution UB . In this case the evolutions ρ 7→ ρ′ and ρ 7→ ρ′′ are both well defined
quantum channels, but the evolution ρ′ 7→ ρ′′ is not: it falls outside the remit of
our formalism because the input state of the system and the state of the environ-
ment are not independent.

Secondly:

ρ

UA

ρ′

UB

ρ′′

|a⟩ |b⟩

Here we have two stages of evolution, as before, but we discard the envi-
ronment after the first unitary, and start the second unitary evolution in a fresh
tensor-product state, with a new environment; the two stages involve independent
environments. In this case191 all three evolutions (ρ 7→ ρ′, ρ′ 7→ ρ′′, and ρ 7→ ρ′′)
are well defined quantum channels, and they compose: if EA describes the evo-
lution from ρ to ρ′, and EB from ρ′ to ρ′′, then the composition EB ◦ EA describes
the evolution from ρ to ρ′′.

In practice we often deal with complex environments that have internal dy-
namics that “hides” any entanglement with the system as quickly as it arises. For
example, suppose that our system is an atom, surrounded by the electromag-
netic field (which serves as the environment). Let the field start in the vacuum
state. If the atom emits a photon into the environment, then the photon quickly
propagates away, and the immediate vicinity of the atom appears to be empty,
i.e. resets to the vacuum state. In this approximate model, we assume that the
environment quickly forgets about the state resulting from any previous evolu-
tion. This is known as the Markov approximation — in a quantum Markov
process the environment has essentially no memory.

190Here we have reverted to the convention of writing the ancilla/environment after the system of
interest instead of before.

191A quantum Markov process! Andrey Markov (1929–2012) was a Russian mathematician best
known for his work on stochastic processes.
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9.12.3 What use are positive maps?

Positive maps that are not completely positive are not completely useless. True,
they cannot describe any quantum dynamics, but still they have useful applica-
tions — for example, they can help us to determine if a given state is entangled
or not.

Recall that a quantum state of a bipartite system AB described by the density
matrix %AB is said to be separable if %AB can be written in the form

%AB =
∑

k

pkρA,k ⊗ ρB,k

where ρA,k are density matrices on A and ρB,k are density matrices on B (and
where pk ⩾ 0 and

∑
k pk = 1); otherwise %AB is said to be entangled. If we

apply the partial transpose 1 ⊗ T to this state, then it remains separable, since,
as we have seen, the transpose ρB is a legal density matrix.

In separable states, one subsystem does not really know about the existence
of the other, and so applying a positive map to one part produces a proper density
operator, and thus does not reveal the unphysical character of the map. So, for
any separable state ρ, we have (1⊗ T )ρ ⩾ 0.

Positive (but not completely positive) maps, such as the transpose, can
be quite deceptive: you have to include other systems in order to detect
their unphysical character.

In particular, positive maps appear to be completely positive on sepa-
rable states.

As an example, consider a quantum state ρp of two qubits which is a mixture
of the maximally mixed192 state |Ω〉 = 1√

2 (|00〉 + |11〉) and the identity matrix
with respective probabilities p and 1− p. That is,

ρp = p|Ω〉〈Ω|+ (1− p)
4

1⊗ 1.

If we apply the partial transpose 1⊗T to this state, and check for which values of
p the resulting matrix is a density matrix, we can show that the density operator
ρp describes an entangled state for all p ∈ [ 1

3 , 1].
We say that a state is a PPT state193 if its partial transpose is positive. An

important thing to note is that separable states are PTT, but the converse is gen-
erally not true: there exist entangled PPT states. However, in the specific case of
two qubits, the converse is true: the PPT states are exactly the separable states.

192Recall that a state is said to be maximally mixed if the outcomes of any measurement on that
state are completely random.

193“PPT” stands for positive partial transpose.
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SEP

PPT

all other states

9.12.4 Partial inner product

Tensor products bring the possibility to do “partial things” beyond just the partial
trace. Given HA ⊗ HB, any vector |x〉 ∈ HA defines an anti-linear map HA ⊗
HB → HB called the partial inner product with |x〉. It is first defined on the
product vectors |a〉 ⊗ |b〉 by the formula

|a〉 ⊗ |b〉 7−→ 〈x|a〉|b〉

and then extended to other vectors in HA ⊗HB by linearity. Similarly, any |y〉 ∈
HB defines a map HA ⊗HB → HA via

|a〉 ⊗ |b〉 7−→ |a〉〈y|b〉

For example, the partial inner product of

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 ∈ HA ⊗HB

with of |0〉 ∈ HA is

〈0|ψ〉 = c00|0〉+ c01|1〉

and the partial inner product of the same |ψ〉 with |1〉 ∈ HB is

〈1|ψ〉 = c01|0〉+ c11|1〉.

9.12.5 The “control” part of controlled-NOT

Consider a single-qubit channel induced by the action of the c-NOT gate. Recall
that the unitary operator associated with the c-NOT gate can be written as

U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X

where is X is the Pauli σx gate (i.e. the NOT gate). Let us step through the
following simple circuit:

input ρ ρ′ output

|0⟩ discard
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This time we are interested in the evolution of the control qubit: the control
qubit will be our system, and the target qubit, initially in a fixed state |0〉, will
play the role of an ancilla.

We can calculate the Kraus operators:

Ei = (1⊗ 〈i|)U(1⊗ |0〉)

which we simply write as Ei = 〈i|U |0〉 (for i = 0, 1). Expanding out the definition
of U , we see that

Ei = 〈i|U |0〉 = 〈i|(|0〉〈0| ⊗ 1 + |1〉〈1| ⊗X)|0〉
= |0〉〈0|〈i|1|0〉+ |1〉〈1|〈i|X|0〉
= |i〉〈i|

We can also check the normalisation condition:

E†
0E0 + E†

1E1 = |0〉〈0|+ |1〉〈1| = 1.

The unitary action of the gate when the state of the target qubit is fixed at |0〉
can be written as

|ψ〉|0〉 7−→E0|ψ〉|0〉+ E1|ψ〉|1〉
=|0〉〈0||ψ〉|0〉+ |1〉〈1||ψ〉|1〉
=〈0|ψ〉|0〉|0〉+ 〈1|ψ〉|1〉|1〉

which is a familiar c-NOT entangling process: if |ψ〉 = α0|0〉 + α1|1〉 then |ψ〉|0〉
evolves into α0|0〉|0〉+ α1|1〉|1〉.

The evolution of the control qubit alone can be expressed in the Kraus form
as

ρ 7−→ ρ′ = E0ρE
†
0 + E1ρE

†
1

= |0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|
= ρ00|0〉〈0|+ ρ11|1〉〈1|.

Then, in the matrix form, if the initial state of the control qubit is |ψ〉 = α0|0〉 +
α1|1〉, we get[

|α|20 α0α
?
0

α?
0α1 |α1|2

]
= ρ 7−→ ρ′ =

[
|α0|2 0

0 |α1|2
]
.

As we can see, the diagonal elements of ρ survive, and the off-diagonal el-
ements (the coherences) disappear. The two Kraus operators, E0 = |0〉〈0| and
E1 = |1〉〈1|, define the measurement in the standard basis, and so you may think
about this operation as being equivalent to measuring the control qubit in the
standard basis and then just forgetting the result.

245



9.12 Remarks and exercises

9.12.6 Surprisingly identical channels

Let us now compare two single qubit-quantum channels: A(ρ) =
∑

k AkρA
†
k,

defined by the Kraus operators

A1 = |0〉〈0| =
[
1 0
0 0

]
A2 = |1〉〈1| =

[
0 0
0 1

]
and B(ρ) =

∑
k BkρB

†
k, defined by the Kraus operators

B1 = 1√
2

= 1√
2

[
1 0
0 1

]
B2 = Z√

2
= 1√

2

[
1 0
0 −1

]
.

We are familiar with the first channel from the previous example (9.12.5): it
performs the measurement in the standard basis, but doesn’t reveal the outcome
of this measurement. The second channel chooses randomly, with equal proba-
bility, between two options: it will either let the qubit pass undisturbed, or apply
the phase-flip Z.

These two apparently very different physical processes correspond to the
same quantum channel: A(ρ) = B(ρ) for any ρ. Indeed, you can check that
B1 = (A1 +A2)/

√
2 and B2 = (A1 −A2)/

√
2, whence

B(ρ) = B1ρB
†
1 +B2ρB

†
2

= 1
2

(A1 +A2)ρ(A1 +A2)† + 1
2

(A1 −A2)ρ(A1 −A2)†

= A1ρA
†
1 +A2ρA

†
2

= A(ρ).

You can also check that the two channels can be implemented by the following
two circuits:

discard

ρ A(ρ)

|0⟩

discard

ρ B(ρ)

|0⟩ H

Figure 9.2: The c-NOT gate appears here as the measurement gate. The target
qubit (on the bottom) measures the control qubit (on the top) in the standard
basis (operation A on the left) or in the Hadamard basis (operation B on the
right). The extra Hadamard gate on the target qubit has no effect on the control
qubit.
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9.12.7 Independent ancilla

Another way to understand the freedom in the operator-sum representation is to
realise that, once the system and the ancilla cease to interact, any operation on
the ancilla alone has no effect on the state of the system.

ρ

U

ρ′

|e⟩ discard

ρ

U

ρ′

|e⟩ R discard

Figure 9.3: The quantum channel ρ 7→ ρ′ is not affected by the choice of a unitary
R, and so these two processes are the same.

That is, the two unitaries U and (1⊗R)U (where R acts only on the ancilla)
describe the same channel, even though the Kraus operators Ek = 〈ek|U |e〉 for
the latter are

Fk = 〈ek|(1⊗R)U |e〉

=
∑

j

〈ek|R|ej〉〈ej |U |e〉

=
∑

j

RkjEj

Indeed, the unitary evolution (1⊗R)U gives

ρ⊗ |e〉〈e| 7−→
∑
k,l

EkρE
†
l ⊗R|ek〉〈el|R†

and the subsequent trace over the environment gives

trE

∑
k,l

EkρE
†
l ⊗R|ek〉〈el|R† =

∑
k,l

EkρE
†
l 〈el|R†R|ek〉

=
∑

k

EkρE
†
k.

9.12.8 Order matters?

We know that, given a fixed state of the environment, the unitaries U and (1 ⊗
R)U (where R acts only on the environment) define the same quantum channel.
Is the same true for U and U(1 ⊗ R) — do these two unitaries define the same
quantum channel as one another?
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9.12.9 Unchanged reduced density operator

Show that194, for any operator ρ on HA ⊗ HB and any operator R on HB, we
have

trB
[
(1⊗R)ρ(1⊗R†)

]
= trB ρ.

That is, the reduced density operator ρA = trB ρ is not affected by R.

9.12.10 Cooling down

We can show that the process of cooling a qubit to its ground state, described
the map E(ρ) = |0〉〈0|, is a quantum channel. Indeed, the set of Kraus oper-
ators is |0〉〈0| and |0〉〈1|, and all Bloch vectors are mapped to the Bloch vector
representing state |0〉〈0|.

9.12.11 No pancakes

Consider a single-qubit operation which causes the z-component of the Bloch
vector to shrink while preserving the values of the x- and y-components. Un-
der such an operation, the Bloch sphere is mapped to an oblate spheroid which
touches the Bloch sphere along its equator.

Explain why we cannot physically implement such a map.

9.12.12 Pauli twirl

Show that randomly applying the Pauli operators 1, X, Y , and Z, with uniform
probability, to any density operator ρ of a single qubit (an operation known as
the Pauli twirl) results in the maximally mixed state

1
4

1ρ1 + 1
4
XρX + 1

4
Y ρY + 1

4
ZρZ = 1

2
1.

9.12.13 Depolarising channel

The “most popular” Pauli channel195 is the depolarising channel

ρ 7−→ (1− p)ρ+ p

3
(XρX + Y ρY + ZρZ) .

In the depolarising channel, a qubit in state ρ remains intact with probability
1 − p, or is otherwise transformed with one of the Pauli operators X, Y , and Z,
each chosen randomly with probability p/3.

Show, using the Pauli twirl (Exercise 9.12.12) or otherwise, that we can
rewrite the depolarising channel as

ρ 7−→ ρ′ =
(

1− 4
3
p

)
ρ+ 4

3
p

1
2

1.

194Hint: show this for separable operators ρ = A⊗ B and then extend the result to any operator ρ by
linearity.

195Recall that a single-qubit Pauli channel is a channel that applies one of the Pauli operators, X, Y
or Z, chosen randomly with some prescribed probabilities px, py and pz .
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9.12 Remarks and exercises

In particular then, we can say that, for p ⩽ 3
4 , the channel either does nothing

or, with probability 4
3p, throws away the initial quantum state and replaces it by

the maximally mixed state.)
It is also instructive to see how the depolarising channel acts on the Bloch

sphere. An arbitrary density matrix for a single qubit can be written as

1
2

(1 + ~s · ~σ),

where ~s is the Bloch vector, and ~σ = (σx, σy, σz) is the vector of Pauli matrices.
The depolarising channel maps this state to

1
2

[
1 +

(
1− 4

3
p

)
~s · ~σ

]
.

The Bloch vector shrinks by a factor of 1 − 4
3p. This means that, for p ⩽ 3

4 , the
Bloch sphere contracts uniformly under the action of the channel; for p = 3

4 , the
sphere is contracted to a single point at its centre; and for 3

4 ⩽ p ⩽ 1, the Bloch
vector is flipped, and starts pointing in the opposite direction.

9.12.14 Toffoli gate

Consider the Toffoli gate

input ρ discard

|1⟩
ρ′ output

|1⟩

Express ρ′ as a function of ρ in the Kraus representation.

9.12.15 Expressing vectors using the maximally mixed state

Show that any vector |ψ〉 in H⊗H′ can be written as

|ψ〉 = 1⊗ V |Ω〉

where V =
∑

i,j Vij |j〉〈i| is an operator from H to H′, and |Ω〉 = 1
d

∑
i |i〉|i〉

is a maximally entangled state in H ⊗ H. (Here the vectors |i〉 and |j〉 form
orthonormal bases in H and H′, respectively.)

9.12.16 Complete positivity of a certain map

Let E be the linear map on a single qubit defined by

E(1) = 1
E(σx) = axσx

E(σy) = ayσy

E(σz) = azσz
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where ax, ay, and az are some fixed real numbers. Using the Choi matrix of E ,
determine the range of ax, ay, az for which the map E is positive, and the range
for which it is completely positive.

9.12.17 Duals

We say that E? : B(H)→ B(H′) is the dual of a linear map E : B(H)→ B(H′) if

tr[E?(X)Y ] = tr[XE(Y )]

for any operators X and Y in B(H).

1. Show that, if E is trace preserving, then E? is unital (i.e. that it sends the
identity to the identity, or equivalently that its Kraus operators Fj satisfy∑

j FjF
†
j = 1).

2. Show that, if
∑

i EiE
†
i is an operator-sum decomposition of E , then

∑
i E

†
iEi

is an operator-sum decomposition of E?.

9.12.18 Trace, transpose, Choi

Let E : B(H) → B(H′), and let d = dimH and d′ = dimH′. Show that, for any
(d× d) matrix X and any (d′ × d′) matrix Y ,

tr[E(X)Y ] = tr[Ẽ(XT ⊗ Y )].

(For example, if we are interested in the component E(X)ij = 〈i|E(X)|j〉,
then we can take Y = |j〉〈i|.)

9.12.19 Entanglement witness

Show that, if E is a positive semi-definite map that is not necessarily completely
positive, then its Choi matrix Ẽ is still positive semi-definite on separable states.

9.12.20 Almost Kraus decomposition

Show that196 any linear map E : B(H)→ B(H′) can be written as ρ 7→
∑

k EkρF
†
k .

This is very reminiscent of the Kraus decomposition, except that here Ek and Fk

are not, in general, the same operator.

9.12.21 Tricks with a maximally mixed state

A maximally mixed state of a bipartite system can be written, using the Schmidt
decomposition (from Exercise 5.14.13), as

|Ω〉 = 1√
d

∑
i

|i〉|i〉

196Hint: use the singular-value decomposition of the Choi matrix.
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whence

|Ω〉〈Ω| = 1
d

∑
i,j

|i〉〈j| ⊗ |i〉〈j|

Each subsystem is of dimension d, and all the Schmidt coefficients are equal.
Here are few useful tricks involving a maximally mixed state.

• If we take the transpose in the Schmidt basis of |Ω〉, then

〈Ω|A⊗B|Ω〉 = 1
d

tr(ATB).

• Any pure state |ψ〉 =
∑

i,j cij |i〉|j〉 of the bipartite system can be written as

(C ⊗ 1)|Ω〉 = (1⊗ CT )|Ω〉.

This implies that

(U ⊗ U?)|Ω〉 = |Ω〉

(where U? denotes the matrix given by taking the complex conjugate,
entry-wise, of U , i.e. without also taking the transpose).

• The swap operation SWAP = S : |i〉|j〉 7→ |j〉|i〉 can be expressed as

S = d|Ω〉〈Ω|TA

= d
∑
i,j

(
|i〉〈j|

)T ⊗ |i〉〈j|

= d
∑
i,j

|j〉〈i| ⊗ |i〉〈j|

where we write XTA to mean the partial transpose over A, i.e. T ⊗ 1. This
implies that

tr[(A⊗B)S] = trAB

and that

(A⊗ 1)S = S(1⊗A).
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Applications and reality
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10 Quantum algorithms

About quantum interference in disguise: Hadamard, function
evaluation, Hadamard. Also about the early quantum algo-
rithms and how they deal with querying oracles, searching for a
needle in a haystack, and estimating periodicity of certain func-
tions. Finally, about phase estimation, hidden order determina-
tion, and Shor’s famous algorithm for prime factorisation, via the
(inverse) quantum Fourier transform.

To boil down the theory of classical computers to a single sentence, we can
say that they essentially evaluate functions: given n-bits of input, they produce
m-bits of output that are uniquely determined by the input. In other words, (very
simple) classical computers encode binary functions

f : {0, 1}n → {0, 1}m

and then compute the value of the output for any particular specified n-bit argu-
ment. But we can make an even further simplification: a binary function with
an m-bit output value is equivalent to m-many binary functions with 1-bit out-
put values (which we call Boolean functions). In other words, we might just as
well say that the basic task performed by a computer is the evaluation of Boolean
functions

f : {0, 1}n → {0, 1}.

How can we adapt this to the world of quantum computing?

10.1 Quantum Boolean function evaluation

In quantum computation, all elementary operations are reversible (i.e. unitary), so
we need to compute Boolean functions in a reversible fashion — we can do so as
follows:

|x〉|y〉 7−→ |x〉|y ⊕ f(x)〉.

The corresponding circuit diagram (for an input register of n = 3 qubits) is
shown in Figure 10.1.

|x⟩ |x⟩

|y⟩ f |y ⊕ f(x)⟩

Figure 10.1: Computing some f : {0, 1}3 → {0, 1} in a quantum manner, where
x ∈ {0, 1}3, y ∈ {0, 1}, and ⊕ denotes XOR, or addition modulo 2.
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10.1 Quantum Boolean function evaluation

Here we use two registers: the first197 one stores the arguments |x〉 (where
x ∈ {0, 1}n is our binary string input), and the second one the value f(x). More
precisely, the value f(x) is added bit-wise to the pre-existing binary value y of
the second register. We usually set y = 0 to get

|x〉|0〉 7−→ |x〉|f(x)〉.

Quantum Boolean function evaluation is a special case of the generalised x-
controlled-U on two registers:∑

x∈{0,1}n

|x〉〈x| ⊗ Ux

where Ux is either the identity 1 (when f(x) = 0) or the bit-flip198 X (when
f(x) = 1). We can write this very succinctly as∑

x∈{0,1}n

|x〉〈x| ⊗Xf(x).

Because of this, we sometimes denote the quantum evaluation of the function f
by Uf , which is a gate on the (n+ 1) qubits |x〉|y〉.

Let’s look at a worked example. Consider the Boolean function f : {0, 1}2 →
{0, 1} given by

f(x) =

{
1 if x = 01;
0 otherwise

which we might call the indicator (or characteristic) function for the binary
string 01, sometimes denoted χ01. The evaluation |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 can be
tabulated explicitly:

|00〉|0〉 7−→ |00〉|0〉 |00〉|1〉 7−→ |00〉|1〉
|01〉|0〉 7−→ |01〉|1〉 |01〉|1〉 7−→ |01〉|0〉
|10〉|0〉 7−→ |10〉|0〉 |10〉|1〉 7−→ |10〉|1〉
|11〉|0〉 7−→ |11〉|0〉 |11〉|1〉 7−→ |11〉|1〉

and then∑
x∈{0,1}2

|x〉〈x| ⊗Xf(x) =|00〉〈00| ⊗ 1 + |01〉〈01| ⊗X

+|10〉〈10| ⊗ 1 + |11〉〈11| ⊗ 1.

197Reading the circuit diagram from top to bottom.
198Do not confuse the capital X (the Pauli bit-flip operator σx) with the small x (a binary string

stored in the first register, and the argument of our Boolean function f).
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10.2 More phase kick-back

Finally, the matrix form looks as follows:



1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1


As you can see, this is a diagonal block matrix: a (4 × 4) matrix with (2 × 2)
matrices as entries. The rows and the columns of the (4× 4) matrix are labelled
by199 the binary strings 00, 01, 10, 11, and the (2 × 2) matrices on the diagonal
represent operations applied to the qubit in the second register. Here, all of these
matrices on the diagonal are the identity 1 except for the (01, 01) entry (i.e. the
second one), which is the bit-flip X. This is because f(01) = 1 (and so we want
to turn the control value y = 0 into y = 1, which is achieved by applying the
bit-flip operator), but f(x) = 0 for all other binary strings x (and so we want to
leave the control value y = 0 as it is).

10.2 More phase kick-back

What makes quantum evaluation of Boolean functions really interesting — and
what truly sets it apart from classical evaluation — is its action on a superposition
of different inputs. For example,200

∑
x

|x〉|0〉 7−→
∑

x

|x〉|f(x)〉

produces f(x) for all x in a single run. However, it is more instructive to see the
effect of quantum function evaluation when the qubit in the second register is
prepared in the state |−〉 := 1√

2 (|0〉 − |1〉) = H|1〉, since then

∑
x

|x〉|−〉 7−→
∑

x

(−1)f(x)|x〉|−〉

(as shown in Figure 10.2). In words, whenever f(x) = 1, the bit-flip X is applied
to the qubit in the second register.

199We always use the lexicographic order 00 < 01 < 10 < 11.
200We make two notational simplifications: we usually don’t worry about normalisation factors, and

we often just write
∑

x
to mean

∑
x∈{0,1}n .
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10.3 Oracles

∑
x |x⟩ ∑

x(−1)f(x) |x⟩

|−⟩ f |−⟩

Figure 10.2: Computing some f : {0, 1}3 → {0, 1} with the second register in
state |−〉.

The reason for defining the state |−〉 as we do is that it is the eigenstate of X
with eigenvalue −1, i.e. X|−〉 = −|−〉. So, due the phase kick-back, whenever
f(x) = 1, the phase factor −1 appears in front of the corresponding term |x〉.
As you can see, the second register stays in state |−〉 all the way through the
computation — it is the first register where things happen.

Let us now see how quantum Boolean function evaluation introduces phase
shifts in quantum interference experiments, and how such experiments can be
viewed as computations.

10.3 Oracles

The computational power of quantum interference was discovered by counting
how many times certain Boolean functions have to be evaluated in order to find
the answer to a given problem. Imagine a “black box” (sometimes also called an
oracle) that computes some fixed Boolean function, but whose inner workings
are unknown to us. Then imagine that we are in a scenario where we want to
learn about some given property of the Boolean function, but we have to “pay”
(in energy, time, money, or anything!) for each use (often referred to as a query)
of the box. In such a setting, the objective is to minimise number of queries to
the oracle while finding out as much information as possible about the function
that it computes. For this purpose, we ignore everything that happens inside the
black box: in our rules of the game, the Boolean function evaluation counts as
just one computational step.

10.4 Deutsch’s algorithm

We start, once more, with the simplest quantum interference circuit

φ
|0⟩ H H cos φ

2 |0⟩ − i sin φ
2 |1⟩

but let’s turn this into a black-box scenario, often known as the binary ob-
servable measurement problem:201

• we are allowed to prepare the input in any state that we like;
• we are allowed to read the output;

201You might recognise this as Exercise 2.14.8, and we will return to this problem again in Section
10.8.
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10.4 Deutsch’s algorithm

• but all we know about the value of ϕ is that it is either 0 or π, and we are
not allowed to “look inside” the phase gate to see which value it is!

With these rules, can we figure out which value ϕ has been set to?

Of course we can — we’re quantum information scientists!

One way of doing it is to prepare the input in the state |0〉 and check the
output: if ϕ = 0 then the output is always |0〉, and if ϕ = π then it is always
|1〉. In other words, a single run of the interference experiment is sufficient to
determine the difference.

The very first quantum algorithm, proposed by David Deutsch in 1985, is
very much related to this effect, but where the phase setting is determined by the
Boolean function evaluation via the phase kick-back.

Scenario. (Global properties of a one-bit function).
We are presented with an oracle that computes some unknown function

f : {0, 1} → {0, 1}. Note that there are only four possibilities for what f can
be: it could be one of two constant functions (i.e. those where f(0) = f(1)),
or one of two balanced functions (i.e. those where f(0) 6= f(1)).

f(0) f(1)

constant 0 0
constant 1 1
balanced 0 1
balanced 1 0

Our task is to determine, using the fewest queries possible, whether the
function computed by the oracle is constant or balanced.

Note that we are not asked for the particular values f(0) and f(1), but only
whether the two values are the same or different. Classical intuition tells us that we
have to evaluate both f(0) and f(1) and compare them, which involves evaluat-
ing f twice. But, in the quantum setting, we can solve this problem with a single
function evaluation, using the following circuit.202

202The original version of Deutsch’s algorithm provides the correct answer with probability 50%.
Here we present a modified/improved version. The more general problem, which deals with un-
known functions f : {0, 1}n → {0, 1} for n ⩾ 1, is known as the Deutsch–Jozsa problem.
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10.4 Deutsch’s algorithm

Circuit. (Deutsch’s algorithm).
First register: 1 qubit. Second register: 1 qubit.

|0⟩ H H

{
|0⟩ if constant

|1⟩ if balanced

|−⟩ f |−⟩

During the function evaluation, the second register “kicks back” the phase
factor (−1)f(x) in front of |x〉, but the state of the second register remains un-
changed; the first register is modified as follows:

|0〉 H7−→ |0〉+ |1〉
Uf7−→ (−1)f(0)|0〉+ (−1)f(1)|1〉

= |0〉+ (−1)f(0)⊕f(1)|1〉
H7−→ |f(0)⊕ f(1)〉.

The evolution of the first qubit is thus identical to that described by the circuit
diagram

φ
|0⟩ H H

{
0 if constant

1 if balanced

where the relative phase is ϕ = (−1)f(0)⊕f(1). The first qubit ends in state |0〉
if the function f is constant, and in state |1〉 if the function is balanced, and the
standard measurement distinguishes these two cases with certainty.203

But really this is just the binary observable measurement problem in disguise!
Indeed, the fact that quantum Boolean function evaluation of a function f is
given by

|x〉|y〉 7−→ |x〉|y ⊕ f(x)〉

means that the unitary Uf has eigenvalues ±1 because it satisfies U2
f = 1, since

two consecutive evaluations gives

|x〉|y〉 7−→|x〉|y ⊕ f(x)〉
7−→|x〉|y ⊕ f(x)⊕ f(x)〉

=|x〉|y〉.

So the fact that 1 = e0 and −1 = eiπ means that Uf acts as a phase gate with
phase either 0 or π. We will come back to this link between Deutsch’s algorithm
and binary observable measurement in Section 10.8.

203This is also implemented in the Quantum Flytrap Virtual Lab.
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10.5 The Bernstein–Vazirani algorithm

Deutsch’s result laid the foundation for the new field of quantum computa-
tion, and was followed by several other quantum algorithms for various prob-
lems. They all seem to rest on the same generic sequence:

• a Hadamard transform;
• function evaluation;
• another Hadamard (or Fourier) transform.204

As we shall see in a moment, in some cases (such as in Grover’s search algo-
rithm) this sequence is repeated several times.

Let us now follow a tour through the three early quantum algorithms, where
each one offers a higher-order speed-up when compared to their classical ana-
logues than the last: firstly linear, then quadratic, and finally exponential. Af-
ter this, we will look at generalising binary observable measurement, the corre-
sponding algorithm analogous to Deutsch’s, and how this leads us to arguably
the most famous quantum algorithm: Shor’s algorithm for prime factorisation.

10.5 The Bernstein–Vazirani algorithm

Scenario. (Hidden inner-product determination).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}, but we are promised that f is of the form

f(x) = a · x ≡ (a1 · x1)⊕ . . .⊕ (an · xn)

for some fixed binary string a = a1a2 . . . an ∈ {0, 1}n.
Our task is to determine, using the fewest queries possible, the value of

the n-bit string a.

It’s quite easy to see how to do this classically: if we input the value x =
00 . . . 010 . . . 0, where the m-th bit is a 1 and all other bits are 0, then f(x) is
simply the m-th bit of a; after n such calls, we will know every bit value, and
thus know a. It is also clear that there cannot exist a better classical algorithm:
each call to the oracle teaches us exactly one bit of information, and since we
must learn n bits, we must query it n times.

In contrast, by running the circuit below, it is possible to determine the value
of a with a single call to the oracle!205

204As explained in Section 10.9, the Hadamard transform is a special case of the Fourier transform
over the group Zn2 .

205This algorithm is named for Ethan Bernstein and Umesh Vazirani who proposed it in 1997.
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10.5 The Bernstein–Vazirani algorithm

Circuit. (The Bernstein-Vazirani algorithm).
First register: n qubits. Second register: 1 qubit.

|0⟩⊗n

H H |a1⟩

H H |a2⟩

...

H H |an⟩

|−⟩ f |−⟩

A quick note on notation: the “. . .” in the circuit means “there are more wires
here but they are identical (apart from the numbering) to the ones above”. You
might also see other notation to denote this, such as

n
|0⟩⊗n

H

or even simply

|0⟩⊗n
H

Now, stepping through the execution of the circuit (and ignoring the second
register, which, as per usual, remains in the state |−〉 throughout), we obtain

|0⊗n〉 H⊗n

7−→
(

1√
2

)n ∑
x∈{0,1}n

|x〉

Uf7−→
(

1√
2

)n ∑
x∈{0,1}n

(−1)a·x|x〉

H⊗n

7−→
(

1√
2

)n ∑
x∈{0,1}n

(−1)a·x
(

1√
2

)n ∑
y∈{0,1}n

(−1)y·x|y〉


=
(

1
2

)n ∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)(a⊕y)·x

 |y〉
where we write the second Hadamard transform as

|x〉 7−→
(

1√
2

)n ∑
y∈{0,1}n

(−1)y·x|y〉.
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10.6 Grover’s search algorithm

To see that this output is indeed equal to |a〉, we can use the fact206 that, for
any y ∈ {0, 1}n,

∑
x∈{0,1}n

(−1)x·y =

{
0 if y 6= 0;
2n if y = 0

which, in our case, tells us that

∑
x∈{0,1}n

(−1)(a⊕y)·x =

{
0 if y 6= a;
2n if y = a.

In other words, if you take the sum over x, then all the terms always cancel
out unless a ⊕ y = 00 . . . 0, but this happens if and only if y = a. Then the
standard bit-by-bit measurement of the first register gives the value of a and
solves the problem with a single call to the oracle.

Alternatively, if you don’t immediately see how this sum works for z 6= a
(where we write |z〉 to mean the output), you can first calculate the probability
that the output is z = a. In this case it is easy to see that the sum is 2n, and that in
the final state

∑
z λz|z〉 the term z = a has amplitude 1. Thus, by normalisation,

all the other terms must be equal to 0.

10.6 Grover’s search algorithm

The next algorithm we will study aims to solve the problem of searching for a
specific item in an unsorted database. Think about an old-fashioned phone book:
the entries are typically sorted alphabetically, by the name of the person that you
want to find. However, what if you were in the opposite situation: you had a
phone number and wanted to find the corresponding person’s name? The phone
book is not sorted in that way, and to find the number (and hence name) with,
say, 50% probability, you would need to search through, on average, 50% of the
entries. Needless to say, in a large phone book this would take a long time.

While this might seem like a rather contrived problem (a computer database
should always maintain an index on any searchable field), many problems in
computer science can be cast in this form, i.e. that of an unstructured search.

Scenario. (Unstructured search).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}.
Our task is to find, using the fewest queries possible, an input x ∈ {0, 1}n

such that f(x) = 1.

Suppose that we know that, amongst the N = 2n binary strings, there are
M � N which are tagged, i.e. strings on which f evaluates to 1. Since there

206Exercise 10.12.5.
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is no structure in the database, any classical search requires around N/M steps,
i.e. the function f must be evaluated roughly N/M times.

In contrast, there is a quantum search algorithm, implemented by the circuit
below, which requires only roughly

√
N/M steps.207

Circuit. (Grover’s search).
First register: n qubits. Second register: 1 qubit.

Grover iteration operator G
(repeat O(2n/2) times)

|0⟩⊗n

H H H |z1⟩

H H H |z2⟩

...
...

H H H |zn⟩

|−⟩ f f0 |−⟩

where f0 tags the binary string consisting of n zeros:

f0(x) =

{
1 if x = 00 . . . 0;
0 otherwise.

Yet again, we can recognise the typical Hadamard, function evaluation, Hadamard
sequence, and yet again we can see that the second register (the bottom qubit, in
state |−〉) plays an auxiliary role: the real action takes place in the first register.
However, unlike the previous algorithms, a single call to the oracle does not do
very much, and we have to build up the quantum interference in the first register
through repeated calls to the oracle (without any intermediate measurements!).

Here, the basic step is the Grover iteration operator G, which is the boxed
part of the circuit that we repeat over and over:

G = (H⊗n ⊗ 1)Uf0(H⊗n ⊗ 1)Uf .

After208 O(2n/2) applications of G, we measure the first register bit-by-bit and
obtain the value of |z〉 = |z1z2 . . . zn〉, which is such that, with “high” probability,

207This algorithm is named for Lov Grover, who proposed it in 1996.
208Recall the big-O notation introduced in Exercise 1.11.7.
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10.6 Grover’s search algorithm

f(z) = 1. In order to actually see how this algorithm works, and to justify our use
of the phrase “with high probability”, we can take a more geometric approach.

First, we define two orthonormal vectors in the Hilbert space describing the
first register:209

|a〉 = 1√
N −M

∑
x∈f−1(0)

|x〉

|b〉 = 1√
M

∑
x∈f−1(1)

|x〉

where f−1(i) := {x ∈ {0, 1}n | f(x) = i} is the preimage of i. Since these vectors
are orthonormal, they are, in particular, linearly independent, and so their span
is a two-dimensional subspace — this is the subspace in which our search will
take place.

Using the fact that f−1(0) and f−1(1) form a partition210 of the space {0, 1}n,
we see that the two-dimensional span of |a〉 and |b〉 contains, in particular, the
equally-weighted superposition |s〉 = H⊗n|0⊗n〉 of all binary strings of length n:

|s〉 = 1√
N

∑
x∈{0,1}n

|x〉

= 1√
N

∑
x∈f−1(0)

|x〉+ 1√
N

∑
x∈f−1(1)

|x〉

=
√
N −M
N

|a〉+
√
M

N
|b〉

= (cos θ)|a〉+ (sin θ)|b〉

where we use the fact that√
N −M
N

2

+
√
M

N

2

= 1 = sin2 θ + cos2 θ

to parametrise
√

N−M
N as cos θ and

√
M
N as sin θ (with θ ≈

√
M
N , since N �M).

The state |s〉 is our starting input for our sequence of Grover iterations, and we
will show that applying G, when restricting to the plane spanned by |a〉 and |b〉,
amounts to applying a rotation by angle 2θ. Grover’s search algorithm can then
be understood as a sequence of rotations which take the input state |s〉 towards
the target state |b〉.

To see this, note that the unitary transformation induced by the oracle

f : |x〉 7→ (−1)f(x)|x〉

209Once again, we shall completely ignore the second register from now on, since all the interesting
stuff happens in the first.

210A partition of a set X is a collection of disjoint subsets X1, . . . , Xm ⊆ X whose union is all of
X, i.e. Xi ∩Xj = ∅ for all i 6= j, and X1 ∪ . . . ∪Xm = X.
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can be written as211

Ia := 2|a〉〈a| − 1

which we can interpret as a reflection through the |a〉-axis: we see that

Ia|a〉 = 2|a〉〈a||a〉 − |a〉
= 2|a〉 − |a〉
= |a〉

Ia|b〉 = 2|a〉〈a||b〉 − |b〉
= −|b〉

and since −|b〉 is a vector that points in the opposite direction from |b〉, it must
be a reflection; since −|b〉 is still orthogonal to |a〉, the reflection must be in the
|a〉-axis.

Some further algebraic manipulation shows that Ia = 2|a〉〈a| − 1 = 1 −
2|b〉〈b|. Now, in particular, evaluation of f0 can be written as 2|0〉〈0| − 1, and
thus thought of as a reflection through the |0〉-axis. If we sandwich f0 in between
two Hadamards then we obtain Is = 2|s〉〈s| − 1, which is reflection through the
|s〉-axis. By definition then, the Grover iteration operator G is the composition

G = IsIa.

Now recall the purely geometric fact that if we have two intersecting lines L1
and L2 in two-dimensional Euclidean space, meeting with angle α, then reflecting
an object through L1 and then reflecting the resulting image through L2 is the
same as simply rotating the original object around the point of intersection L1∩L2
by an angle of 2α.

The angle between |a〉 and |s〉 is θ, so each time G is applied the vector is
rotated (around the origin) by an angle of 2θ towards the |b〉-axis. All that re-
mains to do is to just choose the “right” number r of steps such that we end
up as close to the |b〉-axis as possible. The state |s〉 starts at angle θ to |a〉, and
we should perform our final (and only) measurement when this angle is π/2,
i.e. when (2r + 1)θ = π/2, which gives

r ≈ π

4

√
N

M
.

211To prove this, it suffices to check that these two transformations agree on the standard basis;
since f−1(0) and f−1(1) form a partition, we know that any element (and, in particular, any basis
element) is either in the preimage of 0 or of 1; if it is in the former, then Ia acts as the identity; if the
latter, then Ia acts as −1.
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|b⟩

|a⟩θ
|s⟩

the initial state

|b⟩

|a⟩
θ
θ

2θ |s⟩

IsIa|s⟩

Ia|s⟩

applying G = IsIa

Figure 10.3: Understanding the Grover search algorithm geometrically.

So the quantum algorithm searches an unsorted list of N items in roughly212
√
N steps: it offers a quadratic speed-up when compared to classical search,

which can be of immense practical importance. For example, cracking some
of the more popular modern ciphers, such as AES, essentially requires a search
among many binary strings (called keys). If these can be checked at a rate of,
say, one million keys per second, then a classical computer would need over a
thousand years to find the correct key, while a quantum computer using Grover’s
algorithm would find it in less than four minutes.

10.7 Simon’s algorithm

Here we will see the simplest quantum algorithm that offers an exponential speed-
up when compared to the best possible classical algorithm.

Scenario. (Hidden binary-addition determination).
We are presented with an oracle that computes some unknown function

f : {0, 1}n → {0, 1}n, but we are promised that f satisfies, for all x ∈
{0, 1}n,

f(x) = f(x⊕ s)

for some fixed s ∈ {0, 1}n, which we call the period of f . (We assume that
s is not the string of n zeros, otherwise the problem becomes trivial.)

Our task is to determine, using the fewest queries possible, the value of
the n-bit string s.

Note that asking for f to be periodic is equivalent to asking that f be two-to-
one: for any y ∈ {0, 1}n such that there exists some x ∈ {0, 1}n with f(x) = y,
there exists exactly one other x′ 6= x such that f(x′) = y as well.

212Recall that M � N , so
√

N
M

≈
√
N .
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Classically, this problem is exponentially hard. We will not go through a de-
tailed proof of this fact, but the intuition is reasonably simple: since there is no
structure in the function f that would help us find its period s, the best we can
do is evaluate f on random inputs and hope that we find some distinct x and x′

such that f(x) = f(x′), and then we know that s = x ⊕ y. After having made
m queries to the oracle, we have a list of m-many tuples (x, f(x)); there are
m(m− 1)/2 possible pairs which could match within this list, and the probability
that a randomly chosen pair match is 1/2n−1. This means that the probability
of there being at least one matching pair within the list of m tuples is less than
m2/2n. This means that the chance of finding a matching pair is negligible if the
oracle is queried on fewer than m =

√
2n inputs.

The quantum case, on the other hand, gives a result (again, with “high” prob-
ability) within a linear number of steps. The circuit that solves this problem,
shown below, has a familiar Hadamard–function–Hadamard structure, but the
second register has now been expanded to n qubits.213

Circuit. (Simon’s problem).
First register: n qubits. Second register: n qubits.

|0⟩⊗n

H H

H H

...

H H

|0⟩⊗n f...
...

This time, let’s follow the evolution of both registers throughout this circuit.
We start off by preparing the equally-weighted superposition of all n-bit strings
with the first Hadamard, and then query the oracle:

|0⊗n〉|0⊗n〉 H⊗n⊗17−→ 1√
2n

∑
x

|x〉|0⊗n〉

Uf7−→ 1√
2n

∑
x

|x〉|f(x)〉.

213This circuit is named for Daniel Simon, who proposed it in 1994.
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The second Hadamard transform on the first register then yields the final output
state:

1
2n

∑
x,y

(−1)x·y|y〉|f(x)〉. (‡)

But if we measure214 the second register before applying the second Hadamard
transform to the first register, we obtain one of the 2n−1 possible values of f(x),
each equally likely. Let’s study the implications of this.

Suppose that the outcome of the measurement is f(a) for some a ∈ {0, 1}n.
Given that both a and a ⊕ s are mapped to f(a) by f , the first register then
collapses to the state

1√
2
(
|a〉+ |a⊕ s〉

)
.

The subsequent Hadamard transform on the first register then gives us the final
state215

1√
2n+1

∑
y

(
(−1)a·y + (−1)(a⊕s)·y

)
|y〉|f(a)〉

= 1√
2n+1

∑
y

(−1)a·y
(

1 + (−1)s·y
)
|y〉|f(a)〉

= 1√
2n−1

∑
y∈s⊥

(−1)a·y|y〉|f(a)〉

where we have used the fact that (a⊕ s) · y = (a · y)⊕ (s · y), and that 1 + (−1)s·y

can have only two values: either 2 (when s · y = 0) or 0 (when s · y = 1). Now
we finally measure the first register: the outcome is selected at random from all
possible values of y such that s · y = 0, each occurring with probability 1/(2n−1).

In fact, we did not have to measure the second register at all: it was a math-
ematical shortcut, simply taken for pedagogical purposes. Instead of collapsing
the state to just one term in a superposition, we can express Equation (‡) as

1
2n

∑
y,f(a)

(
(−1)a·y + (−1)(a⊕s)·y

)
|y〉|f(a)〉

= 1
2n

∑
y,f(a)

(−1)a·y
(

1 + (−1)s·y
)
|y〉|f(a)〉

where the summation over f(a) means summing over all binary strings in the
image of f , which is a convenient shorthand for the more complicated216 formal

214As we shall see in a moment, the actual measurement on the second register is not actually
necessary.

215We write s⊥ to mean the set of all y ∈ {0, 1}n such that y · s = 0.
216Another (complicated sounding) way of expressing this sum is by choice of a section of f ,

i.e. picking one element az in each preimage f−1(z) is equivalent to defining a function a : {0, 1}n →
{0, 1}n by a 7→ az which satisfies (a ◦ f)(z) = z, or a ◦ f = 1.
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statement: for all z ∈ {0, 1}n, since our function f is two-to-one, we know that
the preimage f−1(z) has either two elements or none; if it’s the latter, then we
don’t include z in our sum; if it’s the former, we pick one and call it a (knowing
that the other, by the setup, must be a ⊕ s, which you can see appearing in the
first equation above). With this, the final output of the algorithm is

1
2n−1

∑
y∈s⊥

|y〉
∑
f(a)

(−1)a·y|f(a)〉

and, again, the measurement outcome is selected at random from all possible
values of y such that s · y = 0.

We are not quite done yet: we cannot infer s from a single output y. However,
once we have found n−1 linearly independent strings217 y1, y2, . . . , yn−1, we can
solve the n− 1 equations

s · y1 = 0
s · y2 = 0

...

s · yn−1 = 0


to determine a unique value of s. (Note that we only need n− 1 values, and not
n, because s = 0 will always be a solution, but we have explicitly assumed that
this is not the case in our statement of the scenario, and so it suffices to narrow
down the space of possible solutions to consist of two elements, since then we
know that we can just take the non-zero one.)

So we run this algorithm repeatedly, each time obtaining another value of y
that satisfies s · y = 0. Every time we find some new value of y that is linearly
independent of all previous ones, we can discard half the potential candidates for
s.

s

y1

s

y1

y2
s

Figure 10.4: Picture all possible binary strings as dots, but with the string s
denoted by a star. Every linearly independent yk+1 lets us “zoom in” twice as
close towards s.

217It is important to note that we are talking about the pure “abstract” binary strings, and not the
corresponding states in the Hilbert space. Concretely, this means that linearly independent here
means “no string in the set {y1, . . . , yn} can be expressed as the bitwise sum of some other strings
in this set”. That is, we are working with the Z/2Z-vector space of strings, not the C-vector space of
states!
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Now, the probability that (n− 1)-many outputs y1, . . . , yn−1 are linearly inde-
pendent is(

1− 1
2n−1

)(
1− 1

2n−2

)
. . .

(
1− 1

2

)
. (⊛)

To see this, suppose that we have k linearly independent binary strings y1, . . . , yk.
Then these strings span a subspace with 2k elements, consisting of all binary
strings of the form

⊕k
i=1 biyi, where b1, . . . , bk ∈ {0, 1}. Now suppose we obtain

some yk+1. It will be linearly independent from the y1, . . . , yk if and only if it
lies outside the subspace spanned by the y1, . . . , yk, which occurs with probability
1− (2k)/(2n).

We can bound Equation (⊛) from below:218 the probability of obtaining a
linearly independent set {y1, . . . , yn−1} by running the algorithm n − 1 times
(i.e. not having to discard any values and run again) is

n−1∏
k=1

(
1− 1

2k

)
⩾
[
1−

(
1

2n−1 + 1
2n−2 + . . .+ 1

4

)]
· 1

2
>

1
4
.

We conclude that we can determine s with some constant probability of er-
ror after repeating the algorithm O(n) times. The exponential separation that
this algorithm demonstrates between quantum and classical highlights the vast
potential of a quantum computer to speed up function evaluation.

10.8 Phase estimation

In Section 10.4, we took the problem of binary observable measurement and
at Deutsch’s algorithm, which uses quantum Boolean function evaluation as the
controlled-U gate. Now we’re going to generalise the binary observable mea-
surement problem to other controlled-U gates, trying to deduce the value of an
unknown phase that can be a lot more general than simply 0 or π. Afterwards,
we’ll explain how this is the first step towards Shor’s algorithm for prime factori-
sation.

Let’s start by rephrasing the binary observable measurement problem in terms
of phase estimation (or eigenvalue estimation). Recall the problem: we are
handed some phase gate of unknown phase ϕ, but we are promised that ϕ is
either 0 or π; we want to figure out which one it is by running a simple circuit one
time. But this is entirely equivalent to having access to an oracle that computes
a controlled-U gate, along with having an eigenstate |u〉 with eigenvalue ±1
(i.e. eiϕ for ϕ ∈ {0, π}), since this acts as a phase gate of phase 0 or π (depending
on whether the eigenvalue is +1 or −1) on the first register when we plug in
|u〉 to the second register. This is just phase kick-back again! So let’s state the

218Use the inequality

(1 − x)(1 − y) = 1 − x− y − xy

⩾ 1 − (x+ y)

which holds for any 0 < x, y < 1.
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problem this way, and use the solution that we have already described in Section
10.4 (which is really the circuit that we saw all the way back in Section 5.12).

Scenario. (Binary phase estimation).
We are presented with an oracle that computes a controlled-U gate, along

with an eigenstate |u〉 of U with eigenvalue eiϕ We are promised that ϕ is
either 0 or π.

Our task is to determine, using the fewest queries possible, the value of
ϕ.

Circuit. (Controlled-U interference).
First register: 1 qubit. Second register: 1 qubit.

|0⟩ H H

{
|0⟩ if φ = 0

|1⟩ if φ = π

|u⟩ U |u⟩

So we see that the eigenvalues being ±1, or, equivalently, ϕ being 0 or π, is
fundamental to this story — this is what we want to generalise, so that we can
deal with more values219 of ϕ.

Scenario. (Phase estimation).
We are presented with an oracle that computes a controlled-U gate, along

with an eigenstate |u〉 of U with eigenvalue eiϕ. We are promised that ϕ is
of the form

ϕ = 2π m
2n

for some integers m and n.
Our task is to determine, using the fewest queries possible, the value of

ϕ/2π = m/2n

Let’s work our way up to finding a circuit to solve this problem, starting with
the following simple mathematical observation. Since eiϕ = ei(ϕ+2π), we can
assume m to be an integer between 0 and 2n − 1, which means that it has a

219We won’t be able to find the value of completely arbitrary phases exactly, only those of a certain
rational form. However, we will talk about the problem of arbitrary phases in Section 12.9.
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binary representation of the form

m =
n∑

i=1
mi2n−i

for mi ∈ {0, 1}, and so

ϕ = 2π
n∑

i=1
mi2−i

This helps us rephrase the problem as “find the values of the mi for i =
1, . . . , t”.

Now, rather than tackling the full problem, let’s try a much smaller modifica-
tion of the original binary observable measurement problem: we have the same
setup — a phase gate of unknown phase ϕ — but this time we are promised that
ϕ is either 0 or π/2 (instead of 0 or π). How can we adapt our original solution
to find the phase value?

After some thought, you might see the trick: if we can apply the phase gate
twice in a row, then we reduce the problem to the one we have already solved.
Indeed, if ϕ = 0 then repeating it twice is the same as simply applying it once; if
ϕ = π/2 then repeating it twice is the same as simply applying a phase gate of
phase π.

Iterating this idea leads us to the first step of solving the general phase esti-
mation problem, since if U |u〉 = eiϕ|u〉 then U2n−1 |u〉 = e2n−1iϕ|u〉. But

2n−1ϕ = 2nπ
m

2n

= πm

= π

n∑
i=1

mi2n−i

= πmn + π

n−1∑
i=1

mi2n−i

︸ ︷︷ ︸
all divisible by 2

and so, by the 2π-periodicity of eix, we see that

U2n−1
|u〉 = emnπi|u〉

and now we’re happy: mn ∈ {0, 1}, so this is an eigenvalue of U2n−1
with phase

0 or π, reducing us to the original binary observable measurement problem that
we have already solved by replacing U with U2n−1

. We have found the n-th bit
mn!

|0⟩ H H |mn⟩

|u⟩ U2n−1 |u⟩
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We’ve dealt with shrinking220 the distance between the two possible phases
(if we have 0 and π/k for some k ∈ N then we simply replace U by Uk), so now
let’s look at the other way of modifying a pair of phases: shifting. We have the
same setup — a phase gate of unknown phase ϕ — but this time we are promised
that ϕ is either −π/2 or π/2 (instead of 0 or π). How can we adapt our original
solution to find the phase value?

This time we just need to add π/2 to each of the phases, since then we’d end
up back at 0 and π. This means that we simply need to precede (or follow) the
phase gate by the π/4-phase gate221 S = [ 1 0

0 i ].
We already know how to find the value of mn, so let’s use this to now find the

value of mn−1. If we just try the same trick as before then we run into problems:
it’s true that U2n−2 |u〉 = e2n−2ϕ|u〉, but

2n−2ϕ ≡ πmn−1 + πmn/2 mod 2π

so we have an annoying phase of πmn/2 in the way. However, we know that all
we have to do now is to compensate for this by adding another phase gate:

−πmn

2|0⟩ H H |mn−1⟩

|u⟩ U2n−2 |u⟩

Once we’ve got the value of mn−1 from this circuit, then we can simply apply
the same idea to find mn−2, mn−3, and so on, until we have all the mi for i =
1, . . . , n. For example, the circuit to determine mn−3 (given than we already
know mn, mn−1, and mn−2) is

−πmn

8 −πmn−1

4 −πmn−2

2|0⟩ H H |mn−3⟩

|u⟩ U2n−3 |u⟩

The entire process for determining the whole string m1 . . .mn, solving the
scenario, can be written in a form that looks exactly how we expect: Hadamard–
phase–Hadamard, modulo some subtle changes, which we will explain.

220Any interval [a, b] in R can be turned into any other interval [c, d] by a single shrink (or scale)
and a single shift: multiply a and b by (d − c)/(b − a) to get a′ and b′, and then add c − a′ to both
a′ and b′.

221Refer to Section 2.6 for an explanation of this confusing terminology.
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Circuit. (Phase estimation).
First register: n qubits. Second register: 1 qubit.

|0⟩⊗n

H

FT †

|m1⟩

H |m2⟩

...

H |mn⟩

|u⟩ U△ |u⟩

where U4 is defined below, and FT † is defined in Section 10.9.

In this circuit, we write U4 to mean the unitary that performs function eval-
uation as

|x〉|u〉 7−→ eiϕx|x〉|u〉

or, in circuit language, the gate that acts on the i-th register as a controlled-U2n−i

gate:

...

U△

=

. . .

. . .

...
...

. . .

. . .

U2n−1

U2n−2 . . . U

It is important to note, however, that we are sweeping something under the
rug here. If we can treat U4 as an oracle itself, then this does indeed give an
efficient solution, but if all we have access to is U then things are definitely not
efficient: we are calling it 2n−1 + 2n−2 + . . .+ 20 = 2n − 1 many times, which is
exponentially bad!
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The only remaining part of the circuit to discuss is this mysterious FT † gate,
but this deserves a section of its own.

10.9 Quantum Fourier transform

In Section 10.8 we constructed a circuit to perform phase estimation of an un-
known rational phase ϕ = 2πm/2n. The circuit, as per usual, was split into three
parts: first some Hadamard gates, then a modified controlled-U gate, and finally
some undefined gate FT †. Following our usual credo, this last gate should look
something like a Hadamard, and we shall see that it is indeed related. This gate
turns out to be pretty foundational, and turns up all over the place, so it’s worth
taking some time to talk about it in more detail.

If we look back at what we needed this gate to do, we see that it has to contain
these compensating phase shifts that depend on which bit mi of m we are trying
to calculate, e.g. −π(mn/8 +mn−1/4 +mn−2/2) in the case of m3. We draw this
as a circuit in Figure 10.5.

|mn⟩

|mn−1⟩

|mn−2⟩

|mn−3⟩

H

P †
π/2 H

P †
π/4 P †

π/2 H

P †
π/8 P †

π/4 P †
π/2 H

Figure 10.5: The gate FT † followed by measurement, acting on four qubits.
The double vertical lines linking gates indicate that the result of the classical
measurement is used to control the application (for example, we want the first
phase gate on each register to be multiplied by mn).

Hopefully it’s clear how to generalise this definition of the gate to an arbitrary
number of qubits, but to give a formal definition it’s easier (and also useful) to
give a symbolic definition.222

222Here we switch from thinking of binary strings of length n to thinking of integers from 0 to 2n−1,
as described in Section 5.4. It’s good to be comfortable switching between the two!
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10.9 Quantum Fourier transform

The quantum Fourier transform (QFT) acting on n qubits is defined by
the unitary

UFT = 1√
N

N−1∑
x,y=0

e2πixy/N |y〉〈x|

where N = 2n.

Note that this is the definition for the gate that would be denoted by FT ,
whereas what we use in the phase estimation circuit is FT †. In other words, we
are really using the inverse quantum Fourier transform.223

Checking that this matrix is actually unitary is slightly involved, so we’ll only
sketch how it’s done here. We can see that

UFTU
†
FT = 1

N

N−1∑
x,y,z=0

e2πix(y−z)/N |y〉〈z|

since |x〉|y〉 = δxy, and then we can separately consider the cases y = z and
y 6= z; in the latter case, we’ll have to sum a geometric progression, which gives

1
N

N−1∑
x=0

e2πix(y−z)/N = 1− e2πi(y−z)

1− e2πi(y−z)/N

= 0.

So in what way does this relate to the Hadamard gate that we already know
and love? Looking at the n = 1 case of the definition of UFT we get

UFT = 1√
2

[
1 1
1 −1

]
which is exactly the usual Hadamard gate H on 1 qubit. However, if we now
look at n = 2 and compare UFT with H ⊗ H (which we calculated in Exercise
5.14.12), then we see that they differ:

UFT = 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



H ⊗H = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


223There are some confusing conventions when it comes to whether or not to use the word “inverse”

here, but we generally decide to do so.
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10.9 Quantum Fourier transform

In fact, we can give a general expression for UFT on n qubits: it is the (2n × 2n)
matrix

UFT = 1√
2n



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ω2n−1

1 ω2 ω4 ω6 . . . ω2(2n−1)

1 ω3 ω6 ω9 . . . ω3(2n−1)

...
...

...
...

. . .
...

1 ω2n−1 ω2(2n−1) ω3(2n−1) . . . ω(2n−1)(2n−1)



where ω is a primitive 2n-th root of unity (that is, ω2n = 1, but ωm 6= 1 for any
m < 2n).

It turns out the quantum Fourier transform and the Hadamard are both ex-
amples of a more general construction known as the Fourier transform on finite
groups: applied to the cyclic group Z/2nZ we get the QFT; applied to the n-fold
product (Z/2Z)n we get the Hadamard. However, we won’t need this level of
formalism going forward, we just need to remember that we have yet one more
useful gate at our disposal!

Fourier theory and group representations.

This section is not yet finished.

The way that we wrote the QFT in Figure 10.5 is not the conventional way
in which it normally appears, since we’re assuming that we measure the result at
the end. In general, we might not want to do this, and instead replace the depen-
dence of the corrective phase gates on the classical measurements by controlled
qubits, as shown in Figure 10.6. We sometimes refer to this as the coherent
circuit for the inverse quantum Fourier transform.

One other note about conventions is the difference in ordering of bits between
the circuit representation above and the unitary operator definition given before:
in the circuit, the least significant bit appears in the first register as opposed to the
last, with increasing significance of bits as we go up registers (i.e. down the page).
We could of course introduce a lot of SWAP gates to make these conventions agree,
but this is typically unnecessary if we instead just keep track of which qubits are
which and remember what we want to do with each one next.

276

https://en.wikipedia.org/wiki/Fourier_transform_on_finite_groups
https://en.wikipedia.org/wiki/Fourier_transform_on_finite_groups


10.10 Hidden-order determination

H P †
π/2 P †

π/4 P †
π/8

H P †
π/2 P †

π/4

H P †
π/2

H

Figure 10.6: The gate FT † without measurement, acting on four qubits. This no
longer depends on any classical measurements, but instead uses controlled-phase
gates.

10.10 Hidden-order determination

In the same way that Deutsch’s algorithm (10.4) dealt with binary observable
measurement for a unitary implementing some function evaluation, the hidden-
order determination algorithm that we are now going to study deals with phase
estimation for a unitary implementing some function evaluation.224 This turns
out to be an important step along the path towards Shor’s algorithm

Scenario. (Hidden-order determination).
We are presented with an oracle that computes the function on n qubits

Ua|z〉 = |az mod N〉

for some fixed (known) integer N = 2n, along with a fixed (known) integer
a that is coprime to N .

Our task is to determine, using the fewest queries possible, the order r of
a modulo N , i.e. the smallest positive integer r such that ar ≡ 1 mod N .

Let’s be clear and spell out what notational shortcuts we’re making here.225

Every integer 0 ⩽ z < 2n corresponds to a basis state |z〉 of the space of n qubits,
given by writing z in binary form. So when we write |az mod N〉, this means
that we take the product of the integers a and z, take this integer modulo N , and
then consider the basis state given by writing this result in binary form.

The hypothesis that N is a power of 2 is actually unnecessary, as we will later
explain, but we assume it for now since for the sake of ease.

224Deutsch’s algorithm is to binary observable measurement as hidden-order determination is to
phase estimation.

225For example, if n = a = 3, then U3 applied to |4〉 = |1〉|0〉|0〉 is |12 mod 8〉 = |4〉 = |1〉|0〉|0〉,
and applied to |5〉 = |1〉|0〉|1〉 is |15 mod 8〉 = |7〉 = |1〉|1〉|1〉.
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First of all, we can write down some eigenstates of Ua parametrised by an
integer s ∈ Z

|us〉 = 1√
r

r−1∑
k=0

e−2πi(sk/r)|ak mod N〉.

Since 2πi(r + 1)k/r ≡ 2πi(k/r) mod 2πi, we see that this gives us r eigenstates,
parametrised by s = 0, . . . , r−1 Now let’s show that these are indeed eigenstates.
By the definition of Ua,

Ua|us〉 = 1√
r

r−1∑
k=0

e−2πi(sk/r)|yk+1 mod N〉

= 1√
r

r∑
j=1

e2πi(s/r)e−2πi(sj/r)|yj mod N〉

where we simply changed the index of the sum to j = k+ 1. But r is the order of
a modulo N , so we the j = r term can be written as j = 0, giving

Ua|us〉 = e2πi(s/r)|us〉

which shows that |us〉 is an eigenstate with eigenvalue e2πi(s/r).
Of course, we cannot actually prepare any of these eigenstates |us〉 because

they require knowledge of the natural number r that we are trying to find! But
at the very least this now looks a bit like a problem that we have seen before: if
we could prepare some particular |us〉 then the phase estimation algorithm (from
Section 10.8) would allow us to calculate s/r, and thus r. So let’s try one of our
always-useful tricks: superposition.

Although we cannot prepare any |us〉 individually, note that226

1√
r

r−1∑
s=0
|us〉 = 1

r

r−1∑
s=0

r−1∑
k=0

e−2πi(sk/r)|ak mod N〉

= 1
r

r−1∑
k=0

(
r−1∑
s=0

e−2πi(sk/r)

)
|ak mod N〉

= 1
r

r−1∑
s=0
|1〉︸ ︷︷ ︸

k=0

+1
r

r−1∑
k=1

(
r−1∑
s=0

e−2πi(sk/r)

)
|ak mod N〉

= |1〉

and so we should get something interesting by just plugging in |1〉.
The actual circuit227 is practically identical to the phase estimation circuit of

Section 10.8, but where U is replaced by Ua, and |u〉 is replaced by |1〉.
226Recall that, if ω 6= 1 is an n-th root of unity, then

∑n−1
i=0 ωi = 0.

227Named for Peter Shor, who proposed it as part of his factoring algorithm (see Section 10.11) in
1994.
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Circuit. (Shor’s order-finding algorithm).
First register: 2n+ 1 qubits. Second register: n qubits.

n

|0⟩⊗2n+1

H

FT †
H

...

H

|1⟩⊗n U△
a

As always, let’s step through the circuit. Immediately after the first Hadamard
we are in the state(

1√
N

N−1∑
x=0
|x〉

)
|1〉.

Next, just after the function evaluation Ua, we are in the state

1√
r

r−1∑
s=0
|Φs〉|us〉

where

|Φs〉 = 1√
N

N−1∑
n=0

eiφsx|x〉

and φs = 2π(s/r), so that eiφsx is the eigenvalue of |us〉 for Ua.
To calculate the effect of the inverse quantum Fourier transform, we will make

the same pedagogical shortcut as we did when studying Simon’s algorithm228

(Section 10.7) and pretend that we make a measurement in the basis |us〉 in the
auxiliary system before applying the inverse QFT. We will measure one of the r
possible values of s, each with equal probability 1/r, and doing so will leave the
main register in the corresponding state |Φs〉. But this is exactly the picture of
what happened after applying U4 in the phase estimation circuit! This means
that we already know what the inverse QFT will do: it will give us the value of

228There is a deep link between this algorithm and Simon’s algorithm. As we have mentioned,
hidden-order determination forms a key part of Shor’s algorithm; Simon’s algorithm and Shor’s al-
gorithm (and Deutsch’s algorithm, in fact) are all closely related: they are all examples of hidden
subgroup problems.
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10.11 Shor’s algorithm

22n+1(s/r). Since this will happen irrelevant of which value of s we measure, we
need not actually perform the measurement.229

So running through the entire circuit and then measuring the main register
will give us the value of 22n+1(s/r), which is almost enough to recover the value
of r, but not quite: since we didn’t measure the auxiliary register, we don’t know
which value of s we obtained! However, now a purely classical (and efficient)
algorithm comes to our rescue: the continued fractions algorithm. This will
give us the values of s and r provided that a certain inequality is satisfied, which
is always the case if our main register has 2n+ 1 qubits.230 We will not delve into
these details of the classical post-processing of the measurements since they are
no longer quantum; consider this yet another chance for the interested reader to
either work out the details themselves or to find the answers elsewhere through
some research of their own.

Finally, the assumption at the very start thatN be of the form 2n is not actually
necessary (just as the assumption that the phase in the phase estimation problem
be of the form 2πm/2n is not actually necessary). Suppose that N isn’t of this
form, and let n be the smallest integer such that N < 2n. Then we want to
extend Ua to act on n qubits, and we need to be careful how we do so. For
example, we cannot simply take the same function Ua|z〉 = |az mod N〉, since
then Ua|0〉 = |0〉 = Ua|N〉 but |0〉 and |N〉 are orthogonal (remember, we always
assume our bases to be orthonormal!), so this Ua cannot be unitary because it
sends orthogonal states to non-orthogonal states. The correct modification to
make for our purposes is to define

Ua|z〉 =

{
|az mod N〉 0 ⩽ z < N

|z〉 R ⩽ z < 2n

which is indeed unitary over the whole space of n qubits.

10.11 Shor’s algorithm

Given its importance in the field of (post-)quantum cryptography (and thus in the
real world), as well as its fame, it would be remiss of us to not dedicate at least
one section in this book to Shor’s algorithm. However, as you will see, the actual
quantum part of the algorithm is exactly the order-finding circuit from Section
10.10; the rest is an application of classical number theory to reduce the problem
of prime factorisation to the problem of hidden-order determination. Because
of this, we will not spend too much time on the details — this is not a book on
classical number theory! — but we hope that this section at least highlights the
important fact which is that other areas of mathematics and physics have much to
offer for the aspiring quantum information scientist. Of course, it is infeasible to
try to learn everything in mathematics, but this is also exactly the point: it’s good

229It is very fortunate that we do not need to perform this measurement, since in general we will not
know how to implement it: recall that to construct |us〉 we would need to already know the value of
the order r that we are trying to find.

230The explicit inequality in the continued fractions algorithm actually tells us that 2n + 1 is the
smallest possible size for the main register to ensure exactness with complete certainty.
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10.11 Shor’s algorithm

to be aware that there is a lot of it out there, and that we all have a lot to learn
from each others’ specialities.

The purpose of Shor’s algorithm231 is to find the prime factorisation of a com-
posite integer. This is a classically difficult problem, and hence forms the basis
of some very well-known public-key cryptography schemes, such as RSA (see Ex-
ercise 10.12.1), but Shor’s algorithm offers a distinct speed-up. More precisely,
to factor an integer R classically with the general number field sieve method is
a sub-exponential problem (i.e. somewhere between polynomial in R and ex-
ponential in R), whereas Shor’s algorithm is polylogarithmic (i.e. polynomial
in logR). This means that Shor’s algorithm witnesses integer factorisation as a
bounded-error quantum polynomial time problem: it lives in BQP (recall Section
1.9).

Since any integer has a unique (up to ordering) prime factorisation232 consist-
ing of finitely many prime numbers, it suffices to find a single prime factor, since
then we can simply divide our original number by this and run the algorithm
over and over until it terminates, recording the prime factors that we find along
the way. But still, turning the problem of “find a prime factor” into a problem
that we have already solved (namely hidden-order determination) requires some
work, so let’s get started.

Recall that the greatest common divisor gcd(m,n) (or highest common
factor hcf(m,n)) of a pair of integers (m,n) is the largest integer that divides
both of them. This can be efficiently computed by a (very old) classical algorithm
known as Euclid’s algorithm, so we can make use of it in freely. In fact, let us
now list the things that we can do efficiently with classical algorithms:

• compute the hcf of two integers (Euclid’s algorithm)
• determine if an integer is prime (the Miller–Rabin primality test)
• determine if an integer is even (check if the last digit is a 0 in its binary

expansion)
• determine if an integer R can be written as R = ab for some integers a ⩾ 1

and b ⩾ 2 (Exercise 10.12.6).

One more small note of terminology: throughout this section, we say factor
to mean non-trivial factor, i.e. the factors ofR are the natural numbers that divide
R apart from 1 and R.

Lemma. Let x and R be natural numbers such that
• R is not prime;
• 1 < x < R− 1;
• x2 ≡ 1 mod R.

Then both hcf(x− 1, R) and hcf(x+ 1, R) are factors of R.

231There are a few algorithms known by the name of “Shor’s algorithm”, but they are all somewhat
related.

232The fact that prime factorisation is essentially unique is so is important that it earns the name of
the fundamental theorem of arithmetic.
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10.11 Shor’s algorithm

Note that 1 < x < R − 1 is equivalent to saying that x 6≡ ±1 mod R. In other
words, we assume x to be a non-trivial square root of 1 modulo R.

Proof. The hypothesis tells us that

x2 − 1 = kR

for some integer k, and so factoring x2 − 1 tells us that

R | (x+ 1)(x− 1)

(where we write a | b to mean that a divides b).
Now, since x < R − 1, we know that x+ 1 < R and so R cannot divide x+ 1

because it is simply too big. This means, in particular, that hcf(x+1, R) 6= R. But
now note that if hcf(x−1, R) = 1 then, since R |(x+1)(x−1), it must be the case
that R |x+ 1, and we have just said that this cannot happen. The same argument
applies if we swap x+ 1 and x−1, so we have proven that both hcf(x−1, R) and
hcf(x+ 1, R) are factors of R.

The essence of the above proof is much simpler than the length might suggest:
we are sort of just saying that R cannot divide either x+ 1 or x− 1 alone, and so
must be “split up” into two parts, with one inside x+1 and the other inside x−1.

Or we could appeal directly to the fundamental theorem of arithmetic. Write
R = pa1

1 . . . pan
n , and now consider each prime factor individually. Since R | (x +

1)(x − 1), we know that p1 | (x + 1)(x − 1). A very useful fact233 about prime
numbers is that, if p divides a product ab, then either p divides a or p divides b.
So here we see that p1 must divide either x + 1 or x − 1. We can continue like
this for all the prime factors pi of R, but note that it cannot be the case that all
the pi divide only x+ 1 and not x− 1, since this would then force pa1

1 . . . pan
n = R

to divide x+ 1, which we have already said cannot happen (and similarly for all
the pi dividing only x− 1). This means that both hcf(x− 1, R) and hcf(x+ 1, R)
are non-trivial.

Now let’s state another useful lemma (which we will not prove).

Lemma. Let R be an odd natural number with m ⩾ 2 distinct prime
factors. If y is chosen uniformly at random from the set of natural num-
bers that are coprime to and smaller than R, then the probability that the
order r of y modulo R is even and satisfies

yr/2 6≡ −1 mod R

is at least

1− 1
2m − 1

.

233This “very useful fact” is secretly just the fact that prime numbers are prime elements in the
ring of integers. The usual definition of “prime number” that we are used to (“only divisible by 1
and itself”) actually says that they are irreducible elements. The link between these two concepts
requires some knowledge of ring theory.
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10.11 Shor’s algorithm

How is this lemma useful to us? Well, it says that if we randomly pick some
1 < y < R satisfying the hypotheses, then with non-zero probability (that in-
creases as R has more and more prime factors) it will be such that we can apply
the previous lemma to x = yr/2, almost. The one problem is that x > y, and
so it might also be the case that x > R, and the previous lemma needed the
assumption that x < R− 1. But we can fix this!

Lemma. Let y and R be natural numbers such that
• R is not prime;
• the order r of y modulo R is even;
• yr/2 < R;

Then either yr/2 + 1 is divisible by R, or both hcf(yr/2 − 1, R) and
hcf(yr/2 + 1, R) are factors of R.

Proof. First of all, recall that the order r is the smallest natural number such that

yr ≡ 1 mod R.

Since r is even, yr/2 is well defined and we can factor

kR = yr − 1 = (yr/2 + 1)(yr/2 − 1)

as before. Now we have to do something different, because it is no longer neces-
sarily the case that yr/2 + 1 is smaller than R. However, we can still show that R
does not divide the yr/2 − 1 term, since if it did then we would have that

yr/2 ≡ 1 mod R

which contradicts the fact that r is the smallest natural number such that this
holds. So eitherR divides the yr/2+1 term, or it doesn’t; in the latter case, we can
then apply exactly the same argument as before to show that both hcf(yr/2−1, R)
and hcf(yr/2 + 1, R) are factors of R.

The fact that this lemma requires R to be odd and also have at least two
distinct prime factors means that we can only apply it if we have checked that
both of these things are true. In other words, we need to know that R is not
even, and also that R is not of the form pb for some prime p. But as we’ve already
mentioned, both of these properties can be checked by an efficient algorithm by
a classical computer.

Now we’re ready to state Shor’s algorithm.
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10.12 Remarks and exercises

Shor’s algorithm. (Factoring the natural number R.)
1. Check that R is not prime.

If so, stop and return the factor R.

2. Check if R is even.

If so, stop and return the factor 2.

3. Check if R = ab for some integers a ⩾ 1 and b ⩾ 2.

If so, stop and return the factor a.

4. Uniformly at random pick an integer 1 < y < R and evaluate
hcf(y,R); check if hcf(y,R) > 1.

If so, stop and return the factor hcf(y,R).

5. Compute the order r of y modulo R via hidden-order determination
(from Section 10.10).

6. Check if r is odd.

If so, go back to step 4.

7. Check if yr/2 ≡ −1 mod R.

If so, go back to step 4.

8. Compute hcf(yr/2 − 1, R) and hcf(yr/2 + 1, R).
Stop and return these as factors.

Picking it apart, we see that steps 1 to 3 are simply checking easy cases; steps
4, 6, and 7 are checking that the necessary hypotheses are satisfied in order for
step 8 to calculate factors of R. The only place that we use anything quantum
in in step 5, where we have to do hidden-order determination.234 The fact that
steps 6 and 7 won’t cause us to get stuck in an endless loop is justified by the fact
that they will both be passed over with probability 1−1/(2m−1), as we mentioned
above.

10.12 Remarks and exercises

10.12.1 RSA

This section is not yet finished.

10.12.2 More complexity classes

This section is not yet finished.

234Even better, thanks to a result by Ekerå, one can be rather sure that this quantum subroutine will
only need to be run a single time.
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10.12.3 Implementing reflections

This section is not yet finished.

10.12.4 Grover’s optimality

This section is not yet finished.

10.12.5 Picking out a single state

Prove that, for any y ∈ {0, 1}n,

∑
x∈{0,1}n

(−1)x·y =

{
0 if y 6= 0;
2n if y = 0.

10.12.6 Writing an integer as a power

1. Show that R = 21 cannot be written in the form ab for integers a ⩾ 1 and
b ⩾ 2.

2. Generalise this to a method that could work in O(L3) for any value of R
that is L bits long.235

235Hint: since R is L bits long, R < 2L, and so b < L.
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11 Quantum cryptography

About . . .

This section is not yet finished.
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12 Approximation

About quantifying precision in implementations of quantum cir-
cuits using the notion of metrics — more specifically, the trace
distance. Also about the practical feasibility of universal sets
of gates and correctly distinguishing non-orthogonal states de-
scribed by density operators.

We have talked a lot about preparing specific quantum states and constructing
specific unitary operations, but the space of states of any quantum system is
a continuous space, and the set of unitary transformations is also continuous.
It is entirely unrealistic to imagine that in the actual world we will be able to
prepare, for example, a qubit precisely in the state |0〉, or to perform a unitary
transformation that is exactly equal to the controlled-not gate. We never have
infinite precision in our manipulations of the physical world. The good news is
that, for all practical purposes, infinite precision is not actually necessary, and
we can achieve most of our goals by preparing quantum states and performing
quantum operations that are “close enough” to the desired ones. But what is
“close enough”, and how do we quantify it?

12.1 Metrics

To begin with, let us work with pure states, and save the problem of dealing with
mixed states for a later section. We will start with the second question: how do
we quantify this notion of “close enough”? The central concept is one with which
you are probably already somewhat familiar (we mentioned it in Sections 0.3
and 0.5), namely that of a metric, or distance.

Given a set X, a metric (or distance) on X is a function d : X×X → R⩾0
such that

• Identity of indiscernibles: d(a, b) = 0 if and only if a = b
• Symmetry: d(a, b) = d(b, a) for all a, b ∈ X
• Triangle inequality: d(a, c) ⩽ d(a, b) + d(b, c) for all a, b, c ∈ X.

Generalisations of metrics.

There are four conditions governing metrics (identity of indiscernibles is
an “if and only if” statement, so we can separate it into two “if” state-
ments). As is usually the case in mathematics, it is interesting to ask what
happens if we drop one or more of these.

• If we drop d(a, b) = 0 =⇒ a = b then we get pseudometrics.
• If we drop a = b =⇒ d(a, b) = 0 then we get metametrics, or
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partial metrics.
• If we drop d(a, b) = d(b, a) then we get quasimetrics. These arise

“in real life”, if you think about travelling around a city that has lots
of one-way streets, or travelling up or down a big hill.

• If we drop d(a, c) ⩽ d(a, b) + d(b, c) then we get semimetrics
(though be careful here: lots of authors use “semimetric” to mean
almost any one of these generalisations, and the terminology is very
non-consistent!).

We can also consider the case of extended metrics, where the dis-
tance function is allowed to take the value ∞. For many category theo-
rists, “the” notion of metric space is that of an extended pseudoquasimetric.

The most common norm is the Euclidean distance, that is, distance be-
tween two points in Euclidean space. Given points A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) in Rn, their Euclidean distance is√

|b1 − a1|2 + |b2 − a2|2 + . . .+ |bn − an|2.

But we already know that Euclidean space Rn is more than just a set: it is a
vector space. This means that we don’t just have a metric space (i.e. a set with a
metric), but instead a normed vector space, where the norm ‖ · ‖ of a vector is
defined to be the distance of that vector from the origin: ‖a‖ := d(a, 0).

It turns out that this norm (and thus this metric) actually arises from a more
fundamental structure, namely that of the inner product. Returning to the bra-
ket notation, we recall that the norm of any vector |a〉 is exactly ‖a‖ =

√
〈a|a〉,

and thus the distance between any two vectors |a〉, |b〉 is exactly d(|a〉, |b〉) =
‖|b〉 − |a〉‖ (though for simplicity we sometimes write this as ‖b − a‖ instead, or
even ‖a− b‖, since this is equal). This norm is also called the 2-norm, or the `2-
norm (for reasons that we will come back to in Section 12.11.2), and is defined
for any finite-dimensional Hilbert space Cn using the fact that C ∼= R2, so that
‖x+ iy‖ := ‖(x, y)‖ =

√
x2 + y2.

Before moving on to talk about state vectors, let us first discuss one other
metric space which shows up in information theory (both classical and quantum).
The space236 of binary strings (of some fixed length n) admits a metric known as
the Hamming distance. This is defined quite simply as “the number of positions
at which the corresponding bits are different”. For example,

d(0101101011, 1101110111) = 4

since these two strings differ in four bits:

0 1 0 1 1 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1
! ✓ ✓ ✓ ✓ ! ! ! ✓ ✓

236You can think of this as just a set, but we have already seen that this is actually a vector space
over Z/2Z, where addition corresponds to XOR.
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More formally, if we define the Hamming weight of a binary string of length
n as the number of bits equal to 1, then the Hamming distance between two
strings is simply the Hamming weight of their difference (where subtraction is
calculated in Z/2Z, i.e. mod 2). We leave the proof that this is indeed a metric
as an exercise (Exercise 12.11.4).

12.2 How far apart are two quantum states?

Given two pure states, |u〉 and |v〉, we could try to measure the distance between
them using the Euclidean distance ‖u− v‖. This works for vectors, but has some
drawbacks when it comes to quantum states. Recall that a quantum state is
not represented by just a unit vector, but by a ray, i.e. a unit vector times an
arbitrary phase factor. Multiplying a state vector by an overall phase factor has
no physical effect: the two unit vectors |u〉 and eiφ|u〉 describe the same state. So,
in particular, we want the distance between |u〉 and −|u〉 to be zero, since these
describe the same quantum state. But if we were to use the Euclidean distance,
then we would have that ‖u− (−u)‖ = ‖u+u‖ = 2, which is actually as far apart
as the two unit vectors can be!

One solution to this problem is to define the distance between |u〉 and |v〉 as
the minimum over all phase factors, i.e.

d(u, v) := min
φ∈[0,2π)

{
‖u− eiφv‖

}
.

But with some algebraic manipulation we can actually figure out what this mini-
mum is without calculating any of the other values.

We first express the square of the distance between any two vectors in terms
of their inner product:

‖u− v‖2 = 〈u− v|u− v〉
= 〈u|u〉 − 〈u|v〉 − 〈v|u〉+ 〈v|v〉
= ‖u‖2 + ‖v‖2 − 2 Re〈u|v〉

(where Re(z) is the real part of the complex number z). Then we can write the
Euclidean distance between state vectors as

‖u− v‖ =
√

2(1− Re〈u|v〉).

Now if we want to minimise this expression over all rotations237 of v, then we
want 〈u|v〉 to be real and as large as possible, i.e. for 〈u|v〉 = |〈u|v〉|. This gives
us a definition of distance.

The state distance between two state vectors |u〉 and |v〉 is

d(u, v) :=
√

2(1− |〈u|v〉|).

237Recall that multiplication by a complex number corresponds to rotation and scaling, and so mul-
tiplication by a phase factor (which is always of unit length) corresponds to just rotation.
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Note that we sometimes write the state distance as ‖u− v‖, and we might re-
fer to it as “Euclidean distance”, which is an abuse of notation: really we should
be writing min{‖|u〉 − eiϕ|v〉‖}. But this sort of thing happens a lot in mathe-
matics238, and it’s good to get used to it. The justification is that, as we have
already said, the usual Euclidean distance doesn’t really make great sense for
state vectors (because of this vector vs. ray distinction), and so if we know that
|u〉 and |v〉 are state vectors then writing ‖u− v‖ (which is already shorthand for
‖|u〉 − |v〉‖) should suggest “oh, they mean the version of ‖ · ‖ that makes sense
for state vectors, where we take a minimum”.

For small values of d(u, v) = ‖u−v‖, we can think of this distance as being
the angle between the two unit vectors. Indeed, if we think of Euclidean
(unit) vectors, then the difference v − u is, for sufficiently small ‖u −
v‖, just the angle between the two unit vectors (expressed in radians),
because a small segment of a circle “almost” looks like a triangle.

u

v

v − u

Alternatively (and more formally), we can see this by writing |〈u|v〉| =
cosα ≈ 1− α2/2, since then

‖u− v‖ =
√

2(1− |〈u|v〉|) ≈ α.

This can certainly help with intuition, but extra care must always be
taken when dealing with complex vector spaces, since our geometric in-
tuition breaks down rapidly in (complex) dimension higher than 1.

As you might hope, two state vectors which are close to one another give
similar statistical predictions. In order to see this, pick a measurement (any
measurement) and consider one partial outcome described by a projector |a〉〈a|.
What can we say about the difference between the two probabilities

pu = |〈a|u〉|2

pv = |〈a|v〉|2

if we know that ‖u− v‖ ⩽ ε?
Well, first of all, let us introduce two classic tricks that are almost always

useful when dealing with inequalities — the first holds in any normed vector
space, and the latter in any inner product space.

238In computer science lingo, this is what you might call operator overloading.
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• the reverse triangle inequality:∣∣∣‖u‖ − ‖v‖∣∣∣ ⩽ ‖u− v‖
• the Cauchy–Schwartz inequality:239

〈u|v〉2 ⩽ 〈u|u〉〈v|v〉

or, equivalently (by taking square roots),

|〈u|v〉| ⩽ ‖u‖‖v‖.

Furthermore, the two sides of the inequality are equal if and only if |u〉 and
|v〉 are linearly dependent.

Using these, we see that

|pu − pv| =
∣∣∣|〈a|u〉|2 − |〈a|v〉|2∣∣∣

=
∣∣∣(|〈a|u〉|+ |〈a|v〉|)(|〈a|u〉| − |〈a|v〉|)∣∣∣

⩽ 2
∣∣∣|〈a|u〉| − |〈a|v〉|∣∣∣

⩽ 2
∣∣∣〈a|u〉 − 〈a|v〉∣∣∣

⩽ 2‖a‖‖u− v‖
= 2‖u− v‖.

So if ‖u− v‖ ⩽ ε, then |pu − pv| ⩽ 2ε.
Again, we can appeal to some geometric intuition if we pretend that |u〉 and

|v〉 are Euclidean vectors instead of rays. Write

|〈a|u〉| = cos(α)
|〈a|v〉| = cos(α+ ε)

where ε is the (very small) angle between |u〉 and |v〉, whence ‖u− v‖ = ε. Then

|〈a|u〉|2 − |〈a|v〉|2 = cos2(α)− cos2(α+ ε)
≈ ε sin(2α)
⩽ ε.

As an interesting exercise, you might try to explain why this approach gives a
tighter bound (ε instead of 2ε).

12.3 Fidelity

Sometimes, when quantifying closeness of states, the inner product is a more con-
venient tool than the distance/norm. Analogous to how we define the distance

239This is arguably the most useful mathematical inequality that we have!
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between states |u〉 and |v〉 as d(u, v) = ‖u − v‖, we define the fidelity between
them as

F (u, v) := |〈u|v〉|2.

This is not a metric, but it does have some similarly nice properties: for exam-
ple, F (u, v) = 1 when the two states are identical, and F (u, v) = 0 when the
two states are orthogonal (which means that they are “as different as possible”).
Intuitively, we can understand fidelity as the probability that the state |u〉 (resp.
|v〉) would pass a test for being in state |v〉 (resp. |u〉). In other words, if we per-
form an orthogonal measurement on |u〉 that has two outcomes (true if the state
is |v〉; false if the state is orthogonal to |v〉), then the fidelity F (u, v) = |〈u|v〉|2
is exactly the probability that we measure the outcome true.

Recall our definition of state distance:

d(u, v) =
√

2(1− |〈u|v〉|)

This gives us a relation between distance and fidelity: once we know one, we can
easily calculate the other. However, everything we have said so far applies only to
pure states — we will see how the mixed state case is slightly more complicated
shortly.

One final remark: as another example of the many inconsistencies in the
literature, some authors define F (u, v) to be |〈u|v〉| instead of |〈u|v〉|2. Whenever
we say fidelity, we mean the latter: |〈u|v〉|2.

12.4 Approximating unitaries

So now we know a bit about how norms (or metrics, or inner products) can
help us to understand distance between state vectors, can we say something
similar about quantum evolutions? Say we have unitary operators U and V acting
on the same Hilbert space, where U is some “target” unitary that we want to
implement in a real-life circuit, and V is an “approximate” unitary that we can
actually implement in practice. We say that V approximates U with precision
ε, or that U and V are ε-close, if240

‖U − V ‖ ⩽ ε

where ‖ · ‖ is some norm on unitary matrices (of the same size), which we would
want to satisfy the following property: if ‖U − V ‖ is “small”, then U should be
hard to distinguish from V when acting on any quantum state.

Before defining such a norm, however, we first recall some linear algebra
which we briefly touched upon in Exercise 5.14.13. The singular values of an
operator A are the square roots of the (necessarily non-negative) eigenvalues of
the Hermitian operator A†A. If A is normal (e.g. a density operator), then its
singular values are exactly the absolute values of its eigenvalues. We tend to

240Note that V approximates U with precision ε if and only if U approximates V with precision ε.
Even though we might think of one as being our ideal unitary and the other as being the best feasible
real-life implementation that we can achieve, this is only us giving names to things — the definition
does not care which way round we think of them.
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denote singular values by si(A) (or just si if it is clear which operator we are
talking about), and we write σ(A) to mean the set of eigenvalues of A, i.e.

σ(A) := {λ ∈ C | det(A− λ1) = 0}.

This means that

{si(A)} = {
√
λ | λ ∈ σ(A)}.

The operator norm (or spectral norm) ‖A‖ of an operator A ∈ B(H)
is the maximum length of the vector A|v〉 over all possible normalised
vectors |v〉 ∈ H, i.e.

‖A‖ := max
|v〉∈S1

H

{
|A|v〉|

}
(where S1

H is the unit sphere in H, i.e. the set of vectors of norm 1). One
can show that ‖A‖ is equal to the largest singular value of A.

If A is normal (e.g. a density operator), then

‖A‖ = max
λ∈σ(A)

{
|λ|
}
.

The operator norm satisfies some very useful properties:241

• If A is normal, then ‖A†‖ = ‖A‖
• ‖A⊗B‖ = ‖A‖‖B‖
• If U is unitary, then ‖U‖ = 1
• If P 6= 0 is an orthogonal projector, then ‖P‖ = 1
• Sub-multiplicativity: ‖AB‖ ⩽ ‖A‖‖B‖.

Now suppose that some quantum system, initially in state |ψ〉, evolves ac-
cording to U or V . Let P be a projector associated with some specific outcome
of some measurement that can be performed on the system after either evolution
(such as P = |a〉〈a|, as in our earlier example). Let pU (resp. pV ) be the prob-
ability of obtaining the corresponding measurement outcome if the operation U
(resp. V ) was performed. By definition, we see that

|pU − pV | =
∣∣∣〈ψ|U†PU |ψ〉 − 〈ψ|V †PV |ψ〉

∣∣∣
=
∣∣∣〈ψ|U†P (U − V )|ψ〉+ 〈ψ|(U† − V †)PV |ψ〉

∣∣∣
⩽
∣∣∣〈ψ|U†P (U − V )|ψ〉

∣∣∣+
∣∣∣〈ψ|(U† − V †)PV |ψ〉

∣∣∣
where the inequality is exactly the triangle inequality.

241Proving these properties, along with some others, is a good thing to practise — see Exercise
12.11.5.
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By an application of the Cauchy–Schwartz inequality242 followed by sub-
multiplicativity, we then have

|pU − pV | ⩽ ‖U†P‖‖U − V ‖+ ‖U† − V †‖‖V P‖
⩽ 2‖U − V ‖.

This tells us what ε-closeness means: suppose that V and U are ε-close; then
if, instead of applying one, we apply the other, and subsequently measure the re-
sulting physical system, we know that the probabilities of any particular outcome
in any measurement will differ by at most 2ε.

Now what about working with sequences of unitaries, as we do when we con-
struct quantum circuits? It turns out that closeness is additive under multiplica-
tion of unitaries: if ‖U1 − V1‖ ⩽ ε1 and ‖U2 − V2‖ ⩽ ε2, then

‖U2U1 − V2V1‖ = ‖U2U1 − V2U1 + V2U1 − V2V1‖
= ‖(U2 − V2)U1 + V2(U1 − V1)‖
⩽ ‖U2 − V2‖‖U1‖+ ‖V2‖‖U1 − V1‖
= ‖U2 − V2‖+ ‖U1 − V1‖
⩽ ε1 + ε2.

We can then apply this argument inductively.

Errors in the approximation of one sequence of unitaries by another ac-
cumulate at most linearly in the number of unitary operations:

‖Un · · ·U1 − Vn · · ·V1‖ ⩽
n∑

i=1
εn

if ‖Ui − Vi‖ ⩽ εi for all i = 1, . . . , n.

This linear error accumulation relies heavily on the fact that the norm of a
unitary operator is equal to 1; for non-unitary operators, errors could accumulate
exponentially, which would make efficient approximations of circuits practically
impossible. Geometrically, this is because unitaries just rotate vectors, without
scaling them.

Again, we can appeal to some trigonometry. First note that

‖U − V ‖ = ‖UV † − 1‖

since the operator norm is unitarily invariant.243 Since UV † is also unitary, its
eigenvalues are exactly phase factors eiϕ for ϕ ∈ R; the corresponding eigenvalue
of UV † − 1 has modulus

|eiϕ − 1| =
√

2
√

1− cosϕ.
242See Exercise 12.11.5.
243See Exercise 12.11.5.
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Putting this all together, we see that asking for ‖U − V ‖ ⩽ ε is exactly asking for
each eigenvalue of UV † − 1 to satisfy

√
2
√

1− cosϕ ⩽ ε, which rearranges to

cosϕ ⩾ 1− ε2

2

which is simply |ϕ| ⩽ ε for small enough ε. So U rotates relative to V by (at
worst) an angle of order ε, and if we compose unitaries in a sequence then the
accumulated rotation increases linearly with the number of unitaries.

12.5 Approximating generic unitaries is hard, but. . .

Now that we understand approximations of unitary operators, we can revisit the
question of universality that we touched upon in Sections 2.13 and 3.5. Recall
that we call a finite set G of gates universal if any n-qubit unitary operator can
be approximated (up to an overall phase) to arbitrary accuracy by some unitary
constructed using only gates from G (and we then call the gates in G elemen-
tary). In other words, G is universal if, for any unitary U acting on n-qubits and
for any ε > 0, there exist U1, . . . , Ud ∈ G such that Ũ := Ud · · ·U1 satisfies

‖Ũ − eiϕU‖ ⩽ ε

for some phase ϕ.
For example, each of the following sets of gates is universal:

• {H, c-S}
• {H,T, c-NOT}
• {H,S, Toff}

where S and T are the π/4- and π/8-phase gates (Section 2.6), c-S is the
controlled S gate, and Toff is the Toffoli gate (Exercise 9.12.14).

But now we can be a bit more precise with the question that the notion of
universality is trying to answer: given a universal set of gates, how hard is it to
approximate any desired unitary transformation with accuracy ε? That is, how
many gates do we need?

The answer is a lot. In fact, it is exponential in the number of qubits — most
unitary transformation require large quantum circuits of elementary gates. We
can show this by a counting argument (along with a healthy dose of geometric
intuition).

Consider a universal set of gates G consisting of g gates, where each gates
acts on no more than k qubits. How many circuits (acting on n-qubits) can we
construct using t gates from this set? We have g

(
n
k

)
choices244 for the first gate,

since there are g gates, and
(

n
k

)
ways to place it so that it acts on k out of n qubits.

The same holds for all subsequent gates, and so we can build no more than(
g

(
n

k

))t

244Counting arguments nearly always use binomial coefficient notation:
(
a
b

)
:= a!

b!(b−a)! .
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circuits of size t from G. What is important is that g
(

n
k

)
is polynomial in n, and g

and k are fixed constants, so we will write this upper bound as

(poly(n))t.

In more geometric language, we have shown that, with t gates, we can gener-
ate (poly(n))t points in the space U(N) of unitary transformations on n-qubits,
where N = 2n. Now imagine drawing a ball of radius ε (in the operator norm)
centred at each of these points — we want these balls to cover the entire unitary
group U(N), since this then says that any unitary is within distance ε of a circuit
built from t gates in G. We will not get into the details of the geometry of U(N),
but simply use the fact that a ball of radius ε in U(N) has volume proportional
to εN2

, whereas the volume of UN) itself is proportional to CN2
for some fixed

constant C. So we want

εN2
(poly(n))t ⩾ CN2

which (after some algebraic manipulation) requires that

t ⩾ 22n log(C/ε)
log(poly(n))

.

In words, the scaling is exponential in n but only logarithmic in 1/ε.

When we add qubits, the space of possible unitary operations grows very
rapidly, and we have to work exponentially hard if we want to approxi-
mate the resulting unitaries with some prescribed precision. If, however,
we fix the number of qubits and instead ask for better and better ap-
proximations, then things are much easier, since we only have to work
logarithmically hard.

The snag is that this counting argument does not give us any hints as to how
we can actually build such approximations. A more constructive approach is to
pick a set of universal gates and play with them, building more and more complex
circuits. There is an important theorem in this direction that tells us that it does
not matter much which particular universal set of gates we choose to start with.

The Solovay–Kitaev Theorem. Choose any two universal sets of gates
that are weakly closed under inverses (that is, the inverse of any gate in
the set can be constructed (exactly) as a finite sequence of gates in the
set, even if it is not itself an elementary gate). Then any t-gate circuit
built from one set of gates can be implemented to precision ε using a
tpoly(log(t/ε))-gate circuit built from the other set. Furthermore, there is
an efficient classical algorithm for finding this circuit.
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Since errors accumulate linearly, it suffices to approximate each gate from
one set to accuracy ε/t, which can be achieved by using a poly(log(t/ε))-gate
circuit built from the other set. So we can efficiently convert (constructively, via
some efficient classical algorithm) between universal sets of gates with overhead
poly(log(1/ε))), i.e. logc(1/ε) for some constant c. For all practical purposes, we
want to minimise c, but the counting argument above shows that the best possible
exponent is 1, so the real question is can we get close to this lower bound? In gen-
eral, we do not know. However, for some universal sets of gates we have nearly
optimal constructions. For example, the set {H,T} can be used to approximate
arbitrary single-qubit unitaries to accuracy ε using log(1/ε) many gates, instead
of poly(log(1/ε)), and the circuits achieving this improved overhead cost can be
efficiently constructed (for example, by the Matsumoto–Amano construction).

12.6 How far apart are two probability distributions?

Before we switch gears and discuss how to generalise state distance to density
operators, let us first take a look at distances between probability distributions.
What does it mean to say that two probability distributions (over the same index
set) are similar to one another?

Recall that a probability distribution245 consists of two things — a sample
space Ω, which is the set of all possible outcomes, and a probability function
p : Ω → [0, 1], which tells us the probability of any specific outcome — subject
to the condition that

∑
k∈Ω p(k) = 1. Given any subset of outcomes A ⊆ Ω, we

define p(A) =
∑
{k ∈ A}p(k).

The trace distance (also known as the variation distance, L1 distance,
statistical distance, or Kolmogorov distance) between probability distri-
butions p and q on the same sample space Ω is

d(p, q) := 1
2
∑
k∈Ω

|p(k)− q(k)|.

This is indeed a distance: it satisfies all the necessary properties.246 It also
has a rather simple interpretation, as we now explain. Let p(k) be the intended
probability distribution of an outcome produced by some ideal device P , but
suppose that the actual physical device Q is slightly faulty: with probability 1− ε
it works exactly as P does, but with probability ε it goes completely wrong and
generates an output according to some arbitrary probability distribution e(k).
What can we say about the probability distribution q(k) of the outcome of such a
device? Well, we can exactly say that

d(p, q) ⩽ ε
245Things are simpler for us because we work with so-called discrete probability distributions, and

so we can use sums instead of integrals. The general theory requires much more real analysis.
246Exercise. Show that this distance satisfies the triangle inequality.
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by substituting q(k) = (1− ε)p(k) + εe(k). Conversely, if d(p, q) = ε then we can
represent one of them (say, q(k)) as the probability distribution resulting from
a process that generates outcomes according to p(k) followed by a process that
alters outcome k with total probability not greater than ε.

Note that the normalisation property of probabilities implies that∑
k

p(k)− q(k) = 0.

We can split up this sum into two parts: the sum over k for which p(k) ⩾ q(k),
and the sum over k for which p(k) < q(k). If we call the first part S, then the fact
that

∑
k p(k)− q(k) = 0 tells us that the second part must be equal to −S. Thus∑
k

|p(k)− q(k)| = S + | − S| = 2S

whence S = d(p, q).

S S

p(k) q(k)

k

Figure 12.1: Visualising the distance between two (continuous) probability dis-
tributions.

Just as a passing note, we will point out that∑
k

max{p(k), q(k)} = 1 + S

= 1 + d(p, q)

and the shaded area in Figure 12.1 is equal to247∑
k

min{p(k), q(k)} = 1− S

= 1− d(p, q).

The latter lets us write the trace distance as

d(p, q) = 1−
∑

k

min
k
{p(k), q(k)}

247Again, since we are working with finite probability distributions, we can use sums; in the contin-
uous case shown in Figure 12.1, we would really need to use integrals instead.
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and the former will be useful very soon.

As for intuition, the trace distance is a measure of how well we can distinguish
a sample from distribution p from a sample from distribution q: if the distance is 1
then we can tell them apart perfectly; if the distance is 0 then we can’t distinguish
them at all. Now suppose that p and q represent the probability distributions of
two devices, P and Q, respectively, and that one of these is chosen (with equal
probability) to generate some outcome. If you are given the outcome k, and
you know p(k) and q(k), then how can you best guess which device generated
it? What is your best strategy, and with what probability does this let you guess
correctly? It turns out that we can answer this using the trace distance.

Arguably the most natural strategy is to look at max{p(k), q(k)}: guess P if
p(k) > q(k); guess Q if q(k) > p(k); guess uniformly at random if p(k) = q(k).
Following this strategy, the probability of guessing correctly (again, under the
assumption that P and Q were chosen between with equal probability) is

psuccess = 1
2
∑

k

max{p(k), q(k)}

which we can rewrite as

psuccess = 1
2

(1 + d(p, q)).

Here is another way of seeing the above. The probability that the devices P
and Q will not behave in the same way is bounded by d(p, q). This means that,
with probability 1− d(p, q), the devices behave as if they were identical, in which
case the best you can do is to guess uniformly at random, which will make you
succeed with probability 1

2 (1 − d(p, q)). With the remaining probability d(p, q),
the devices may behave as if they were completely different, and then you can
tell which one is which perfectly, letting you succeed with probability exactly
1 · d(p, q) = d(p, q). So the total probability of success is equal to

1
2

(1− d(p, q)) + d(p, q) = 1
2

(1 + d(p, q)).

12.7 Dealing with density operators

Now we return to quantum states, and generalise the notion of trace distance to
density operators.
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The trace norm of an operator is the sum of its singular values:

‖A‖tr :=
∑

i

si(A).

If A is normal (e.g. a density operator), then

‖A‖tr =
∑

λ∈σ(A)

|λ|.

The induced trace distance between two density operators is

dtr(ρ, σ) := 1
2
‖ρ− σ‖tr.

There are many questions raised by this definition, such as “how does this
relate to the trace distance of probability distributions?” and “how does this
trace norm relate to the operator norm from Section 12.4?” — we will answer
the first question now, but our answer to the second builds upon the notion of an
`p-norm, which is a discussion that we will postpone for Section 12.11.2.

We can simply think of the trace distance for density operators as the natural
analogue of the trace distance for probability distributions: it is a tight upper
bound on the distances between the probability distributions obtained from ρ
and σ by a measurement, as we now justify.

Let {Pk} be a complete set of orthogonal projectors, defining a projective
measurement in some H. This measurement gives outcome k with some proba-
bility p(k) if the quantum system is in state ρ, and the same outcome with some
probability q(k) if the system is in state σ. That is,

p(k) := trPkρ

q(k) := trPkσ.

Then

dtr(p, q) := 1
2
∑

k

|p(k)− q(k)|

= 1
2
∑

k

| trPk(ρ− σ)|

= 1
2

tr((ρ− σ)U)

where we define

U :=
∑

k

trPk(ρ− σ)
| trPk(ρ− σ)|

Pk

or, in other words, U is the sum of the Pk but where the signs are determined by
whether | trPk(ρ− σ)| is equal to + trPk(ρ− σ) or − trPk(ρ− σ).
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12.7 Dealing with density operators

Since this U is unitary, and since the trace norm can be written as248

‖A‖tr = max
U unitary

| trAU |

we finally obtain that

dtr(p, q) := 1
2
∑

k

|p(k)− q(k)|

=⩽ 1
2
‖ρ− σ‖

=: dtr(ρ, σ)

which says that the trace distance dtr(ρ, σ) gives an upper bound on distances
between probability distributions obtained from ρ and σ by a measurement. The
fact that this bound is tight (i.e. attainable) is witnessed by the measurement
defined by the projectors onto the eigenspaces of ρ− σ.

As an example, consider pure states |u〉 and |v〉. The trace distance between
them is

1
2
‖|u〉〈u| − |v〉〈v|‖tr.

We can write |v〉 as

|v〉 = α|u〉+ β|ū〉

where |ū〉 is some unit vector orthogonal to |u〉, and where α = 〈u|v〉, with β
determined by |α|2 + |β|2 = 1. Then

|u〉〈u| − |v〉〈v| =
[
1 0
0 0

]
−
[
|α|2 αβ?

α?β |β|2
]

=
[
|β|2 −αβ?

−α?β −|β|2
]

(which has eigenvalues ±|β|), and the trace distance is given by

1
2
‖|u〉〈u| − |v〉〈v|‖tr =

√
1− |〈u|v〉|2

which is exactly
√

1− fidelity.
As a consequence of this, we see that

1
2
‖|u〉〈u| − |v〉〈v|‖tr ⩽ ‖u− v‖

since

1− |〈u|v〉|2 =
(

1 + |〈u|v〉|
)(

1− |〈u|v〉|
)

⩽ 2
(

1− |〈u|v〉|
)

= ‖u− v‖2.

248See Section 12.11.2.
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12.8 Distinguishing non-orthogonal states, again

So if two states |u〉 and |v〉 are ε-close in the trace distance, then the probability
distributions of outcomes of any measurement performed on a physical system
in state |u〉 or |v〉 will also be ε-close in the trace distance.

12.8 Distinguishing non-orthogonal states, again

Let’s briefly return to the problem considered in Section 4.9, where we are given
a system and told that it is in either state |ψ1〉 or |ψ2〉, with equal probability,
but that these two vectors are not orthogonal. The goal is to find a measurement
that maximises the probability of correctly identifying which state the system is
in. Before solving this problem using the language of distances, let us repeat the
geometric idea that we used previously.

Draw two vectors, |ψ1〉 and |ψ2〉, separated by some angle ε. We want to
find some orthonormal vectors |e1〉 and |e2〉 that specify the optimal projective
measurement. First, note that any projections on the subspace orthogonal to the
plane spanned by |ψ1〉 and |ψ2〉 will reveal no information about the identity of
the state, so we know that we will want our orthonormal vectors to lie in the
span of |ψ1〉 and |ψ2〉. Now, since |ψ1〉 and |ψ2〉 are both equally likely to occur,
we want to place |e1〉 and |e2〉 symmetrically around them, as shown in Figure
12.2

|ψ2⟩

|ψ1⟩

|e2⟩

|e1⟩

ε

Figure 12.2: Recall Section 4.9 — the optimal measurement to distinguish be-
tween the two equally likely non-orthogonal signal states |ψ1〉 and |ψ2〉 is de-
scribed by the two orthogonal vectors |e1〉 and |e2〉 placed symmetrically around
them.

The probability of correctly distinguishing the two states is

psuccess = 1
2
|〈e1|ψ1〉|2 + 1

2
|〈e2|ψ2〉|2

which reduces, with our schema, to

psuccess = cos2
(π

2
− ε

2

)
= 1

2
(1 + sin ε)

≈ 1
2

(1 + ε)

= 1
2

(1 + ‖ψ1 − ψ2‖).
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12.9 Approximate phase estimation

where the last equality holds whenever ε is “small enough”. But, happily, we can
be much more precise than this!

Let’s start by rephrasing the problem in terms of density operators. We are
sent one of two quantum states, either ρ0 or ρ1, with equal probability. You might
notice that we’re now labelling our states with {0, 1} instead of {1, 2}. This is sim-
ply to help guide our intuition: we are being sent one bit of information, a 0 or
a 1; the only complication is that this is happening in such a way that we cannot
perfectly distinguish between them (since we are receiving non-orthogonal quan-
tum states). We want to choose two orthogonal projectors P0 and P1, so outcome
P0 is interpreted as a 0 and outcome P1 as a 1. The probability of correctly de-
tecting which state was sent is, as always, the probability that ρ0 was sent and
outcome P0 was observed, plus the probability that ρ1 was sent and outcome P1
was observed. In symbols,

psuccess = 1
2

tr(P0ρ0) + 1
2

tr(P1ρ1)

= 1
4

tr[(P0 + P1)(ρ0 + ρ1)] + 1
4

tr[(P0 − P1)(ρ0 − ρ1)]

= 1
2

+ 1
4

tr[(P0 − P1)(ρ0 − ρ1)]

where the last equality follows from the fact that P0 + P1 = 1.
By applying Hölder’s inequality249, this tells us that

psuccess ⩽
1
2

+ 1
4
‖(P0 − P1)‖‖(ρ0 − ρ1)‖tr

⩽ 1
2

+ 1
4
‖ρ0 − ρ1‖tr

= 1
2

(1 + dtr(ρ0, ρ1)).

Again, this upper bound is attained by taking P0 to be the projector onto
the eigenspace of ρ0 − ρ1 corresponding to the positive eigenvalues, and P1 the
projector corresponding to the negative eigenvalues: this gives tr(P0 − P1)(ρ0 −
ρ1) = ‖ρ0 − ρ1‖tr.

Of course, the whole story of quantum state distinguishability has much more
to it than we have covered here. In Exercise 12.11.9 we ask about the case where
the two states ρ0 and ρ1 are sent with non-equal probabilities p0 and p1, re-
spectively. The more general scenario, where some quantum source emits states
ρ0, . . . , ρn with respective probabilities p0, . . . , pn, turns out to be incredibly dif-
ficult — we do not know an optimal discrimination strategy, except for in a few
special cases.

12.9 Approximate phase estimation

In Section 10.8 we showed how to determine the phase of an eigenvalue of a
controlled-U gate, hidden by an oracle, under the assumption that the phase was

249See Section 12.11.2.
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12.9 Approximate phase estimation

of a particularly nice rational form: 2πm/2n. More precisely, we were able to find
the integer m mod 2n. Here we will improve upon this result, explaining how to
adapt the same circuit for arbitrary phases.

So say we have some controlled-U gate with eigenvector |u〉 and eigenvalue
eiϕ. We can run the same circuit as we did in Section 10.8:

|0⟩⊗n

H

FT † |ỹ⟩
H

...

H

|u⟩ U△ |u⟩

As before, the Hadamard gate followed by the controlled-U4 gate prepare
the state

1√
N

N−1∑
x=0

eiϕx|x〉|u〉

where N = 2n, with n the number of qubits in the first register, since the phase
kick-back leaves the eigenstate |u〉 unchanged. Now we apply the inverse quan-
tum Fourier transform, giving

1
N

N−1∑
x,y=0

eix(ϕ−2πy/N)|y〉|u〉.

We already know that if Nϕ/2π has an exact n-bit representation (i.e. if ϕ =
2πm/2n with 0 ⩽ m < N) then we are guaranteed to recover this when we
measure the output |ỹ〉.

If this is not the case, then instead we can only hope for |ỹ〉 to be the best
n-bit approximation to Nϕ/2π. This means that the distance between the two
can be no more than 1/2 (otherwise |ỹ〉 would round to Nϕ/2π ± 1 instead).
Rearranging this inequality gives∣∣∣∣ϕ− 2πỹ

N

∣∣∣∣ ⩽ π

N

which, if we define δ = ϕ − 2πỹ/N , is exactly |δ| ⩽ π/N . Now we can calculate
the probability of measuring the result |ỹ〉 as

p := 1
N2

∣∣∣∣∣
N−1∑
x=0

eixδ

∣∣∣∣∣
2

= sin2(Nδ/2)
N2 sin2(δ/2)

.
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12.9 Approximate phase estimation

Let’s see if we can find a lower bound for this probability.

First of all, for small values of θ, we know250 that sin θ < θ. In particular,
sin(δ/2) < δ/2. Secondly, we can show that sin(Nδ/2) > Nδ/π by using the
fact that Nδ ⩽ π (though here we simply provide Figure 12.3 instead of giving a
proof). Thus

p >

(
2Nδ
Nδπ

)2

= 4
π2 ≈ 0.41

and so we find the best n-bit approximation to ϕ with pretty good probability.

In fact, the coefficients in these inequalities work in our favour: the further
away a result |ỹ〉 is from being the best n-bit approximation to ϕ, the lower our
probability of measuring it. This provides a way of getting good approximations
with even higher probability, and one that we can choose ourselves, by using
more qubits. That is, if we increase the number of qubits in the first register
to be t, for some t > n, then we know that with probability p = 4/π2 we will
get the best t-bit approximation to ϕ. But we’re only interested in the best n-
bit approximation, and the 2t−n next-most-likely outcomes — those that will
truncate to give the same n-bit approximation — from the t-qubit circuit are all
the next highest probability ones. If one sums everything up carefully, then we
can show that the probability of not measuring one of these is

ε ⩽ 1
2(2t−n − 2)

and so, for any desired ε, we get the best n-bit approximation with probability at
least 1− ε by setting t to be

t = n+
⌈

log2

(
2 + 1

2ε

)⌉

(where dxe denotes the ceiling of x, i.e. the smallest integer larger than x).

250This is from the Taylor expansion sin θ ≈ θ − θ3/3! and some real analysis. However, this is the
sort of fact that you will often see quoted without justification, because it’s used so often.
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π/2

1

θ

θ
sin θ

2θ/π

Figure 12.3: In the region 0 ⩽ θ ⩽ π/2, we can bound sin θ above and below by
the linear functions θ and 2θ/π, respectively.

12.10 How accurate is accurate enough?

We have seen that finite sets of gates can be used to approximate any unitary
operation with any prescribed accuracy. But how accurate is accurate enough?
Of course, the answer depends on what we want to achieve.

Suppose we come up with a cool quantum algorithm, represented by a circuit
composed of t gates, and it solves an interesting decision problem with probabil-
ity 1

2 + δ. The value of δ might be tiny, so not much can be inferred from a single
run, but as long as we can repeat the computation r times and take the majority
answer as the “right” answer, the Chernoff bound251 tells us that the probability
of error is bounded above by e−2rδ2

. We now want to physically implement this
circuit using our preferred universal set of gates, say {H,T, c-NOT}. If we can im-
plement each gate with accuracy ε/t, then we can approximate the circuit with
accuracy ε, which means that the probability of success will be 1

2 + δ ± ε. So, at
the very least, we want ε < δ/2.

12.11 Remarks and exercises

12.11.1 Operator decompositions

Analogously to how we can factor polynomials into linear parts, or factor num-
bers into prime divisors, we can “factor” matrices into smaller components. Doing
so often helps us to better understand the geometry of the situation: we might
be able to understand the transformation described by a single matrix as “some
reflection, followed by some rotation, followed by some scaling”. For us, one

251Recall Exercise 1.11.10.
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specific use of such a “factorisation” (known formally as an operator decom-
position) is in better understanding various operator norms, as we explain in
Exercise 12.11.2.

Here are three operator decompositions that are particularly useful in quan-
tum information theory. The second is for arbitrary operators between Hilbert
spaces, the first and third are for normal endomorphisms (i.e. normal operators
from one Hilbert space to itself).

1. Spectral decomposition. Recall Section 4.5: the spectral theorem tells us
that every normal operator A ∈ B(H) can be expressed as a linear com-
bination of projections onto pairwise orthogonal subspaces. We write the
spectral decomposition of A as

A =
∑

k

λk|vk〉〈vk|

where λk are the eigenvalues of A, with corresponding eigenvectors |vk〉,
which form an orthonormal basis in H.

In matrix notation, we can write this as

A = UDU†

where D is the diagonal matrix whose diagonal entries are the eigenvalues λk,
and where U is the unitary matrix whose columns are the eigenvectors |vk〉.

2. Singular value decomposition (SVD). We have already mentioned the
SVD in Exercise 5.14.13 when discussing the Schmidt decomposition, but
we recall the details here. Consider any (non-zero) operator A ∈ B(H,H′).
From this, we can construct two positive semi-definite operators: A†A ∈
B(H) and AA† ∈ B(H′). These are both normal, and so we can apply the
spectral decomposition to both. In particular, if we denote the eigenvalues
of A†A by λk, and the corresponding eigenvectors by |vk〉, then we see that
the vectors

|uk〉 := 1√
λk

A|vk〉

form an orthonormal system in H′ (and are, in fact, eigenvectors of AA†),
since

〈ui|uj〉 = 1√
λi

√
λj

〈vi|A†A|vj〉

= λj√
λi

√
λj

〈vi|vj〉

= δij .

We define the singular values sk of A to be the square roots of the eigen-
values of A†A, i.e. s2

k = λk. These singular values satisfy

A|vk〉 = sk|uk〉
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by construction, and so we can write

A =
∑

k

sk|uk〉〈vk|

which we call the singular value decomposition (or SVD). This decom-
position holds for arbitrary (non-zero) operators as opposed to just nor-
mal ones, and also for operators between two different Hilbert spaces as
opposed to just endomorphisms. In words, this decomposition says that,
given A, we can find orthonormal bases of H and H′ such that A maps the
k-th basis vector of H to a non-negative multiple of the k-th basis vector of
H′ (and sends any left over basis vectors to 0, if dimH > dimH′).

In matrix notation, we can write this as

A = U
√
DV †

where D is the diagonal matrix of eigenvalues (and so
√
D is the diagonal matrix

of singular values), and both U and V are unitary.
Geometrically, we are decomposing any linear transformation into a compo-

sition of a rotation or reflection V †, followed by a scaling by the singular values√
D, followed by another rotation or reflection U . This maps the unit sphere in
H onto an ellipsoid in H′, and the singular values of A are exactly the lengths of
the semi-axes of this ellipsoid.

A s1s2

3. Polar decomposition. Let A ∈ B(H) be a normal arbitrary operator. Since
it is an endomorphism, it is represented by a square matrix. Forgetting that
A is normal for a moment, we know that its SVD takes the form

A = U
√
A†A

=
√
AA†U

where the unitary matrix U connects the two eigenbases: U =
∑

k |uk〉〈vk|.
We shall return to this unitary U shortly.

Since A is normal, A†A = AA†, so we can define its modulus as

|A| :=
√
A†A

which gives us the polar decomposition

A = |A|U.

This is the matrix analogue of the polar decomposition of a complex number:
z = reiθ.
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If we decompose the eigenvalues of A as λk = rke
iθk (with corresponding

eigenvectors |vk〉) then the spectral decomposition of A gives us

A =
∑

k

λk|vk〉〈vk|

=
∑

k

rke
iθk |vk〉〈vk|

=
∑

k

rk|uk〉〈vk|

where |uk〉 = eiθk |vk〉, so we see that the unitary U =
∑

k |uk〉〈vk| in the polar
decomposition contains all the information of the phase factors.

12.11.2 More operator norms

We have already seen, all the way back in Section 1.11.2252, how the Euclidean
norm (from which we get the Euclidean distance) is the special case p = 2 of
p-norms (also known as `p-norms), where

‖v‖p :=

(
n∑

i=1
|vi|p

) 1
p

for a vector v = (v1, . . . , vn) ∈ Rn, and for p ∈ N. We can actually extend this
definition to include the case p =∞ by setting

‖v‖∞ := max
1⩽i⩽n

|vi|.

One particularly nice consequence of this definition is that

‖v‖1 ⩾ ‖v‖2 ⩾ . . . ⩾ ‖v‖∞

for any vector v.

v1

v2

p
=
1

p
=
2

p
=
42

p = ∞

252Think how far you’ve come since then!
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You might recall that we named the Cauchy–Schwartz inequality as arguably
the most useful inequality in analysis. Well it turns out that it is actually the
special case p = 2 of an inequality concerning p-norms.

Hölder’s inequality. Let p, q ∈ N ∪ {∞} be such that 1
p + 1

q = 1. Then

‖vw‖1 ⩽ ‖v‖p‖w‖q

with equality if and only if v and w are “(p, q)-linearly dependent”.

We will come back to the relevance of these p-norms shortly. For now, let us
introduce three norms (two of which we have already seen, but recall here again
to tell a more complete story) on the space of endomorphisms B(H) of a Hilbert
space, each of which can be defined neatly in terms of singular values. Note that,
if A is normal, then we its singular values are exactly the absolute values of its
eigenvalues, which usually lets us simplify the definition of the norm.

Throughout, let A ∈ B(H), with singular values sk.

1. Spectral norm. This one is so frequently used that it is often simply called
the operator norm and denoted simply by ‖ · ‖. It is the maximum length
of the vector A|v〉 over all possible normalised vectors |v〉 ∈ H, i.e.

‖A‖ := max
|v〉∈S1

H

{
|A|v〉|

}
(where S1

H is the unit sphere in H, i.e. the set of vectors of norm 1). From
this definition, one can actually show that the norm is given by the largest
singular value:

‖A‖ = max
k

sk.

2. Trace norm. This is given by the sum of the singular values of A, i.e.

‖A‖tr :=
∑

k

sk

but note that we can rewrite this using the polar decomposition (from Sec-
tion 12.11.1) as simply

‖A‖tr = tr |A|.

3. Frobenius norm. We have mentioned a few times how inner products
give rise to norms, and you might remember that we introduced an inner
product on B(H) a while ago: the Hilbert–Schmidt norm253

(A|B) := trA†B

=
∑
i,j

A?
ijBji.

253Here we drop the factor of 1
2 that we sometimes included for simplifying certain calculations.
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The Frobenius norm is the norm induced by this inner product, i.e.

‖A‖F :=
√

(A|A)

=
√

tr(A†A)

=
√∑

i,j

|Aij |2.

Let’s study the relation between the operator norm and the trace norm first.
By definition, we see that

‖A‖tr ⩾ ‖A‖

but there is another, more subtle, inequality that they satisfy, namely

|(A|B)| ⩽ ‖A‖tr‖B‖

which is like a more general version of the Cauchy–Schwartz inequality, and
is sometimes referred to as Hölder’s inequality for matrices. To derive this
inequality, we can use the SVD of A, since then

|(A|B)| = | trA†B|

=

∣∣∣∣∣tr
(∑

k

sk|vk〉〈uk|B

)∣∣∣∣∣
=
∣∣∣∑ sk〈uk|B|vk〉

∣∣∣
⩽
∑

k

sk|〈uk|B|vk〉|

⩽
∑

k

sk‖B‖

= ‖A‖tr‖B‖.

We can actually use this inequality to recover either the operator or the trace
norm, by maximising: for any fixed A (or any fixed B), we can obtain equality:

‖A‖tr = max
‖B‖=1

{(A|B)}

‖B‖ = max
‖A‖tr=1

{(A|B)}.

To see this, in the first case we can use the polar decomposition A = |A|U to
see that equality is attained by B = U ; in the second case we can use the polar
decomposition B = |B|V to see that equality is attained by A = V |v1〉〈v1|, where
|v1〉 is the eigenvector of |B|with the largest eigenvalue (or, equivalently, singular
value). In particular, this gives us a variational characterisation of the trace norm
which is very useful at times:

‖A‖tr = max
U unitary

| trAU |.
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One final special case to point out is what happens if A is Hermitian. Then
we can separate the spectral decomposition into positive and negative parts, and
write A as the difference of two positive operators:

A = A+ −A−.

Then

|A| = A+ +A−

‖A‖tr = trA+ + trA−.

Now we finally return to the relevance of p-norms: it turns out that all these
three operator norms above are actually special cases of Schatten p-norms. For
p ∈ N we define the Schatten p-norm in terms of singular values sk as

‖A‖p :=

(∑
k

|sk|p
) 1

p

and we define

‖A‖∞ := max
k
|sk|

analogously to how we did for `p-norms. We then recover the trace norm, the
Frobenius norm, and the spectral norm by taking p = 1, 2,∞, respectively:

‖A‖1 = ‖A‖tr

‖A‖2 = ‖A‖F

‖A‖∞ = ‖A‖.

All Schatten p-norms are sub-multiplicative (‖AB‖p ⩽ ‖A‖p‖B‖p) and unitarily
invariant (‖A‖ = ‖UAV ‖ for any unitaries U and V ).

12.11.3 Fidelity in a trace norm inequality

There is a useful inequality involving the trace norm:

tr(A−B)2 ⩽ ‖A2 −B2‖tr.

Let’s prove it!
Let λk be the eigenvalues of the operator A − B, with corresponding eigen-

vectors and |uk〉. Then

tr(A−B)2 =
∑

k

λ2
k

since the trace is exactly the sum of eigenvalues. Now, for any unitary U , we
have that

‖A2 −B2‖tr ⩾ | tr(A2 −B2)U |
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since ‖X‖tr = maxU unitary | tr(XU)|. If we take U =
∑

i±|uk〉〈uk|, where the
signs are chosen so that each term 〈uk|A2 −B2|uk〉 is non-negative, then

‖A2 −B2‖tr ⩾ | tr(A2 −B2)U |

=
∑

k

|〈uk|A2 −B2||uk〉|.

Writing A2 −B2 as254

A2 −B2 = 1
2

[
(A+B)(A−B) + (A−B)(A+B)

]
we see that

〈uk|A2 −B2||uk〉 = 1
2
〈uk|(A+B)(A−B) + (A−B)(A+B)|uk〉

= λi〈uk|A+B|uk〉.

Then, since λi = 〈uk|A|uk〉 − 〈uk|B|uk〉 is the difference of two non-negative
numbers, we have that

〈uk|A+B|uk〉 ⩾ |λi|.

Putting this all together, we obtain

‖A2 −B2‖tr ⩾
∑

k

|〈uk|A2 −B2||uk〉|

⩾
∑

k

λ2
k

= tr(A−B)2

as desired.
One particularly nice application of this inequality arises when we take A =√

ρ and B =
√
σ, since then

tr(√ρ−
√
σ)2 ⩽ ‖ρ− σ‖tr

or, after some rearrangement,

1− tr(√ρ
√
σ) ⩽ 1

2
‖ρ− σ‖tr

and we recognise tr(√ρ
√
σ) as the fidelity.

12.11.4 Hamming distance

Show that the Hamming distance (defined in Section 12.1) is indeed a metric.

254This is the non-commutative version of the identity a2 − b2 = (a+ b)(a− b).
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12.11 Remarks and exercises

12.11.5 Operator norm

Prove the following properties of the operator norm:

1. ‖A⊗B‖ = ‖A‖‖B‖ for any operators A and B
2. If A is normal, then ‖A†‖ = ‖A‖
3. If U is unitary, then ‖U‖ = 1
4. If P 6= 0 is an orthogonal projector, then ‖P‖ = 1.

Using the singular value decomposition255, or otherwise, prove that the oper-
ator norm has the following two properties for any operators A and B:

5. Unitary invariance: ‖UAV ‖ = ‖A‖ for any unitaries U and V
6. Sub-multiplicativity: ‖AB‖ ⩽ ‖A‖‖B‖.

Recall that we say that V approximates U with precision ε if ‖U − V ‖ ⩽ ε.

7. Prove that, if V approximates U with precision ε, then V −1 approximates
U−1 with the same precision ε.

Using the Cauchy–Schwartz inequality, or otherwise, prove the following, for
any vector |ψ〉 and any operators A and B:

8. |〈ψ|A†B|ψ〉| ⩽ ‖A‖‖B‖.

12.11.6 Tolerance and precision

Suppose we wish to implement a quantum circuit consisting of gates U1, . . . , Ud,
but we only have available to us gates V1, . . . , Vd. Luckily, these gates happen
to be pretty good approximations to our desired gates, and the error is uniform:
‖Ui − Vi‖ ⩽ ε for all i = 1, . . . , d for some fixed ε.

We want our approximate circuit to be within some tolerance δ of the desired
circuit: the probabilities of different outcomes of V = Vd · · ·V1 should be be
within δ of the “correct” probabilities of the different outcomes of U = Ud · · ·U1,
i.e. |pU − pV | ⩽ δ.

How small must ε be with respect to δ in order for us to achieve this?256

12.11.7 Statistical distance and a special event

1. Show that, if p and q are probability distributions on the same sample space
Ω, then

d(p, q) = max
A⊆Ω
{|p(A)− q(A)|}.

2. By definition, the above maximum is realised for some specific subset A ⊆
Ω, i.e. there exists some event (described by the set of outcomes A) that is
optimal in distinguishing p from q. What is this event?

255Recall Exercise 5.14.13
256Hint: recall that |pU − pV | ⩽ 2‖U − V ‖.
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12.11 Remarks and exercises

12.11.8 Joint probability distributions

If we simultaneously sample two random variables from the same probability
space, then we obtain a joint distribution:

r(x, y) := Pr(x and y).

From this we can recover the marginals

p(x) :=
∑

y

r(x, y)

q(y) :=
∑

x

r(x, y).

So let r(x, y) be a joint probability distribution with marginals p(x) and q(y).
Show that257

dtr(p, q) ⩽ Pr(x 6= y) ≡
∑

{x,y|x 6=y}

p(x, y).

12.11.9 Distinguishability and the trace distance

Say we have a physical system which is been prepared in one of two states (say,
ρ0 and ρ1), each with equal probability. Then, as shown in Section 12.8, a single
measurement can distinguish between the two preparations with probability at
most 1

2 [1 + dtr(ρ0, ρ1)].

1. How does this probability change if the states ρ0 and ρ1 are not equally
liked, but instead sent with some predetermined probabilities p0 and p1,
respectively?

2. Suppose that you are given one randomly selected qubit from a pair in the
state

|ψ〉 = 1√
2

(
|0〉 ⊗

(√
2
3
|0〉 −

√
1
3
|1〉

)
+ |1〉 ⊗

(√
2
3
|0〉+

√
1
3
|1〉

))

from Exercise 8.8.1. What is the maximal probability with which we can
determine which qubit (either the first or the second) we were given?

257Hint:

dtr(p, q) = 1 −
∑
x

min{p(x), q(x)}

⩽ 1 −
∑
x

p(x, x)

= Pr(x 6= y).
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13 Decoherence and recoherence

About the one big problem that hinders us from physically imple-
menting everything that we’ve learnt so far: decoherence. But
also about how we can start to deal with it via some elementary
error correction, including the Shor [[9, 1, 3]] quantum code,
which generalises the classical three-bit repetition code.

As the adage goes, “in theory, theory and practice rarely differ; in practice,
they often do”. In theory, we know how to build a quantum computer: we can
start with simple quantum logic gates and try to integrate them together into
quantum networks. However, if we keep on putting quantum gates together into
networks we will quickly run into some serious problems in practice: the more in-
teracting qubits involved, the harder it is to prevent them from getting entangled
with the environment. This unwelcome entanglement, also known as decoher-
ence, destroys the interference, and thus the power, of quantum computing. To
counteract this problem, we will start to look at the idea of error correcting
codes, which protect our data against unwanted errors, but at the cost of encod-
ing it across more ancillary qubits.

13.1 The three-qubit code

In Section 9.3 we met the notion of isometries: operators V that map one Hilbert
space to another and satisfy V †V = 1. This implies that isometries can be re-
versed, or corrected: we can apply V † and end up exactly how we started.

We say that a quantum channel E : B(H)→ B(H′) is correctable if there
exists a recovery channel R : B(H′) → B(H) such that the composition
R ◦ E is the identity channel 1.

Now suppose we have isometries V1, . . . , Vn : H → H′. If H′ is “sufficiently
bigger” than H, and if the images H′

i := Vi(H) do not overlap258 then we can
reverse the action of the channel given by a statistical mixture of the Vi: we
can, at least in principle, perform a measurement on H′, defined by the partition
H′ = H′

1⊕H′
2⊕ . . .⊕H′

n, and find out which subspace contains the output state;
once we know which subspace the input was sent to, we know which particular
isometry Vk was applied by the channel; then we simply apply V †

k .

258More precisely, we say that the H′
i “do not overlap” to mean that the subspaces H′

i are mutually
orthogonal
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13.1 The three-qubit code

Apart from individual unitaries or isometries, the only correctable chan-
nels are exactly the statistical mixtures of {Vi} such that V †

i Vj = δij1,
i.e. mixtures of mutually orthogonal isometries.

H

H1

H2

H3

H4

V1

V2

V3

V4

H′

H

H1

H2

H3

H4

V1

V2

V3

V4

H′

Figure 13.1: A visualisation of correctable (left) and non-correctable (right)
channels. Each isometry Vi, which is chosen with some probability pi, maps
the original space to a different space. If those spaces do not overlap, we can
detect which one we’re in and hence compensate (i.e. correct). If the two spaces
partially coincide, however, then there exist states for which we cannot detect
which isometry occurred.

Here is a simple but important example: the three-qubit code.259 Take a
qubit in some pure state |ψ〉 = α|0〉 + β|1〉, introduce two auxiliary qubits in a
fixed state |0〉|0〉, and apply a unitary operation to the three qubits, namely two
controlled-NOT gates:

α |0⟩+ β |1⟩

α |000⟩+ β |111⟩|0⟩

|0⟩

The result is the isometric embedding of the 2-dimensional Hilbert space of
the first qubit (spanned by |0〉 and |1〉) into the 2-dimensional subspace (spanned
by |000〉 and |111〉) of the 8-dimensional Hilbert space of the three qubits. The
isometric operator

V = |000〉〈0|+ |111〉〈1|

acts via

α|0〉+ β|1〉 7−→ α|000〉+ β|111〉.
259We will return to this example, using the language of stabilisers from Chapter 7, in Chapter 14.
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13.1 The three-qubit code

This three qubit-encoding can be reversed by the mirror image circuit:

α |000⟩+ β |111⟩

α |0⟩+ β |1⟩

|0⟩

|0⟩

This isometry is just one member of a family, and we will spend the rest of
this chapter building up to the general theory, and understanding how this three-
qubit encoding is useful in error correction.

Let’s start with the following scenario. Alice constructs a quantum channel
which is a mixture of four isometries. The input is a single qubit, and the output
is a dilated system composed of three qubits. She prepares the input qubit in
a state260 |ψ〉 and then combines it with the two ancillary qubits which are in
a fixed state |0〉|0〉. Then she applies one of the four, randomly chosen, unitary
operations to the three qubits, to generate the following four isometries:

V00 = |000〉〈0|+ |111〉〈1|
V01 = |001〉〈0|+ |110〉〈1|
V10 = |010〉〈0|+ |101〉〈1|
V11 = |100〉〈0|+ |011〉〈1|.

The three qubits, which form the output of the channel, are given to Bob,
whose task is to recover the original state |ψ〉 of the input qubit. In this scenario,
Bob, who knows the four isometries, can find out which particular isometry was
applied. He knows that

• V00 maps H to H′
00, which is a subspace of H′ spanned by |000〉 and |111〉;

• V01 maps H to H′
01, which is a subspace of H′ spanned by |001〉 and |110〉;

• V10 maps H to H′
10, which is a subspace of H′ spanned by |010〉 and |101〉;

• V11 maps H to H′
11, which is a subspace of H′ spanned by |100〉 and |011〉.

Given that these subspaces are mutually orthogonal, and H′ = H′
00 ⊕ H′

01 ⊕
H′

10 ⊕ H′
11, Bob can perform a measurement defined by the projectors on these

subspaces. For example, if Alice randomly picked V01, then the input state |ψ〉 =
α|0〉+β|1〉will be mapped to the output state α|001〉+β|110〉 in theH′

01 subspace.
Bob’s measurement

P01 = |001〉〈001|+ |101〉〈101|

will then detect H′
01 as the subspace where the output state resides, but the

measurement (i.e. the corresponding projection) will not affect any state in that
subspace. Bob can now simply apply V †

01 and obtain |ψ〉.
Below is a diagram of how the four isometries are implemented. We will see

how to reverse these operations in Section 13.2.

260Our arguments here can be easily extended to any mixed state ρ, but for simplicity we consider
the case of a pure state.
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13.2 Towards error correction

V00 =

|ψ⟩

|0⟩

|0⟩

V01 =

|ψ⟩ X

|0⟩

|0⟩

V10 =

|ψ⟩

|0⟩ X

|0⟩

V11 =

|ψ⟩

|0⟩

|0⟩ X

13.2 Towards error correction

In Section 13.1, when Alice used a random choice of four isometries to produce
a three-qubit output, notice how we can write

V01 = (1⊗ 1⊗X)V00

V01 = (1⊗X ⊗ 1)V00

V01 = (X ⊗ 1⊗ 1)V00

and thus express all of the isometries in terms of V00. In other words, rather than
thinking of Alice as picking randomly between four different isometries, we can
imagine that she always picks the encoding isometry V00, and then some noisy
process randomly applies one of the four actions 1, 11X, 1X1, or X11.

H C
encode

C1

C2

C3

E1

E2

E0

E3

H′

Correcting the isometry then corresponds to identifying which error hap-
pened, fixing it, and then removing the encoding: a process known as decoding.
This is the format of error correction in a nutshell.
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13.2 Towards error correction

Encoding
Random
X error

Detection
& Decoding

|ψ⟩

|0⟩ X

|0⟩

Figure 13.2: Quantum error correction can be thought of as a three-step pro-
cess: encoding, transmitting through a noisy channel, and then detecting and
decoding. We will give a more accurate depiction of an error correcting diagram,
explaining what actually happens in the “detection & decoding portion” in Figure
13.7.

When we studied Pauli stabilisers in Section 7.2, we came across exactly the
spaces of this example:

++ −+

−−+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩

The stabiliser formalism gives us a very natural way of describing the
error correcting code, along with its correction:

• the codespace (i.e. the space with no error) is defined by the two
stabilisers +ZZ1 and +1ZZ

• the error can be determined by measuring the value of these two
stabilisers; we simply have to find which of the four possible errors
gives the correct (anti-)commutation relations as specified by the
measurement outcomes ±1.

Generalising this idea further is the subject of Section 13.6.
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13.3 Discretisation of quantum errors

If a set {Vx} of correctable isometries are related by

Vx = UxV0

for some set of unitaries {Ux} with U0 = 1, then an encoding operation
V0 provides protection against the errors Ux.

13.3 Discretisation of quantum errors

When a quantum computer interacts and becomes entangled with its environ-
ment, it impacts the environment in such a way that the environment maintains
a physical record of how the computer arrived at the desired output. Here, in our
simplistic diagram, we consider only two computational paths.

I
O1

O2

With decoherence present, quantum computation spills out the environment
and results in not one, but two output states:

|O1〉 := |O〉|e1〉
= “computer shows output O, environment knows that path 1 was taken”

|O2〉 := |O〉|e2〉
= “computer shows output O, environment knows that path 2 was taken”

The two final states O1 and O2 are identical if and only if |〈e1|e1〉| = 1. In
this case, the environment does not know anything about what happened during
the computation — there is quantum interference — and we add probability
amplitudes corresponding to the two computational paths. In contrast, the two
final states O1 and O2 are completely different if and only if |〈e1|e2〉| = 0. Then
there is only one path to the output — there is no quantum interference — and
there is nothing to add. Of course, there are also midway cases 0 < |〈e1|e2〉| < 1
corresponding to partial distinguishability of the final states.

If we wish to study the evolution of the qubit alone, then we can do so in
terms of density operators: it evolves from the pure state |ψ〉〈ψ| to a mixed state,
which can be obtained by tracing over the environment. We know that the state
vector |ψ〉 = α|0〉+ β|1〉 evolves as

(α|0〉+ β|1〉) |e〉 7−→ α|0〉|e00〉+ β|1〉|e11〉

and we can write this as the evolution of the projector |ψ〉〈ψ|, and then trace over
the environment to obtain

|ψ〉〈ψ| 7−→|α|2|0〉〈0|〈e00|e00〉+ αβ?|0〉〈1|〈e11|e00〉
+α?β|1〉〈0|〈e00|e11〉+ |β|2|1〉〈1|〈e11|e11〉.
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13.4 Digitising quantum errors

Written in matrix form, this is[
|α|2 αβ∗

α∗β |β|2
]
7−→

[
|α|2 αβ∗〈e11|e00〉

α∗β〈e00|e11〉 |β|2
]
.

The off-diagonal elements (originally called coherences) vanish as 〈e00|e11〉 ap-
proaches zero. This is why this particular interaction is called decoherence.

Notice that

|ψ〉|e〉 7−→ 1|ψ〉|e1〉+ Z|ψ〉|eZ〉,

implies

|ψ〉〈ψ| 7−→ 1|ψ〉〈ψ|1〈e1|e1〉+ Z|ψ〉〈ψ|Z〈eZ |eZ〉,

only if 〈e1|eZ〉 = 0, since otherwise we would have additional cross terms 1|ψ〉〈ψ|Z
and Z|ψ〉〈ψ|1. In this case (i.e. when 〈e1|eZ〉 = 0) we can indeed say that, with
probability 〈e1|e1〉, nothing happens, and, with probability 〈eZ |eZ〉, the qubit
undergoes the phase-flip Z. We can also represent this with the Kraus operators

E0 =
√
|e1〉〈e1|1

E1 =
√
|eZ〉〈eZ |Z

which can be shown to satisfy E†
0E0 + E†

1E1 = 1.
The process of decoherence is continuous. It involves the environment gradu-

ally acquiring information about computational paths and the associated relative
environmental states (|e0〉 and |e1〉 in our example above), which evolve over
time to become increasingly orthogonal to one another. Despite this, we can per-
ceive the influence of the environment on our system of interest — a collection
of qubits in a quantum computer — in terms of discrete operations. In essence,
we can digitise quantum errors.

13.4 Digitising quantum errors

The most general qubit-environment interaction is of the form

|0〉|e〉 7−→ |0〉|e00〉+ |1〉|e01〉
|1〉|e〉 7−→ |1〉|e10〉+ |0〉|e11〉

where the states of the environment are neither normalised nor orthogonal. This
leads to decoherence(

α|0〉+ β|1〉
)
|e〉 7−→

(
α|0〉+ β|1〉

) |e00〉+ |e11〉
2

+
(
α|0〉 − β|1〉

) |e00〉 − |e11〉
2

+
(
α|1〉+ β|0〉

) |e01〉+ |e10〉
2

+
(
α|1〉 − β|0〉

) |e01〉 − |e10〉
2

.

322



13.4 Digitising quantum errors

which can be written as

|ψ〉|e〉 7−→ 1|ψ〉|e1〉+ Z|ψ〉|eZ〉+X|ψ〉|eX〉+ Y |ψ〉|eY 〉.

The intuition behind this expression is that four things can happen to the
qubit:

1. nothing (1)
2. phase-flip (Z)
3. bit-flip (X)
4. both bit-flip and phase-flip (Y ).

This is certainly the case when the states |e1〉, |eX〉, |eY 〉 and |eZ〉 are mutually
orthogonal, but if this is not so then we cannot perfectly distinguish between the
four alternatives.261

We can reduce quantum errors in this general scenario to just two types:
bit-flip errors X, and phase-flip errors Z.

In short, if we can correct Pauli errors then we can correct all errors.

In general, given n qubits in state |ψ〉, and an environment in state |e〉, the
joint evolution can be expanded as262

|ψ〉|e〉 7−→
4n∑

i=1
Ei|ψ〉|ei〉,

where the Ei are the n-fold tensor products of the Pauli operators and the |ei〉 are
the corresponding states of the environment (which, again, are not assumed to
be normalised or mutually orthogonal). For example, in the case n = 5, a typical
operator Ei may look like

X ⊗ Z ⊗ 1⊗ 1⊗ Y ≡ XZ11Y.

We say that such an Ei represents an error consisting of the bit error (or X error)
on the first qubit, phase error (or Z error) on the second qubit, and both bit and
phase error (or Y error) on the fifth qubit.263

In terms of density operators, we have a quantum channel described by the
Kraus operators Ei above

ρ 7−→
∑

i

EiρE
†
i

261We will soon stop warning that this intuition is not entirely accurate, so keep it in mind!
262The sum is from i = 1 to 4n because there are 4n different (tensor products of) Pauli operators

acting on n qubits.
263One final time: this is not entirely accurate if the corresponding states of the environment are not

mutually orthogonal, but it gives the right kind of intuition nonetheless.
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13.5 Recoherence

that acts on any input state ρ, be it mixed or pure. In particular, this channel
turns the pure state |ψ〉 into a statistical mixture of states |ψ̃i〉 = Ei|ψ〉. Note that
the |ψ̃i〉 are not normalised:

pi := 〈ψ̃i|ψ̃i〉 = 〈ψ|E†
iEi|ψ〉

is exactly the probability with which the normalised version of Ei|ψ〉 appears in
the mixture. This mixture may arise if one measures the environment in the |ei〉
basis and then forgets about the result.

13.5 Recoherence

If we could measure the environment in the |ei〉 basis without forgetting the
result, then we would know what kind of error had occurred (say, some Ek)
and could then simply restore the original state |ψ〉 by reversing the action of
Ek. But the challenge lies in our lack of control over the environment. At first
glance, once our bunch of qubits, initially in state |ψ〉, gets entangled with the
environment

|ψ〉|e〉 7−→
∑

i

Ei|ψ〉|ei〉

the situation looks rather hopeless — we do not have any control over the en-
vironment. However, there is a way around this. We can couple the qubits to
an auxiliary system that we do control (an ancilla), and then attempt to transfer
the qubits–environment entanglement to a qubits–ancilla entanglement. In other
words, we prepare the ancilla in some prescribed state |a〉 and try to undo the
decoherence E using some recovery or recoherence operator R that acts as

|ψ〉|a〉 7−→
∑

k

Rk|ψ〉|ak〉.

Thus decoherence followed by recoherence acts as

RE : |ψ〉|e〉|a〉 7−→
∑

i

Ei|ψ〉|ei〉|a〉

7−→
∑
i,k

RkEi|ψ〉|ei〉|ak〉

which we can also express in a diagram, as in Figure 13.3.
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13.5 Recoherence

S

A

N

|ψ⟩|e⟩|a⟩

S

A

N

∑
iEi|ψ⟩|ei⟩|a⟩

S

A

N

∑
i,k RkEi|ψ⟩|ei⟩|ak⟩

decoherence E recoherence R

Figure 13.3: The initial state undergoing decoherence followed by recoherence.
Here S is the system of qubits that we want to work with, N is the environment,
and A is the ancilla that we introduce. The squiggly arrow represents interac-
tions, and the dashed line represents entanglement.

But for this to help us, we need to end up with in a state where the ancilla
and the environment are entangled with one another, and the qubit is entangled
with nothing, i.e. a state of the form

|ψ〉 ⊗ (some entangled state of the ancilla and environment)

as shown in Figure 13.4

S

A

N

|ψ⟩ ⊗
∑

i,k λi,k|ei⟩|ak⟩

Figure 13.4: The desired outcome of the decoherence–recoherence process.

Ideally we would like this to hold for all states |ψ〉, but this turns out to be too
much to ask: as we shall see in a moment, we will have to confine our recoverable
states to those that belong to a subspace called the codespace. But then at least
for these states we expect to have∑

i,k

RkEi|ψ〉|ei〉|ak〉 =
∑
i,k

|ψ〉 ⊗ λik|ei〉|ak〉.

The ability of Rk to perform the correction like this means that

RkEi = λik1
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13.6 The classical repetition code

when acting on the codespace states |ψ〉. In turn, this means that

∑
k

(RkEj)†(RkEi) = E†
j

(∑
k

R†
kRk

)
Ei

= E†
jEi

= λ?
jkλik1

which reminds us of the hopefully now-familiar condition for being able to cor-
rect a randomly chosen isometry.

Last but not least, note that the recoherence operator R not only allows us to
recover from the errors Ei, but also from any errors that are in the linear span
of these. Thus if the errors Ei form a basis in the matrix space — as is the case
for the Pauli matrices together with the identity — then once we design an error
recovery scheme for the Ei, we will be able to correct any error.

If a quantum error correction method corrects errors E1 and E2, then it
also corrects any linear combination of E1 and E2.

For example, in Section 13.2 we saw how the three-qubit encoding could cor-
rect for one of the possible errors264 1, X1, X2, orX3. But not only can we correct
for this discrete set of errors, we can also correct for any linear combination of
them, such as R(

X1
θ), which acts as

|ψ〉
RX1 (θ)
7−→ cos θ

2
|ψ〉+ i sin θ

2
X1|ψ〉.

In other words, the scenario where, with probability cos2 θ
2 we find that no error

occurred, and with probability sin2 θ
2 we find that the error X1 occurred and

correct it.

13.6 The classical repetition code

We have now essentially met all the concepts of quantum error correction, but
everything has been phrased in terms of correctable isometries. Now we need to
repeat much the same information from a slightly different perspective, includ-
ing a brief detour to introduce some concepts and methods from the classical
theory of error correction. Even though quantum problems often require novel
solutions, it is always a good idea to look at the classical world to see if there is
anything equivalent there, and, if so, how people deal with it. In this particular
case, once we have digitised quantum errors, we can see that quantum deco-
herence is a bit like classical noise (i.e. bit-flips), except that we have two types
of errors: these classical bit-flips, and then the purely quantum phase-flips. But

264Quite often we will write Xi to mean “an X error on the i-th qubit”, so that e.g. X2 = 1 ⊗X2 ⊗
1 . . .⊗ 1.
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13.6 The classical repetition code

there’s one key thing that we know relating these two types of errors, namely that
phase-flips can be turned into bit-flips by sandwiching then between Hadamard
transforms:

HZH = X.

This opens up the possibility of adopting classical techniques of error correction
to the quantum case. There is a vast body of knowledge out there about classical
error-correcting codes, and we can only scratch the surface here.

Suppose you want to send a k-bit message across a noisy channel. If you
choose to send the message directly, some bits may be flipped, and a different
message will likely arrive with a certain number of errors. Let’s suppose that the
transmission channel flips each bit in transit with some fixed probability p. If this
error rate is considered too high, then it can be decreased by introducing some
redundancy. For example, we could encode each bit into three bits:

0 7−→ 000
1 7−→ 111.

These two binary strings, 000 and 111, are called codewords. Beforehand, Alice
and Bob agree that, from now on, each time you want to send a logical 0, you
will encode it as 000, and each time you want to send a logical 1, you will encode
it as 111.

Here’s an example. Say that Alice wants to send the message 1011. She first
encodes it as the string

111 000 111 111

and then sends it to Bob over the noisy channel. Note that she is now not sending
just four, but instead twelve physical bits. This is more costly (in terms of time or
energy, or maybe even money), but might be worth it to ensure a more reliable
transmission. Let’s say that Bob then receives the message

110 010 101 100.

Clearly some errors have occurred! In fact, even Bob knows this, because he
expects to receive 3-bit chunks of either all 0s or all 1s. He uses the “majority
vote” decoding method:

• 110 is decoded as 1
• 010 is decoded as 0
• 101 is decoded as 1
• 100 is decoded as 0.

As we can see, if a triplet contains either zero or one errors then the de-
coding returns the correct bit value, otherwise it errs. In our example, the first
three triplets are correctly decoded, but the fourth suffered two errors and is thus
wrongly decoded as 0. This whole process can be represented as

1011 encoding7−→ 111 000 111 111 noise7−→ 110 010 101 100 decoding7−→ 1010.

327



13.6 The classical repetition code

The noisy channel flipped 5 out of the 12 physical bits, and the whole encoding–
decoding process reduced this down to only one logical error.

We can make a simple estimate on how good this scheme will be. Assuming
that the errors are independent265 then, for any given triplet,

no errors probability (1− p)3

1 error probability 3p(1− p)2

2 errors probability 3p2(1− p)
3 errors probability p3.

More succinctly, the probability that n errors occur is(
3
n

)
pn(1− p)3−n

where
(

m
n

)
= m!/(n!(m−n)!) is the binomial coefficient. Given that the scheme

decodes correctly exactly when we have at most one error, the net probability of
errors is just the probability that either two or three errors occur, which is

3p2(1− p) + p3.

This means that our encoding–decoding scheme actually lowers the probability
of error if and only if

3p2(1− p) + p3 <
1
2

i.e. when p < 1/2. This important number is known as the error threshold of
the code, and is a good judge of how useful a code actually is. When p is really
small, we can basically ignore the p3 term, since it is even smaller still, and claim
that the error probability is reduced from p to roughly 3p2.

000 000

001

010

100

110

101

011

111

(1− p)3

3p(1− p)2

3p2(1− p)

p3

000

111

000

001

010

100

110

101

011

111

no error

one error
correctable

two errors
detectable

three errors
not detectable

Figure 13.5: What can happen, and the respective probabilities, when we trans-
mit the codeword 000. With this scheme, we can correct up to one error, and
detect up to two. Note that when two errors occur, the “majority vote” correction
scheme actually gives the wrong “correction”.

265The assumption that the errors are independent is very important, but not always physically
realistic! We will re-examine to this assumption a few times in Chapter 14.
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13.6 The classical repetition code

In this example, we can see that if one or two errors occur, then the resulting
bit string will no longer be a valid codeword, which makes the error detectable.
For example, if the bit string 101 appears in our message, then we know that
some error must have occurred, because 101 is not a codeword, so we never
would have sent it. We can’t be certain which error has occurred, since it could
have been a single bit-flip on 111 (more likely) or a double bit-flip on 000 (less
likely), but we know for sure that one of these two went wrong. In the worst case
scenario, where three bit-flips happen, the error will be undetectable: it will turn
000 into 111 (and vice versa). This results in what is known as a logical error,
where the corrupted string is also a codeword, leaving us with no indication that
anything has gone wrong.

Below a certain error threshold, the three-bit code improves the reliability of
the information transfer. This simple repetition code encoded one bit into three
bits, and corrected up to one error. In general, there are classical codes that
can encode k bits into n bits and correct up to r errors. One more important
number that we need is the distance of such an encoding, which is defined to
be the minimum number of errors that can pass undetected (or, equivalently, the
minimum Hamming distance266 between two codewords). More generally, the
distance d relates to the number of errors t that a code can correct by d = 2t+ 1,
or, equivalently, t = bd/2c.

Looking back again at Figure 13.5, we see that if exactly one or two errors
occur in our three-bit code then we can detect that an error has occurred, since
we will have a string where not all of the bits are the same, which means that it
is definitely not one of our code words. However, if three errors occur then the
errors are not only impossible to correct, but they are also impossible to detect. So
the code that we have described has n = 3, k = 1, and d = 3.

A code that encodes k bits into n bits and has a distance of d is called an
[n, k, d] code. The rate of an [n, k, d] code is defined to be R = k/n.

In an [n, k, d] code, the encoder divides the message into chunks of k bits and
encodes each k-bit string into a pre-determined n-bit codeword. There are 2k

distinct codewords among all 2n binary strings of length n. The recipient then
applies the decoder, which takes chunks of n bits, looks for the nearest codeword
(in terms of Hamming distance), and then decodes the n-bit string into that k-bit
codeword. For example, in our 3-bit repetition code, we have the two codewords
000 and 111, among all eight binary strings of length 3, as shown in Figure 13.6.

266That is, the number of bit-flips required to move from one to the other; recall Section 12.1.
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000

001 010 100

110 101 011

111

closer to 111

closer to 000

Figure 13.6: All the 3-bit strings that are within Hamming distance 1 from 000
are below the line, and all those that are within Hamming distance 1 from 111
are above the line. The decoder assumes that the former are corrupted versions
of 000, and the latter of 111.

13.7 Correcting bit-flips

In order to protect a qubit against bit-flips (thought of as incoherentX rotations),
we rely on the same classical repetition code as in Section 13.6, but both encod-
ing and error correction are now implemented by quantum operations.267 Let’s
return to the example of the three-qubit code that we introduced in Section 13.1.
We take a qubit in some unknown pure state α|0〉+ β|1〉 and encode it into three
qubits, introducing two auxiliary qubits:

α |0⟩+ β |1⟩

α |000⟩+ β |111⟩|0⟩

|0⟩

Mathematically, this is an isometric268 embedding of a two-dimensional space
into an eight-dimensional one. It is important to note that this is not just the
classical repetition code “but with qubits instead of bits” — this would be impos-
sible to construct, since the no-cloning theorem tells us that we can never build a
circuit that enacts

α|0〉+ β|1〉 7−→ (α|0〉+ β|1〉)(α|0〉+ β|1〉)(α|0〉+ β|1〉).

Rather than repeating the qubit like this, the three-qubit code sort of “smears it
out” across three qubits, resulting in the entangled state α|000〉+ β|111〉.

Now suppose that one qubit is flipped, say, the second one. The encoded
state then becomes α|010〉+ β|101〉. Decoding269 requires some care: measuring

267All the codes we will study have encoding circuits that can be constructed out of controlled-NOT
and Hadamard gates: we are dealing with Clifford circuits (Section 7.7).

268Recall that an isometry is the generalisation of a unitary but where we are also allowed to bring
in additional qubits.

269There is a subtle difference between decoding and unencoding: the latter consists of simply
reversing the encoding process; the former consists of using the results of measurements (the error
syndrome) to perform a more adapted “unencoding”.
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the three qubits directly would destroy the superposition that we are working so
hard to protect. So instead we introduce two ancilla qubits, both in state |0〉, and
apply the following circuit:

|0⟩ |1⟩

|0⟩ |1⟩

α |010⟩+ β |101⟩

This decoding circuit is exactly the same as the ones for measuring the
Pauli stabilisers ZZ1 and 1ZZ (as described in Section 7.4).

Measuring the two ancilla qubits gives us what is known as the error syn-
drome (or sometimes just syndrome, for short), which tells us how to correct
the three qubits (known as the data qubits) of the code. The theory behind this
works as follows:

• if the first and second (counting from the top) data qubits are in the same
state then the first ancilla will be in the |0〉 state; otherwise the first ancilla
will be in the |1〉 state

• if the second and third data qubits are in the same state then the second
ancilla will be in the |0〉 state; otherwise the second ancilla will be in the
|1〉 state.

So the four possible error syndromes each indicate a different scenario:270

• |00〉: no error
• |01〉: bit-flip in the first data qubit
• |10〉: bit-flip in the second data qubit
• |11〉: bit-flip in the third data qubit.

In our example, the error syndrome is |11〉, and so we know that the first and
second qubits differ, as do the second and third. This means that the first and
third must be the same, and the second suffered the bit-flip error. Knowing the
error, we can now fix it by applying an X gate to the second qubit. The final
result is the state α|000〉+ β|111〉, which is then turned into (α|0〉+ β|1〉)|00〉 by
running the mirror image of the encoding circuit:

270Again, for now we are assuming that at most one bit-flip error occurs.
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α |000⟩+ β |111⟩

α |0⟩+ β |1⟩

|00⟩

|00⟩

It is also important to note that the actual error correction can be imple-
mented by a single unitary operation Uc on the five total qubits, with

Uc =
(
|0〉〈0| ⊗ |0〉〈0|

)
⊗ (111)

+
(
|0〉〈0| ⊗ |1〉〈1|

)
⊗ (11X)

+
(
|1〉〈1| ⊗ |0〉〈0|

)
⊗ (X11)

+
(
|1〉〈1| ⊗ |1〉〈1|

)
⊗ (1X1).

We draw the general circuit for bit-flip protection in Figure 13.7, writing out this
Uc in full, denoting the error-syndrome measurement by a, b.

|0⟩ a

|0⟩ b

α |0⟩+ β |1⟩

X error

Xa(1−b) α |0⟩+ β |1⟩

|0⟩ Xab

|0⟩ X(1−a)b

Figure 13.7: The quantised version of the classical [3, 1, 3] code. If at most one
bit-flip error occurs in the shaded region (which denotes the part where we trans-
mit over a noisy channel), then this circuit perfectly corrects it, resulting in the
successful transmission of the state α|0〉+ β|1〉.

It is useful to represent syndrome measurements in terms of stabilisers. For
example, a computational basis measurement is represented by the Pauli Z oper-
ator. The parity of two qubits is represented by the observable Z ⊗ Z, since the
Z ⊗ Z measurement will have outcome +1 in the case of even parity and −1 in
the case of odd parity (when applied to two of the three qubits). To detect errors
in a repetition encoding, we consider the parity of all pairs of qubits in the code;
in the case of the three-qubit repetition code, we use the operators

Z ⊗ Z ⊗ 1Z ⊗ 1⊗ Z1⊗ Z ⊗ Z.

However, since Z2 = 1, it actually suffices to use only two of these, say Z⊗Z⊗1
and 1 ⊗ Z ⊗ Z, because we can recover the last one as their product. But these
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two operators are exactly generators of the stabiliser group

S = {111, ZZ1, Z1Z,1ZZ}

(where we again drop the tensor product symbol). So, in summary, measuring
the two generators of this stabiliser group gives us the error syndrome.

We can compile all the error syndromes (in the case of a single bit-flip) into a
table:

Error ZZ1 Z1Z 1ZZ

111 + + +
X11 − − +
1X1 − + −
11X + − −

Here the rows are labelled by bit-flip errors, and the columns by the parity-
check observables; we write ± to mean ±1. Note how the + and − results
correspond to the binary labels 0 and 1, and also how the Z1Z column is simply
given by the product of the other two measurement columns.

13.8 Correcting phase-flips

We have seen how the classical [3, 1, 3] code can be adapted to detect and correct
for a single quantum bit-flip, but in Section 13.4 we said that there are three
possible errors that we need to worry about: bit-flips, phase-flips, and bit-and-
phase flips. Having dealt with the first, we now deal with the second; finding a
way to combine these two solutions to deal with the third is the subject of Section
13.10.

It turns out that we really don’t need to do much work in order to solve the
problem of single phase-flip errors if we make use of the fact that HZH = X,
i.e. phase-flips become bit-flips when sandwiched between Hadamards!

|0⟩ a

|0⟩ b

α |0⟩+ β |1⟩ H

Z error

H Za(1−b) α |0⟩+ β |1⟩

|0⟩ H H Zab

|0⟩ H H Z(1−a)b

Figure 13.8: Using the quantised [3, 1, 3] code to deal with phase-flips by sand-
wiching the transmission area between Hadamards.
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The encoded state that enters the transmission area affected by decoherence
now reads α|+++〉+β|−−−〉, where |±〉 = (|0〉±|1〉)/

√
2. These are eigenstates

of Z, i.e. Z|±〉 = |∓〉, and so errors get transformed into orthogonal, and thus
detectable, states.

But just as how the circuit in Section 13.7 only protected against bit-flips, this
circuit only protects against phase-flips — now we need to find a way to combine
them.

13.9 Composing correctable channels

We have already seen that we can compose quantum channels both in sequence
and in parallel, using matrix multiplication or the tensor product (respectively).
When we compose two correctable channels, do we still get a correctable chan-
nel? Well, if {Vi} and {Wm} are two sets of channels then

(Vj ⊗Wn)†(Vi ⊗Wm) = (V †
j Vi)⊗ (W †

nWm)

and so if the Vi and the Wm are all isometries, then so too is their parallel com-
position, since the above then equals δijδmn1⊗1. Similarly, if Vi : B(H)→ B(H′)
and Wm : B(H′)→ B(H′′), then the composition WmVi is meaningful, and

(WnVj)†(WmVi) = V †
j W

†
nWmVi

and so if the Vi and Wm are all isometries, then so too is their sequential compo-
sition, since the above then equals δijδmn1.

Let’s apply this to our continuing example of single-qubit error correction.
Recall the isometries

V00 = |000〉〈0|+ |111〉〈1|
V01 = |001〉〈0|+ |110〉〈1|
V10 = |010〉〈0|+ |101〉〈1|
V11 = |100〉〈0|+ |011〉〈1|.

from Section 13.1. If we write x to mean the complement NOT(x) of a binary
string x, then these can all be expressed as

Vx = |0x〉〈0|+ |1x〉〈1|.

We can define a related set of isometries by

Wx = (H ⊗H ⊗H)Vx

which correct for any single Z error, using the fact that HXH = Z. Then the
composites

(Vy1 ⊗ Vy2 ⊗ Vy3)Wx = (Vy1 ⊗ Vy2 ⊗ Vy3)(H ⊗H ⊗H)Vx

define a set of isometries that map a single qubit to nine qubits as a correctable
channel.
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If we look at the y1 = y2 = y3 = x = 00 case, then we can use this to define
an encoding procedure, as in Figure 13.9.

1 2

3

α |0⟩+ β |1⟩ H

|00⟩

|000⟩
H

|000⟩
H

Figure 13.9: The encoding circuit for the Shor [[9, 1, 3]] code, implementing (V00⊗
V00 ⊗ V00)(H ⊗ H ⊗ H)V00. The three locations marked with numbers are not
part of the circuit, but we will use them to explain how this circuit corrects for
arbitrary single-qubit errors.

What errors can this code cope with? Trivially, an X on any of the nine qubits
corresponds to a different isometry, by construction. For example, applying an X
at location 3 in Figure 13.9 is picked out by y2 = 10. In other words, each block
of three qubits behaves just as it did before.

We also know that, by construction, the code would correct for a single X
error at location 1 in the circuit. If we propagate this error through the circuit,
this is the same as a Z error in location 2, which corresponds to the isometry with
x = 10, and shows that Z errors on the first, fourth, and seventh (i.e. the first in
each block of three) qubits can be corrected. What about other Z errors? Well,
let’s go back to the subspace created by one of the Vx, say V00 which is spanned
by |000〉 and |111〉. Then the effect of a single Z error on that space is the same
no matter where the Z is applied: a Z error at location 3 has exactly the same
effect as a Z error at location 2, since it corresponds to the same isometry, and so
the error can still be detected and corrected without ever needing to know whether
the error was at location 2 or location 3. This lack of knowledge means that the
code is said to be degenerate.

This circuit gives a nine-qubit encoding that can correct for any single-
qubit error. The resulting code is called the Shor [[9, 1, 3]] code, where
the 9 tells us the size of the encoding, the 1 tells us the input size, and the
3 tells us the distance (defined below).

We will describe how the Shor [[9, 1, 3]] code271 provides single-qubit error

271We use double square brackets to emphasise that this is a quantum, not classical, code.
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correction in more detail in Section 13.10.
Note that, for the Shor [[9, 1, 3]] code, operators such as Z1Z2 := Z ⊗Z ⊗ 1⊗7

are undetectable, but they do not change the logical state:

Z1Z2(Vy1 ⊗ Vy2 ⊗ Vy3)Wx = (Vy1 ⊗ Vy2 ⊗ Vy3)Wx.

However, operators such as X1X2X3 are undetectable and do change the logical
state:

(X ⊗X ⊗X)Vyi
= Vyi

X.

In fact, this is the smallest possible operator (said to be of weight 3, since it is
built as a tensor product of three non-trivial gates) that can cause this problem
of undetectable but fatal errors, which is exactly the same as saying that the Shor
code has distance d = 3.

13.10 Correcting any single error: Shor [[9,1,3]]

In Section 13.9 we derived the encoding circuit for the Shor [[9, 1, 3]] code, so
now let’s go from the top and put all the pieces together to understand how this
gives an error correction procedure for all possible single-qubit errors.272

To start, we encode our qubit with the phase-flip code

|0〉 7−→ |+〉|+〉|+〉
|1〉 7−→ |−〉|−〉|−〉

and then we encode each of the resulting three qubits with the bit-flip code

|0〉 7−→ |0〉|0〉|0〉
|1〉 7−→ |1〉|1〉|1〉

resulting in a net effect of

|0〉 7−→ (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)/
√

8

|1〉 7−→ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)/
√

8.
(‡)

In order to understand how this code works, it is helpful to look at the com-
plete circuit diagram, so let’s build it up in a compositional way. Rather than
drawing the entire circuits from Sections 13.7 and 13.8 again, let’s simply draw
them as consisting of an encoding gate C and a decoding gate D, separated by
a zone [t1, t2] that corresponds to transmission over the noisy channel. Then the
bit-flip correction circuit looks like

272Although nine qubits is actually more than necessary (we can achieve the same result with a
different scheme that only uses five), this code, proposed by Shor in 1995, allows us to more easily
see what’s really going on.
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|ψ⟩

C D

|ψ⟩

t1 t2

and the phase-flip correction looks the same, but with Hadamard gates sand-
wiching the transmission zone, so

|ψ⟩

C

H H

D

|ψ⟩

H H

H H

t1 t2

Then we can nest the bit-flip correction circuit into the phase-flip correction
circuit by inserting a copy on each of the three wires in the transmission zone,
giving us the circuit that implements the encoding of Equation (‡), as shown in
Figure 13.10.

|ψ⟩

C

H
C D

H

D

|ψ⟩

H
C D

H

H
C D

H

t1 t2

Figure 13.10: Nesting the two correction circuits: one copy of the bit-flip correc-
tion circuit on each wire of the phase-flip correction circuit.

Operads.

We have already seen the idea of sequential composition compared to
parallel composition, when we talk about the difference between matrix
multiplication BA (“do A then B”) and the tensor product A⊗B (“do A
to one part and B to the other”). Neither type of composition can deal
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with choices: if A and B are of the right size, then BA (or A⊗B) is either
defined or it isn’t. However, there are some subtleties to be aware of.

For example, associativity of a composition operation tells us that we
can forget about brackets if we just have the same type of composition
over and over, since (CB)A = C(BA). It seems like every operation we
ever meet is associative (indeed, it’s even baked into the definition of
what it means to be a group), but it turns out that non-associative op-
erations are just as interesting as non-commutative ones. But the story
doesn’t stop there! What if we want to study “the next thing up” from
associativity, whatever this might be? Or what if we want to study oper-
ations that have more than two inputs, and maybe even more than one
output? Trying to answer questions like this leads us to operads and their
algebras.

Looking again at Figure 13.10, we see that we could have composed
the bit-flip correction circuits in a different way, placing them one after
the other, but we instead wanted to nest them. All that matters in order
for us to be able to do either one of these compositions (whether or not
we can find any use for it!) is that the number of input and output wires
match up. Working with (algebras over) operads has a similar flavour,
and you will find yourself drawing lots of little diagrams and then either
putting them side-by-side or nesting copies of one inside bits of the other
in various different ways. You might find some intriguing pictures if you
search for the little cubes operad, or the Swiss cheese operad. One par-
ticularly nice introduction is Tai-Danae Bradley’s “What is an Operad?”.

Now, if an X error occurs on one of the nine qubits in the circuit in Figure
13.10 during the time interval [t1, t2], it will be corrected by the corresponding
inner three-qubit repetition code that corrects for bit-flips. In fact, this scheme
can tolerate up to three bit-flip errors provided that they occur in different blocks.273

For example, writing Xi to mean an X error on the i-th qubit, if X1, X5, and X7
all occur then they will all be corrected, but if X1 and X2 both occur then the
resulting error will not be corrected.

Next, if a Z error occurs on one of the qubits, say the first one, we know that
it will not be corrected by the inner encoding–decoding circuit (the one taking
place on the top three qubits), but it will be passed along and then corrected
“one level up”, by the outer encoding–decoding circuit (the one taking place on
the first, fourth, and seventh qubits).

Finally, what about if a Y error occurs? Well, since Y = ZX, the inner circuit
will correct the X part of the error, and the outer circuit will correct the Z part274

So quantum error correction is indeed possible: we can remove the unwanted
effects of decoherence during transmission through a channel. However, this
process of encode–transmit–decode doesn’t really cover the practical scenario of
computation, since in reality we are constantly trying to process our data, and

273We will explain why this condition of “occurring in different blocks” is necessary in Section 14.7.
274As per usual, any resulting global phase doesn’t matter.
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13.11 Error-correcting assumptions

noise could enter at any moment. One thus has to compute on the encoded states
the whole time, whilst also somehow ensuring that even faults occurring during
an error correction cycle don’t adversely affect the computation. This is known as
fault tolerance, and studying this, using the stabiliser formalisation of Chapter
7, is the goal of Chapter 14.

13.11 Error-correcting assumptions

Throughout this section we have been making certain key assumptions about
how errors can occur. For example, we have always assumed that all errors are
independent, and that only single-qubit errors can occur. Although this describes
many simple scenarios, it is does not do a very good job of modelling what hap-
pens in practice. It might be the case that many-qubit errors can occur, and that
once a specific error has occurred it makes other errors more or less likely. Before
we can describe fully fault-tolerant computation, we need to be able to deal with
these more complicated scenarios, and this forms the topic of a large chunk of
Chapter 14.

However, there are other assumptions that we are making that we will not dis-
cuss in this text, because they fall out of the scope of “introductory” and instead
become the topic of specialised research in error correction and fault tolerance.
One such assumption is that we never have any errors affecting our ancilla qubits,
so that we can trust our error-syndrome measurements; similarly we assume that
when we actually come to apply the error correction, we can do so in an error-free
environment. Another assumption is something more “implementation-focused”,
namely that we are correctly operating the measurement devices, and that they
are well-calibrated, otherwise we run into the problem of measurement errors.
Often combined with this is the problem of state preparation275 — how do we
know that we really are preparing the state that we call |0〉? Such worries, and
many more besides, are important if we wish to develop a truly robust theory of
error correction.

13.12 Remarks and exercises

13.12.1 Decoherence-free subspaces

Which of the following sets of isometries are correctable?

1. {V0, V1}, where

V0 = |00〉〈0|+ |11〉〈1|

V1 = 1√
2

[
(|01〉+ |10〉)〈0|+ (|01〉 − |10〉)〈1|

]
.

275The combination of state preparation and measurement errors is sometimes called SPAM. This
can be dealt with in various ways, appealing to the fact that their effect does not get worse as circuit
depth increases since these problems are located at the very beginning and very end of the circuit.
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2. {V0, V1}, where

V0 = |00〉〈0|+ |11〉〈1|

V1 = 1√
2

[
(|01〉+ |10〉)〈0|+ (|00〉 − |11〉)〈1|

]
.

3. {U⊗4V0 | U unitary}, where

V0 = 1
2

[
(|01〉 − |10〉)(|01〉 − |10〉)

]
〈0|.

+ 1√
12

[
2|0011〉+ 2|1100〉 − (|01〉+ |10〉)(|01〉+ |10〉)

]
〈1|.

13.12.2 Repetition encoding and majority voting failure

Consider encoding a single classical bit as 2k+ 1 bits using a repetition code, and
then decoding with majority voting. If during the transmission process between
encoding and decoding each bit is flipped with independent probability p, what is
the probability of an error on the logical bit after the encoding–decoding process?

13.12.3 Correcting Pauli rotations with three qubits

We protect an unknown single-qubit state α|0〉 + β|1〉 against bit-flip errors by
encoding it with the three-qubit repetition code:

|ψ〉 = α|000〉+ β|111〉.

An error of the form (cos θ)1+(i sin θ)X occurs on the first qubit during transmis-
sion. When we perform the error syndrome measurements, what are the possible
outcomes, and what are the corresponding output states?

Conclude that the standard error-correcting protocols that we have discussed
will also correct for this type of error.

13.12.4 More on Shor [[9,1,3]]

1. Give the logical codewords276 |0L〉 and |1L〉 for the Shor [[9, 1, 3]] code.

2. What is the smallest number of single-qubit operations needed to convert
|0L〉 into |1L〉?

3. Can you identify the stabilisers and the logical operators XL and ZL for
this code?277 Note that these may not be unique.

4. Write a table of the syndromes for all single-qubit X or Z errors on this
code, where the columns are labelled by the single-qubit error, and the row
by the corresponding stabiliser.

276That is, the states corresponding to the encoding of |0〉 and |1〉.
277That is, the operators XL and ZL that behave on |0〉L and |1〉L exactly how X and Z behave on

|0〉 and |1〉. Hint: start from the encoding circuit with the eight ancillas all prepared in state |0〉; what
are their stabilisers? Recall that the encoding operation is a Clifford circuit.
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5. How can we detect and correct a Y error occurring on the first qubit?

6. If an error of the form
√

1− p1 + i
√
pY occurs on the first qubit, what are

the different possible outcomes of measurement?

7. Assume that there is some environment, initially in state |e〉. Decoherence
occurs on the qubit, transforming it via

|0〉|e〉 7−→ |0〉|e00〉
|1〉|e〉 7−→ |0〉|e11〉.

Show that, if we use the Shor [[9, 1, 3]] code and this decoherence only
affects the first qubit in transmission, then we can correct for the resulting
error.

13.12.5 Distillation for Bell pairs

Alice wants to sendm qubits of information to Bob. She can send quantum states,
but only through a transmission channel that induces errors, though she can send
classical information perfectly. Bob cannot send messages (neither quantum nor
classical) to Alice, but both of them can perfectly implement quantum logic gates.

To send her m qubits in spite of the noise, Alice might encode them in an
n-qubit error correcting code.

The process by which a set of N noisy Bell pairs is converted into a small
number M of perfect Bell pairs is known as distillation. This occurs at a
rate D1 = M/N , which is often considered in the limit of large N . The
subscript 1 denotes that this is one-way distillation, where only Alice can
send messages.

1. Assuming knowledge of the optimal code (i.e. one that is guaranteed to
succeed and is as small as possible), Alice could transmit encoded halves of
Bell pairs, which Bob could then decode. What is a bound on the rate at
which Alice and Bob can distill Bell pairs through this channel?

2. Alternatively, Alice could send Bob unencoded halves of Bell pairs, which
they then distill to create a smaller number of perfect Bell pairs which Alice
can then use to teleport the desired information. Assuming knowledge of
the optimal distillation procedure (i.e. one that maximises D1), how does
this protocol bound the distillation rate?

13.12.6 Composing quantum codes

Consider two quantum codes: C1 is an [[n1, 1, d1]] code, and C2 is an [[n2, 1, d2]]
code. We decide to encode a qubit |ψ〉 by first encoding it into n1 qubits using
C1, and then encoding each of those resulting qubits into n2 qubits using C2. The
overall effect is an encoding into the composite code C2C1.
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1. How many physical qubits are involved in the encoding of a single logical
qubit of the new code?

2. What is the distance of the new code?
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14 Quantum error correction

About more classical error correction and the Hamming codes,
how they generalise to quantum codes called CSS codes, includ-
ing the Steane [[7,1,3]]-code. Also about computing in the
presence of errors: logical states, logical operators, and er-
ror families — all via the formalism of stabilisers — and the
transversal gates that we can implement to act on them.

We have seen a way of dealing with the computational errors introduced by
the physical problem of decoherence, namely the Shor [[9, 1, 3]] code, but this is
just the start of the story. There is a vast body of work on classical error correc-
tion, so it’s sensible to ask if we can adapt this to help us in the world of quantum
computation. As we shall see, we can actually use quite a lot of the theory of clas-
sical error-correction codes, and in doing so we will start to really make use of the
stabiliser formalism introduced all the way back in Chapter 7. But note that this
still isn’t the end of the story: our goal is so-called fault-tolerant computation,
which we come to in Chapter 15.

14.1 The Hamming code

The challenge in designing efficient error-correcting codes resides in the trade-off
between rate and distance (introduced in Section 13.6). Ideally, both quantities
should be high: a high rate signifies low overhead in the encoding process (i.e. re-
quiring only a few redundant bits), and a high distance means that many errors
can be corrected. So can we optimise both of these quantities simultaneously?
Unfortunately, various established bounds tell us that there is always a trade off,
so high-rate codes must have low distance, and high-distance codes must have
a low rate. Still, there is a lot of ingenuity that goes into designing good error-
correction codes, and some are still better than others!

Before looking at quantum codes in more depth, we again start with classical
codes. For example, in Section 13.6 we saw the three-bit repetition code, which
has a rate of R = 1/3 and distance 3. However, the Hamming [7, 4, 3] code278

has the same distance, but a better rate of R = 4/7 > 1/3. Figure 14.1 show
diagrammatic representations of this Hamming code, which we will now study
further.

278In the late 1940s, Richard Hamming, working at Bell Labs, was exasperated by the fact that the
machines running his punch cards (in these heroic times of computer science, punch cards were the
state of the art data storage) were good enough to notice when there was an error (and halting) but
not good enough to know how to fix it.
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14.1 The Hamming code

p1

p2 p3

d1 d2

d3

d4

p1

p2 p3

d1 d2

d3

d4

Figure 14.1: Left: The Venn diagram for the Hamming [7, 4, 3] code. Right: The
plaquette (or finite projective plane) diagram for the same code. In both, di are
the data bits and the pi are the parity bits. The coloured circles (resp. coloured
quadrilaterals) are called plaquettes.

The Fano plane.

We say that the plaquette diagram in Figure 14.1 could also be called
a finite projective plane diagram because of how it resembles the Fano
plane, which is the projective space of dimension 2 over the field with
2 elements.

In fact, there is more than a mere visual similarity between these two
diagrams: we will soon introduce the formal definition of a linear code,
and there is a special family of these known as projective codes, which
are those such that the columns of the generator matrix (another charac-
ter who we shall soon meet) are all distinct and non-zero.

Projective codes are particularly interesting because they allow us to
apply geometric methods to study the properties of the code. For exam-
ple, the columns of the parity check matrix of a projective code corre-
spond to points in some projective space. Furthermore, since the geom-
etry in question concerns finite dimensional spaces over finite fields, we
end up coming across a lot of familiar (and useful) combinatorics. This
is partially due to the fact that finite geometry can be understood as an
example of an incidence structure.
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14.1 The Hamming code

Both diagrams in Figure 14.1 describe the same situation, but although the
right-hand one is useful for understanding the geometry hidden in the construc-
tion and allowing us to generalise to create new codes, and is thus the one that
we will tend to use, the Venn diagram on the left-hand side is maybe more sug-
gestive of what’s going on.

The idea is that we have a four-bit string d1d2d3d4 consisting of the four data
bits, and we encode into a seven-bit string279 d1d2d3d4p1p2p3 by appending three
parity bits p1, p2, and p3, which are defined by

p1 = d1 + d2 + d4 mod 2
p2 = d1 + d3 + d4 mod 2
p3 = d2 + d3 + d4 mod 2.

You can hopefully see how the triangular diagram in Figure 14.1 tells us which
data bits are used in defining each parity bit: we take the sum of all data bits in
the same plaquette (one of the three coloured quadrilaterals) as the parity bit.

We can also express this encoding in matrix notation, defining the data vector
d by

d =


d1
d2
d3
d4


and the generator matrix280 G by

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1


The vector space spanned by the columns of the generator matrix G is known

as the codespace of the code, and any vector in this space is known as a code-
word.

The encoding process is then given by the matrix G acting on the vector d.
Indeed, since the top (4 × 4) part of G is the identity, the first four rows of the
output vector Gd will simply be a copy of d; the bottom (3 × 4) part of G is
chosen precisely so that the last three rows of Gd will be exactly p1, p2, and p3.

279Sometimes you will see the Hamming [7, 4, 3] code referred to simply as the seven-bit Hamming
code, the [7, 4, 3] code, or even just the Hamming code.

280Many sources define G to be the transpose of what we use here, but this is just a question of
convention. Because of this, we’ll be dealing with the column (not row) spaces of matrices, also
known as the range.
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14.1 The Hamming code

In other words,

Gd =



d1
d2
d3
d4
p1
p2
p3


=


d
p1
p2
p3

 .

By construction, the sum of the four bits in any single plaquette of the code
sum to zero.281 For example, in the bottom-left (red) plaquette,

p2 + d1 + d3 + d4 = d1 + d3 + d4 + d1 + d3 + d4

= 2(d1 + d3 + d4)
= 0

and the same argument holds for the other two plaquettes. This incredibly simple
fact is where the power of the Hamming code lies, since it tells the receiver of
the encoded string a lot of information about potential errors.

Let’s consider a concrete example. Say that Alice encodes her data string
d1d2d3d4 and sends the result Gd to Bob, who takes this vector and looks at the
sum of the bits in each plaquette, and obtains the following:282

p1

p2 p3

d1 d2

d3

d4

0 1

1

If we make the assumption that at most one error occurs283 then this result tells
us exactly where the bit-flip happened: it is not in the bottom-left (red) plaquette,
but it is in both the top (blue) and bottom-right (yellow) plaquettes. Looking at
the diagram we see that it must be d2 that was flipped, and so we can correct for
this error by simply flipping it back before unencoding (where the unencoding
process is given by simply forgetting the last three bits of the received string).

We can describe the error location process in terms of matrices as well, using
the parity-check matrix284 H, given by

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
281Since we are working with classical bits, all addition is taken mod 2, so sometimes we will

neglect to say this explicitly.
282We don’t write the values of the bits, only the sums of the bits in each plaquette. This is because

we don’t need to know the value of the bits in order to know where the error is, only the three sums!
283This assumption is crucial here, and we investigate what happens if we drop it in Section 14.7.
284Here is yet another H, to go with the Hadamard and the Hamiltonian. . .
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14.1 The Hamming code

Note that the rows of H are exactly the coefficients of the parity-check equa-
tions for each plaquette, where we order them top–left–right (blue–red–yellow).
For example, to get the sum corresponding to the bottom-left (red) plaquette,
we need to sum the first, third, fourth, and sixth bits of the encoded string
d1d2d3d4p1p2p3, and these are exactly the non-zero entries of the second row
of H. The columns of the parity-check matrix H are known as the error syn-
dromes, for reasons we will now explain

The parity-check matrix H is defined exactly so that285

Hc = 0 ⇐⇒ c is a codeword.

Now we can see a bit more into how things work, since linearity of matrix multi-
plication tells us that, if a receiver receives c + e where e is the error,

H(c + e) = Hc +He
= He.

Decoding the message then consists of finding the most probable error e that
yields the output He. If e is a single bit-flip error, then He is exactly a column
of H, which justifies us describing the columns as error syndromes. We can
construct a table describing all of the possible error syndromes, and which bit
they indicate for us to correct:

Syndrome 000 110 101 011 111 100 010 001

Correction - d1 d2 d3 d4 p1 p2 p3

The above construction of the Hamming [7, 4, 3] code can be generalised to
result in a Hamming [2r − 1, 2r − r − 1, 3] code286 for any r ⩾ 2, where each
column of the parity-check matrix is a different binary string, excluding the string
of all 0 bits. It’s noteworthy that only a logarithmic number of parity checks are
necessary to correct all single-bit errors. However, there are some downsides to
Hamming codes. Although the rate R = (2r − r − 1)/(2r − 1) approaches 1 as
r → ∞, Hamming codes are impractical in highly noisy environments because
they have a fixed distance of 3.

Double-bit errors in the Hamming code.

Although the Hamming [7, 4, 3] code can only deal with single-bit errors,
it can be extended to an [8, 4, 4] code, at least detecting double-bit errors,
by adding a single extra parity bit p4, given by taking the sum of all the

285Recall that codewords are exactly those vectors of the form Gd for some data vector d
286How do we know that the distance is always 3? Well, there are triples of columns in the parity-

check matrix that, when added together, give all zeros. This means that there are sets of 3 errors
such that, if they all occur together, the syndrome will be zero, and so the distance is no more than
3. Meanwhile, all the columns are distinct, so no pair of columns add together trivially, which means
that the distance must be greater than 2.
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other seven bits:

p1

p2 p3

p4

d1 d2

d3

d4

How does this work? Well, let’s assume that up to two bit-flip errors
could occur. The decoding process then starts by looking at this new par-
ity bit p4 in the received string and seeing if it is indeed equal to the
sum of all the other bits, saying that it is “correct” if so, and “incorrect”
if not. If p4 is incorrect, then there has been a single-bit error, and we
can just look at the rest of the string d1d2d3d4p1p2p3 and apply the previ-
ous Hamming [7, 4, 3] code decoding process, with the caveat that if this
tells us that no errors have occurred, then it must be the case that the
single-bit error actually flipped the parity bit p4 itself. If p4 is correct, then
there has either been no error or a double bit-flip error; to see which is
the case we can measure the Hamming [7, 4, 3] code error syndrome of
d1d2d3d4p1p2p3, and this will tell us the XOR of the two bit-flip locations;
if this is 0 then either no error has occurred or two errors affected the
same bit, cancelling each other out.

Before moving on, it will be useful to introduce another common way of
diagrammatically representing parity-check matrices called a Tanner graph. This
is a bipartite graph287 consisting of two types of nodes: the codeword (or data)
nodes (one for each bit of the codeword, drawn as circles), and the syndrome
nodes (one for each bit of the syndrome, drawn as squares). The edges in the
Tanner graph are such that the parity-check matrix H is exactly the adjacency
matrix of the graph, i.e. the matrix that has a 1 in the (i, j)-th position if the i-th
syndrome node is connected to the j-th codeword node, and a 0 otherwise.

287A graph (which is a collection of nodes and edges between some of them) is bipartite if the
nodes can be split into two sets such that all the edges go from one element of the first set to one
element of the second.
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d4

d1 d2

d3

p1

p2 p3

s1

s2 s3

Figure 14.2: The Tanner graph for the Hamming [7, 4, 3] code. Comparing this to
the plaquette diagram in Figure 14.1, we see that we simply replace plaquettes
by syndrome nodes (hence our choice of colours). It is not immediately evident
that this graph is bipartite, but try drawing it with all the syndrome nodes in one
row and all the data nodes in another row below to see that it is.

One particularly useful aspect of Tanner graphs is how simple it is to convert
to and from the corresponding parity-check quantum circuits. There is a syn-
drome node for each ancilla qubit, and a data node for each data qubit; there
are paths between syndrome and data nodes whenever there is a controlled-NOT
between the corresponding qubits. We show a simple example in Figure 14.3.

s1

s2

|0⟩

|0⟩

|ψ⟩

d1

d2

d3

s1

s2

Figure 14.3: Left: The quantum circuit for a parity-check operation. Right: The
corresponding Tanner graph.

14.2 Linear codes

Hamming codes are special cases of a larger family of codes called linear codes:
one in which the codewords form a vector space. These are constructed by ju-
dicious choices of the generators matrices or parity-check matrices (since one
determines the other), and can offer different trade-offs between the code rates
and distances. We have already seen the example of the Hamming [7, 4, 3] code,
but let’s state the general framework a bit more abstractly.
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14.2 Linear codes

An [n, k, d] linear code C is described by two matrices:
• The generator matrix G, which is an (n× k) matrix

G =
[

1k×k

P

]
for some ((n− k)× k) matrix P . The columns of G are codewords,
and and form a basis for the codespace range(G).

• The parity-check matrix H, which is an ((n− k)× n) matrix

H =
[
Q 1(n−k)×(n−k)

]
for some ((n − k) × k) matrix Q. The columns of H are error syn-
dromes.

The matrices G and H have to satisfy one of the two equivalent con-
ditions

range(G) = ker(H) or range(HT ) = ker(GT ).

We can ensure this by taking Q = −P (see Exercise 14.11.4).

One last piece of the puzzle that we need to understand is the notion of dual
codes. We will write range(G) to mean the vector space spanned by the columns
of the matrix G. Given a code288 C = (G,H) expressed in terms of its generator
matrix and parity-check matrix, we know that the columns of G span the kernel
of H, i.e. that range(G) = ker(H). Why is this? Well, because this is equivalent
to saying that a vector is in the span of the columns of G exactly when it is of the
form Gd for some data vector d, i.e. exactly when it is a codeword, and we have
already shown this above. In particular then,

H ·G = 0

(which merely says that range(G) ⊆ ker(H)).
But, taking the transpose of the above equality, we see that

GT ·HT = 0

and so289 we can define a code C⊥ = (HT , GT ), whose codewords are exactly
the columns of HT , i.e. the rows of H. This is known as the dual code of C.
Since G has n rows and k columns, and H has n− k rows and n columns, we see
that the dimension of the codespace of C (i.e. the span of the columns of G) and
the dimension of the codespace of C⊥ (i.e. the span of the rows of H) must sum

288Usually, for linear codes, people talk of the code C as being equal to the codespace, i.e. the span
of the columns of G. For now, however, it is notationally simpler to denote a code by these two key
matrices.

289This tells us that range(HT ) ⊆ ker(GT ), but we can show that this is an equality using the fact
that range(G) = ker(H) is an equality.
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to n. In fact, if C is an [n, k, d] code, then C⊥ is an [n, n − k, d′] code, where d′

is not usually related to d in any obvious way. A nice example is the Hamming
[7, 4, 3] code, whose dual is a [7, 3, 4] code known as the shortened Hadamard
code.

Given a code C = (G,H), its dual code is C⊥ = (HT , GT ).

It is immediate that (C⊥)⊥ = C, but it is interesting to ask about the relation-
ship between C and C⊥. Then we say that a code is weakly self-dual (or self-
orthogonal) if range(G) ⊆ range(HT ), and self-dual if range(G) = range(HT ).
In other words, a code is weakly-self dual if its codespace is a subspace of the
codespace of its dual, and self-dual if these two codespaces are actually equal.
We said above that dim range(G) + dim range(HT ) = n, so we see that for a code
to be self-dual it must be the case that n is even, but this is only a necessary
condition, not a sufficient one!

14.3 Quantum codes from classical

We would like to use the insights gained from our study of classical codes to help
us build quantum codes. Let’s start with a classical [n, k, d] code (such as the
Hamming [7, 4, 3]), with parity-check matrix H and generator G. Each row r of
H is a binary string xr = xr,1xr,2 . . . xr,n, where xi,j is the (i, j)-th element of H.
For 1 ⩽ r ⩽ n, we define a stabiliser generator

Gr := Xxr
:= ⊗n

j=1X
xr,j .

For example, in the case of the Hamming [7, 4, 3] code, we have

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .
so the three rows define three generators

G1 = X1101100 = XX1XX11
G2 = X1011010 = X1XX1X1
G3 = X0111001 = 1XXX11X.

Now consider a state |ψ〉 that is stabilised by these generators, i.e. such that

Gr|ψ〉 = |ψ〉.

What happens if a Z error occurs on a particular qubit: what measurement results
do we get when we measure the stabilisers? Well, writing Zj to mean a Z error
on the j-th qubit, as usual,

GrZj |ψ〉 = (−1)xr,jGr|ψ〉
= (−1)xr,j |ψ〉.

351



14.3 Quantum codes from classical

So the measurement outcome directly corresponds to the (r, j)-th entry xr,j of the
parity check matrix. Generally, if this Zj error occurs, then measuring for all rows
r will give measurement outcomes that directly correspond to the j-th column of
the parity check matrix. This is just the same lookup table as in the classical case:
this codespace is a distance d error correcting code for single Z errors. Using the
Hamming [7, 4, 3] code as an example again, we get the following table of error
syndromes, where we write ± to mean ±1:

Error G1 outcome G2 outcome G3 outcome

none + + +
Z1 − − +
Z2 − + −
Z3 + − −
Z4 − − −
Z5 − + +
Z6 + − +
Z7 + + −

So if we measure the three stabilisers and get the measurement sequence
(−1, 1, 1) then the corresponding bit string (1, 0, 0) in the Hamming [7, 4, 3] code
tells us that there was an error on p1, i.e. a Z5 error.

We have used a classical code to help us correct for Z errors in the quantum
case. If we take a second classical code, with parameters [n, k′, d′] and parity-
check matrix H ′, and use it to define Z-type stabilisers G′

r = Zxr then we will
have a distance d′ protection against X errors. However, we cannot simply pick
the two classical codes arbitrary: if the scheme is the work, then the X-type and
Z-type stabilisers must actually be stabilisers, i.e. they must commute.

The challenge in creating quantum error-correction codes often lies in
finding good commuting sets of stabilisers.

How can we tell if this happens? Well, if x is a row of H, and z a row of
H ′, then the we need the number of positions i ∈ {1, . . . , n} such that xi =
zi = 1 to be even, as these are the ones that will give operators that individually
anticommute (XZ = −ZX). In notation, this is the same as asking that

x · z ≡ 0 mod 2.

This is the same as saying that z, which is a row of H ′, must be a codeword of
the first code: by definition of the parity-check matrix H, we need that Hz = 0.
Applying this reasoning to all rows z, we see that we need

H ·H ′T = 0

or, in other words,

range(H ′T ) ⊆ ker(H).
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But we know that range(G) = ker(H), and so this is equivalent to asking for

range(H ′T ) ⊆ range(G).

We can figure out some key properties of combining an [n, k, d] code (G,H)
forX-stabilisers and an [n, k′, d′] code (G′,H ′) for Z-stabilisers without too much
difficult. Since our first code encodes k bits, the generator G has k rows, and
the parity-check matrix H has n − k rows. Thus there are n − k of the X-type
generators, and n − k′ of the Z-type generators; in total there are 2n − (k + k′)
generators. Since each generator halves the dimension, the dimension of the
Hilbert space defined by the stabilisers is

2n−2n+k+k′
= 2k+k′−n

i.e. it encodes k + k′ − n qubits. The combined code has a distance k against
Z errors, and k′ against X errors; since the two types of errors are correctly
independently, the total distance is simply min(d, d′). In summary then, we have
created an

[[n, k + k′ − n,min(d, d′)]]

quantum error-correction code, and its decoding is well understood based on
the classical decoding methods applied independently for X errors and Z errors.
This general construction of quantum error correcting codes is known as the
CSS construction, for its originators Robert Calderbank, Peter Shor, and Andrew
Steane.

Given an [n, k1, d1] code C1 = (G1,H1) and an [n, k2, d2] code C2 =
(G2,H2) such that range(HT

2 ) ⊆ range(G1), the CSS code CSS(C1, C2)
constructed as above is an [[n, k1 + k2 − n,min(d1, d2)]] code.

As always, one needs to be careful of conventions. Many sources define a
code to be the codespace rangeG itself instead of the pair (G,H), and usually
also replace C2 with C2

⊥ in the statement of the CSS construction.290

Before moving on, let’s look at the remaining details of applying the CSS con-
struction to the Hamming [7, 4, 3] code. Let C1 = C2 = (G,H) be the Hamming
[7, 4, 3] code with G and H as in Section 14.1. To apply the CSS construction, we
need to check that range(HT

2 ) ⊆ range(G1). Since C1 = C2, this is simply asking
that the Hamming [7, 4, 3] code be weakly self-dual, i.e. that

range(HT ) ⊆ range(G)

which can be checked to be true by hand. This means that we can use the Ham-
ming [7, 4, 3] code to define both our X-type and Z-type generators: using the

290In particular, what we have defined would often be called the CSS construction of C1 over C2
⊥

(instead of over C2).
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notation of Section 7.2, the group of generators is generated by

+ X X 1 X X 1 1
+ X 1 X X 1 X 1
+ 1 X X X 1 1 X
+ Z Z 1 Z Z 1 1
+ Z 1 Z Z 1 Z 1
+ 1 Z Z Z 1 1 Z

The result is a [[7, 1, 3]] code, generally attributed to and thus known as the
Steane code, or simply the seven-qubit code, that encodes one logical qubit
across seven physical ones, and that is able to correct for any single-qubit Pauli
error. We can visualise the Steane code using its Tanner graph, as in Figure 14.4,
but we will return to a proper in-depth study of this code in Section 14.9.

d4

d1 d2

d3

p1

p2 p3

s4

s5

s6

s1

s2

s3

Figure 14.4: The Tanner graph of the Steane code. You can think of this graph
as taking two copies of the Hamming [7, 4, 3] code Tanner graph and gluing them
together at all of the data nodes. For any CSS code there are two types of “parity
checks”: one for detecting X errors (solid lines), and one for Z errors (dashed
lines).

Not all quantum codes arise from combining classical ones like this291, and
even for those that do, working with the generator and parity-check matrices can
often be cumbersome. Indeed, a truly quantum code will not have a single one of
each, since this is not sufficient to deal with the purely quantum phenomena of
superposition. For example, as the Tanner graph in Figure 14.4 shows, we have
two parity check matrices in the case of CSS codes. When working with truly
quantum codes, the stabiliser formalism really becomes much more useful — our
next aim is to justify this with some examples and explanation.

291For example, the five-qubit code, which is the smallest code that can correct for all possible
single-qubit errors, is demonstrably not a CSS code, as can be shown by the non-existence of some-
thing called a transversal controlled-NOT gate (we discuss this in Section ??).
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14.4 Logical operators . . .

Here we are going to use the abstract group theory that we developed back in Sec-
tions 7.5 and 7.6, but there are other ways of explaining this material. In Section
@(logical-operators-differently) we tell the same story from a different point of view,
so if you find this section confusing then don’t worry — you can always come back
to it after reading the other one! It’s always a good idea to have multiple viewpoints.

We have been slowly building up towards constructing quantum error-correction
codes using the stabiliser formalism, but there is one major detail that we have
yet to mention. You will perhaps have noticed that we haven’t written out what
the stabiliser states actually are, nor what the encoding circuits look like. There
is a simple reason for this: at this point, we don’t actually know! There’s a little
more work to be done — the stabilisers have provided us with a two-dimensional
space, but if we have |0〉 and |1〉 to encode, how are they mapped within the
space? So far, it’s undefined, and there is a lot of freedom to choose, but the
structures provided by group theory are quite helpful here in providing some
natural choices. Furthermore, better understanding these structures is the first
step towards figuring out how to upgrade from simple error correction to fault-
tolerant computation. We’re going to turn back all the way to Sections 7.5 and
7.6, where we discovered how to think about normalisers of stabiliser groups
inside the Pauli group. Let’s start with a brief recap.

The n-qubit Pauli group Pn consists of all n-fold tensor products of Pauli ma-
trices 1, X, Y , and Z, with possible global phase factors ±1 and ±i. Given
an operator s ∈ Pn, we say that it stabilises a (non-zero) n-qubit state |ψ〉 if
s|ψ〉 = |ψ〉, i.e. if it admits |ψ〉 as an eigenstate with eigenvalue +1. We showed
that the set of all operators that stabilise every state in a given subspace V form
a group, called the stabiliser group; using a little bit of group theory, we charac-
terised all possible stabiliser groups by showing that they are exactly the abelian
subgroups of Pn that do not contain −1. Then we looked at the group structure
of the Pauli group, and how any stabiliser group S sits inside it. It turned out
that the normaliser

N(S) = {g ∈ Pn | gsg−1 ∈ S for all s ∈ S}

of S in Pn, and the centraliser

Z(S) = {g ∈ Pn | gsg−1 = s for all s ∈ S}

of S in Pn actually agree, because of some elementary properties of the Pauli
group. Furthermore, we showed that the normaliser (or centraliser) was itself
normal inside the Pauli group, giving us a chain of normal subgroups

S / N(S) / Pn.

This lets us arrange the elements of Pn into cosets by using the two quotient
groups

N(S)/S and Pn/N(S).

How does this help us with our stabiliser error-correction codes? Let’s look first
at the former: cosets of S inside its normaliser N(S).
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If |ψ〉 ∈ VS is a state in the stabilised subspace292, then any element g ∈ S
always satisfies

g|ψ〉 = |ψ〉

whereas any element g ∈ N(S) \ S merely satisfies

g|ψ〉 ∈ VS

and, for any such g, there are always states in VS that are not mapped to them-
selves. However, if we look at cosets of S inside N(S) then we discover an
incredibly useful fact: all elements of a given coset act on |ψ〉 in the same way.
To see this, take two representatives for a coset, say gS = g′S for g, g′ ∈ N(S). By
the definition of cosets, this means that there exist s, s′ ∈ S such that gs = g′s′.
In particular then,

gs|ψ〉 = g′s′|ψ〉

but since s, s′ ∈ S and |ψ〉 ∈ VS , this says that

g|ψ〉 = g′|ψ〉

as claimed.

Since the cosets of S inside N(S) give well defined actions on stabiliser states,
preserving the codespace, we can treat them as operators in their own right.

The cosets of S inside N(S) are called logical operators, and any repre-
sentative of a coset is an implementation for that logical operator.

Let’s try to understand this in the context of an example: the three-qubit code
from Section 13.1. The diagram from Section 7.2 was useful in describing this
example, so we repeat it as Figure 14.5 below.

292For us here, the stabilised subspace VS is exactly the codespace, and the stabilisers generating S
are exactly the elements Gr ∈ Pn constructed from the rows of H as at the start of Section 14.3.
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C =++ C1 =−+

C2 =−−C3 =+−

ZZ1

1ZZ

+1 −1

+1

−1

|000⟩
|111⟩

|100⟩
|011⟩

|010⟩
|101⟩

|001⟩
|110⟩

Figure 14.5: The stabiliser group S = 〈ZZ1,1ZZ〉 bisects the Hilbert space of
three qubits into four equal parts, and gives the stabilised subspace VS which is
spanned by |000〉 and |111〉.

To use the terminology of error-correction codes, we are taking our codespace
to be293

C = 〈|000〉, |111〉〉

which is exactly the stabiliser space VS of the stabiliser group

S = 〈ZZ1,1ZZ〉

and the total eight-dimensional Hilbert space of three qubits is decomposed into
four mutually orthogonal two-dimensional subspaces C ⊕ C1 ⊕ C2 ⊕ C3 as shown
in Figure 14.5. Since we have chosen a specific basis for each of these subspaces,
we should give things a name.

The (orthogonal) basis vectors of the codespace C = VS are called logical
states, and are usually taken to be the encodings of |0〉 and |1〉.

In general294, the logical states will be superpositions of states, but we still
sometimes refer to them as codewords.

In our example of the three-qubit code, we have the two logical states logical
0 and logical 1, which we denote by

|0〉L := |000〉
|1〉L := |111〉.

293We want to encode a single qubit, which lives in a two-dimensional space (spanned by |0〉 and
|1〉), so it makes sense that we want our codespace to also be two-dimensional.

294Note that the logical states for the three-qubit code are actually not superpositions. This reflects
the fact that this code is really just a classical repetition code — it only protects against one type of
error — embedded into the quantum world.

357



14.4 Logical operators . . .

The justification for these names is twofold: firstly, |0〉L is exactly the encoding
of |0〉, the “actual” zero state; and secondly, this state |0〉L will behave exactly
as the zero state should when acted upon by the logical operators. For example,
the operator X sends |0〉 to |1〉, so the logical X should send the logical |0〉 to the
logical |1〉. Let’s make this happen!

The normaliser of S inside P3 is

N(S) = {1, XXX,−Y Y Y, ZZZ} × S

which we have written in such a way that we can just read off the cosets: there
are four of them, and they are represented by 1, XXX, −Y Y Y , and ZZZ. These
four (implementations of) logical operators all get given the obvious names:

1L := 1
XL := XXX

YL := −Y Y Y
ZL := ZZZ

But note that these are not necessarily the smallest weight implementations! For
example, any single Zi (i.e. a Z acting on the i-th qubit) will have the same
logical effect as ZZZ, as we can see by looking at how it acts on the logical
states:

Z1|1〉L = Z11|111〉
= −|111〉
= ZZZ|111〉
= ZZZ|1〉L.

In contrast, XXX is the smallest weight logical X implementation. The natural
question to ask is then how to find all the implementations, but this is answered
by going back to the very definition of them as coset representatives: if P is some
implementation of a logical operator, then so too is SP for any S ∈ S. In the
example above, we see that Z1 = Z11 is exactly 1ZZ ·ZZZ. Because of this, we
should really write something like ZL = ZZZS, or ZL = [ZZZ], to make clear
that ZZZ is just one specific representation of ZL, but you will find that people
often conflate implementations with the logical operators themselves and simply
write ZL = ZZZ.

Generally, for any CSS code encoding a single qubit into n-qubits, we define
the logical X and logical Z operators to be the (equivalence classes of) the tensor
products of all X operators or all Z operators (respectively), i.e.

XL := X⊗n

ZL := Z⊗n.

Even more generally, for any [[n, k, d]] code constructed from a stabiliser S, it
will be the case that295 N(S)/S ∼= Pk.

295Proving this is a bit of a task!
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Just a warning before moving on: this discussion might make logical states
sound pointlessly simple — logical 0 is just given by three copies of |0〉, so what’s
the point? But this apparent simplicity is due to the fact that the three-qubit code
is somehow not very quantum at all (these logical states are not superpositions),
and in general things get a lot more complicated. For example, even with the
three-qubit code, we shall see in Section ?? that

|+〉L 6= |+++〉

where, as per usual, |+〉 = H|0〉 = (|0〉+ |1〉)/2.

14.5 . . . and error families

The quotient group296 N(S)/S gave us logical operators, so the next thing to ask
is what we get from the quotient group Pn/N(S).

The cosets of N(S) inside Pn are error families on the codespace VS .
The individual elements of any error family (i.e. the elements of Pn) are
called physical errors.

Again, we can write P3 in such a way that we can immediately read off the
cosets:

P3 = {1, X11,1X1,11X} ×N(S)× {±1,±i}.

Ignoring the phases, the three (non-trivial) error families are single bit-flips:297

[X11], [1X1], and [11X]; these error families Xi map the codespace C to the
subspace Ci, as shown in Figure 14.6.

C C1

C3 C2

X11

1X111X

Figure 14.6: The single bit-flip error family Xi maps the codespace C to the
subspace Ci, e.g. X2|000〉 = |010〉 ∈ C2.

These errors also let us understand how the structure of the codespace is mir-
rored across each of the cosets. In other words, we picked C to be our codespace,

296Recall that the elements of the quotient group G/H are exactly the cosets of H / G.
297We sometimes denote the coset P ·N(S) simply by [P ], just to save space.
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14.5 . . . and error families

but what if we had instead picked C1? Well, we would get exactly the same code,
just expressed in a different way, and this “different way” is described entirely by
the error family [X11]. What we mean by this is the following:298

• We can write C1 as the stabiliser space of S conjugated by X11, i.e.

(X11)〈ZZ1,1ZZ〉(X11)−1 = 〈(X11)(ZZ1)(X11)−1, (X11)(1ZZ)(X11)−1〉
= 〈−ZZ1,1ZZ〉

and, indeed, |100〉 and |011〉 are both stabilised by this group.
• The logical states of C1 are, by definition as our chosen basis, the elements
|100〉 and |011〉, but note that these are exactly the images of the logical
states of C under the error X11, i.e.

|0〉L,1 := |100〉 = X11|000〉
|1〉L,1 := |011〉 = X11|111〉

• The logical operators on C1 are the logical operators on C conjugated by
X11, i.e

XL,1 := (X11)(XXX)(X11)−1

= XXX

ZL,1 := (X11)(ZZZ)(X11)−1

= −ZZZ

and, indeed, XL,1 and ZL,1 behave as expected on the new logical states,
i.e.

XL,1 : |0〉L,1 7−→ |1〉L,1

|1〉L,1 7−→ |0〉L,1

ZL,1 : |0〉L,1 7−→ |0〉L,1

|1〉L,1 7−→ −|1〉L,1

as you can check by hand.

All in all, the chain of normal subgroups

S / N(S) / Pn

really does describe the full structure of the code: logical states, logical operators,
and error families.

298Recall that conjugation expresses a change of basis: given an invertible (n × n) matrix B, we
can turn a basis {v1, . . . , vn} into a new basis {Bv1, . . . , Bvn}, and to write any operator A in this
new basis we simply calculate BAB−1 (“undo the change of basis, apply A, then redo the change of
basis”).
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C C1

C2
C3

1
1

1
1

⟲
⟲

⟲
⟲

codespaces stabilisers ◁ normalisers ◁ Paulis

logical operators error families

Figure 14.7: A visualisation of how the stabilisers, normalisers, and arbitrary
Pauli operators act on the codespace decomposition: stabilisers act as the identity,
normalisers move each subspace around within itself, and Pauli operators swap
subspaces around between one another.

But this stabiliser formalism introduces some new ambiguity. In Section 14.3,
we saw how measuring the three ancilla qubits in the Hamming [7, 4, 3] code
gave us an error syndrome that we could use to determine on which qubit a
Z-error had occurred, and back in Section 13.7 we saw the analogous error-
syndrome setup for the three-qubit code. However, the stabiliser formalism is
much more general: it makes no assumptions that only single-qubit errors can
occur. This means that error syndromes will now only tell us which error family
has occurred, not which specific physical error like they did before. At first, this
seems like a definite downgrade from our previous theory — the actual errors
that affect our circuits are still the physical errors, but now we have no way of
knowing which one occurred, only which family it lives in! How are we to pick
which coset representative to apply in order to correct the error?

As you might expect, the story is not yet over. Depending on the specifics of
the scenario, sometimes knowing the error family is enough to be able to correct
not just one physical error, but many. In order to give a more precise explanation,
we need to take a step back and look at the scenarios that we’re actually trying
to model — we do this in Section 14.7.

14.6 Logical operators (a different approach)

We have said a few times now that the main challenge in finding good quantum
error-correction codes often lies in finding “good commuting sets of stabilisers”,
so let’s take this seriously and try to rediscover the definitions from Sections 14.4
and 14.5 by starting with just commutativity.

Again, we already know that the Pauli matrices provide a useful basis with
respect to which we can decompose the effects of any quantum channel299, so

299“Correct the Paulis and you correct them all.”
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we should carefully understand how the Pauli operators P ∈ Pn interact with
any error-correcting code. For this, we introduce the notation

c(P, σ) :=

{
0 if P and σ commute
1 if P and σ anticommute

for any Pauli operators P, σ. A particularly nice thing about this choice of defini-
tion (as opposed to taking c(P, σ) ∈ {±1}, say) is that we can write

Pσ = (−1)c(P,σ)σP.

Furthermore, this function has a nice relation on products: writing ⊕ to mean
addition mod 2, we can see that

c(P, στ) = c(P, σ)⊕ c(P, τ)

which reminds us of the fact that two anticommuting operators multiplied to-
gether produce a commuting operator.

Now fix some stabiliser group300 S = 〈g1, . . . , gn−k〉. We define the error
syndrome eP of a Pauli operator P to be the vector of all the values c(P, gi), i.e.

eP =
(
c(P, g1), . . . , c(P, gn−k)

)
.

It follows from the the above relation of how c(P,−) turns products into sums
that

eP σ = eP ⊕ eσ.

The set of Pauli operators that have zero syndrome are special, and form a set
known as the normaliser:

N(S) :=
{
P ∈ Pn | c(P, σ) = 0 for all σ ∈ S

}
.

Since all elements of the stabiliser S commute with one another, we know that
S ⊆ N(S), but in general the normaliser is strictly larger. Now, by the definition
of the normaliser and the multiplicative property of c(P,−), if some Pauli opera-
tor P has a particular error syndrome eP then Pσ has the same error syndrome
for any σ ∈ N(S). This lets us gather together the Pauli operators into sets, which
we call the error cosets, consisting of those Pauli operators which all have the
same error syndrome. By the above, these can be described by some representa-
tive operator P , along with all other Pσ for σ ∈ N(S), since the only way for P
and Q to have the same error syndrome is for them to satisfy Q = Pσ for some
σ ∈ N(S).

Now for some counting. Since an error syndrome is exactly an n-bit string,
there are 2n−k possible different error syndromes. Each error coset is, by con-
struction, of size |N(S)|. All together, the error cosets contain every single Pauli

300We saw in Section 14.3 that an [n, k, d] code had n− k stabiliser generators, so we preemptively
label our generators from 1 to n− k.
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operator, of which there are 4n. With this, we can calculate the size of the nor-
maliser:

N(S) = 4n/2n−k = 2n+k.

So the Pauli group is subdivided into error cosets301 by the normaliser, and
every Pauli in the same coset has the same error syndrome. If we perform a
syndrome measurement after passing through some noisy channel and get the
result e, then the effect of the channel is collapsed to being a linear combination
of the terms inside the error coset corresponding to the error syndrome e. By
applying any element of that error coset, we are mapped back to the normaliser.

In fact, there is further substructure302 within the normaliser, and this is also
reflected in each error family. Given a Pauli operator P ∈ N(S) in the normaliser,
we define its logical syndrome to be the vector `P of all the values c(P, σ), where
σ ranges over N(S). Note that, for any τ ∈ S, we have `P = `P τ . Again, this
splits the normaliser Pauli operators into sets, which we call the logical cosets,
each being defined by having the same logical syndrome.

The error cosets divide up the Pauli group, with the normaliser as one
specific example; the logical cosets divide up the normaliser, with the
stabiliser as one specific example — see Figures 7.2 and 14.7.

Each operator that’s in the normaliser but not in the stabiliser preserves the
codespace (because it doesn’t change the error syndrome), but it must do some-
thing non-trivial inside the codespace (because it’s not in the stabiliser). It thus
acts on the logical, encoded, qubits, and so we call it a logical operator. More-
over, these logical operators either commute or anticommute with one another.
This should remind you of the Pauli operators themselves, and, indeed, we choose
to associate these logical operators with logical Pauli operators. Which are
which? Well, the choice is still arbitrary, as long as we get the relative commu-
tation properties correct: it should be the case that c(ZL, XL) = 1, for example.
In the case of a CSS code, there are always Z-type representatives that we can
choose to take as the logical Z, and X-type representatives for the logical X.

Let’s do some more counting. Since each logical coset is of size |S| = 2n−k,
there must be |N(S)|/|S| = 4k logical cosets, each corresponding to one of the
4k logical Pauli operators on k qubits, and each described uniquely by a logical
syndrome vector `, and in such a way that every possible value of ` is accounted
for. However, recall that `P = `P τ for any τ ∈ S. This means that we don’t need
to record all the commutation values, but only a set of 2k many values, so that
` ∈ {0, 1}2k. All in all, we can choose any linearly independent set of values we
want for the generators, as long as we recall that any operator will commute with

301We called these error families in Section 14.5.
302We will see that this structure is exactly that of a subgroup, and that it will be sufficient to just

look at the values on the generators when defining the logical syndrome.
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itself, and we require the symmetry c(σ, τ) = c(τ, σ). For example, we could take
`1
`2
...
`2k

 =
[
0 1
1 0

]⊕k

which would naturally select pairs (`2n−1, `2n) as having the correct commutation
relations necessary for them to act as logical Z and logical X for the n-th logical
qubit.

Logical operators specify how to split the codespace, and are representa-
tives of the logical cosets. In particular, the ±1 eigenstates of ZL define
the logical codewords. Generically, these codewords are superpositions
of basis states.

We emphasise out one final important point before returning to the example
of the three-qubit repetition code.

While we can measure the error syndrome (since all the stabilisers com-
mute), we cannot measure the logical syndrome (since not all the logical
operators commute). Indeed, we must not even try — measuring just one
such value is equivalent to performing a measurement of the logical qubit,
destroying the superposition of the very state with which we’re trying to
compute!

So, back to the example of the three-qubit code from Section 13.1.303 Recall
that the stabilisers are generated by ZZ1 and 1ZZ. The normaliser is the set of
Pauli operators that commute with all these stabilisers, which we can succinctly
write as

N(S) = 〈ZZ1,1ZZ〉 × {1, XXX, Y Y Y,ZZZ}

which already depicts the structure of the logical cosets: they are represented
by XXX, Y Y Y , and ZZZ. Using these representatives, we can evaluate the
commutation properties:

c(−,−) XXX Y Y Y ZZZ

XXX 0 1 1
Y Y Y 1 0 1
ZZZ 1 1 0

From this we can see that any pair of these will work as the logical generators
ZL and XL, since they all satisfy the required property of c(ZL, XL) = 1 and

303Here we’re going to repeat some things that we already said in Sections 14.4 and 14.5.
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c(ZL, ZL) = c(XL, XL) = 0. In other words, although it’s “natural” to define
ZL := ZZZ and XL := XXX, we could just as well decide to set ZL := XXX
and XL = Y Y Y !

14.7 Error-correcting conditions

We can summarise the notion of a stabiliser code that we have defined rather
succinctly: everything is determined by picking a stabiliser group, i.e. an abelian
subgroup S of the Pauli group Pn that does not contain −1. From this, we define
the codespace to be the stabiliser subspace VS , the codewords to be a choice of
basis vectors, the logical operators to be the cosets of S / N(S), and the error
families to be the cosets of N(S) / Pn.

By setting up some ancilla qubits and constructing appropriate quantum cir-
cuits304, we can enact any logical operator in such a way that we also measure an
error syndrome, which points at a specific error family. But unlike in our study of
the Steane code in Section 14.3, we can no longer simply apply the correspond-
ing operator to fix the error, because the error is a whole coset — it contains
many individual Pauli operators.

To fix an example to keep in mind, we return yet again to the three-qubit
code. In Figure 14.8 we draw a diagram grouping together all the elements of
P3 into the coset structure induced by S = 〈ZZ1,1ZZ〉. This is analogous to
the diagrams that we saw back in Exercise 7.8.2, but with the simplification of
ignoring phase.305

304We will see these circuits soon, starting in Section 14.9.
305Formally, we can think of ignoring phase as looking at the quotient of P3 by the subgroup

〈±1,±i〉, which results in an abelian group.
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N(S)

(X11) ·N(S)

(1X1) ·N(S)

(11X) ·N(S)

S
(XXX) · S
(Y Y Y ) · S
(ZZZ) · S

1 ZZ1 1ZZ Z1Z

XXX Y Y X XY Y Y XY

Y Y Y XXY Y XX XYX

ZZZ 11Z Z11 1Z1

X11 Y Z1 XZZ Y 1Z

1XX ZYX 1Y Y ZXY

ZY Y 1XY ZXX 1Y X

Y ZZ X1Z Y 11 XZ1

1X1 ZY 1 1Y Z ZXZ

X1X Y ZX XZY Y 1Y

Y ZY X1Y Y 1X XZX

ZY Z 1XZ ZX1 1Y 1

11X ZZX 1ZY Z1Y

XX1 Y Y 1 XY Z Y XZ

Y Y Z XXZ YXZ XY 1

ZZX 11Y Z1X 1ZX

Figure 14.8: The entire group P3 with the coset structure induced by the stabiliser
group S = 〈ZZ1,1ZZ〉. Note that we are ignoring global phase.

As we can see by looking at Figure 14.8, if we somehow measure an error
syndrome pointing to the error family [X11], for example, then there are 16
possible errors that could have occurred! We said that the stabiliser formalism
would be better than our previous approach, so why do things seem so much
worse now? Well, we are forgetting one key assumption that we made before
that we have yet to impose in the stabiliser formalism: up until now, we have only
studied single-qubit errors. Thinking back to our introduction of the three-qubit
code in Section 13.1, we were specifically trying to deal with single bit-flip errors,
i.e. only X11, 1X1, and 11X (as well as the trivial error 111, which we must not
forget about, as we shall see). If we look back at Figure 14.8 with this in mind,
we notice something particularly nice: each of these single X-type errors lives
in a different error family, and each error family contains exactly one of these
errors.

In other words, if we assume that only single bit-flip errors can occur, then the
stabiliser formalism describes errors in exactly the same way as before, since the
error families are in bijection with the physical errors. But here is where the
power of the stabiliser formalism can really shine through, since it allows us to
understand what type of error scenarios our code can actually deal with in full
generality. That is, rather than thinking about a code as something being built to
correct for a specific set of errors, the stabiliser formalism lets us say “here is a
code”, and then ask “for which sets of errors is this code actually useful?”. The
answer to this question lies in understanding how any set of physical errors is
distributed across the error families, and we can draw even simpler versions of
the diagram in Figure 14.8 to figure this out.
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14.7 Error-correcting conditions

Returning to the scenario where we assume that only single bit-flip errors can
occur, we can mark the corresponding physical errors in Figure 14.8 — namely 1,
X11, 1X1, and 11X — with a dot. We do this in Figure 14.9, which is the first of
many more diagrams of this form, which we call error-dot diagrams. Although
we are working with the specific example of the three-qubit code in mind, these
diagrams are meant to be understood more generally as applying to any stabiliser
code. As we shall soon see, we don’t really need to worry about making sure that
we have the right number of rows in each small rectangle (i.e. the right number
of cosets of S inside N(S)), and in some sense we don’t even really need to worry
about what the physical errors are.

•

•

•

•

Figure 14.9: All specific X-type errors of weight at most 1 from Figure 14.8,
each marked by a dot. The four cosets corresponding to N(S) / Pn are the error
families, and we informally refer to the (copy of the) four cosets corresponding
to S / N(S) as rows.

As we said above, if each error family (i.e. coset) contains exactly one physical
error (i.e. Pauli operator), then we already know how to apply corrections based
on the error-syndrome measurements. In terms of the diagram in Figure 14.9,
this rule becomes rather simple: if each error family contains exactly one dot, then
we can error correct.

But can we say something more interesting than this? Well, let’s consider
what happens if we have a diagram that looks like this:
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•

• •

•

•

That is, we’re considering a scenario where there are two possible physical
errors that can occur for a physical error syndrome. In the example of the three-
qubit code, we’re looking at the scenario where any single bit-flip error can occur,
but also the operator Y Z1 might affect our computation, enacting a bit-phase-
flip on the first qubit and a phase-flip on the second. What would then happen
if we measured the error syndrome |01〉? We know (from Section 13.7) that this
corresponds to the error family [X11], but both X11 and Y Z1 live in this coset,
so we’re back to the question posed at the end of Section 14.5: how do we pick
which operator to use to correct the error?

Here’s the fantastic fact: in this case, it doesn’t matter! Say we pick X11,
but the physical error that had actually affected our qubits, originally in some
encoded state |ψ〉, was Y Z1. Then by applying the “correction” X11 our qubits
would be in the state

(X11)(Y Z1)|ψ〉 = (ZZ1)|ψ〉

(where, once again, we ignore global phases). But |ψ〉 is, by construction, some
codeword, which exactly means that it is stabilised by ZZ1, and so

(X11)(Y Z1)|ψ〉 = |ψ〉.

We can fully generalise this to improve upon the previous rule: if all the dots in
any given error family are all in the same row, then we can perfectly error correct.

To prove this, we just return to the definition of cosets and the properties of
the Pauli group.306 If two physical errors P1 and P2 are in the same row inside
some family E · N(S), then by definition they both come from the same coset
P · S, i.e.

P1 = EP ′
1

P2 = EP ′
2

where P ′
1, P

′
2 ∈ P · S. Then EP corrects both P1 and P2, since (again, we ignore

306This is one of those arguments where it’s easy to get lost in the notation. Try picking two physical
errors P1 and P2 in the same row somewhere in Figure 14.8 and following through the argument,
figuring out what E, P , P ′

1, and P ′
2 are as you go.
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global phase, which means that Pauli operators commute)

(EP )Pi = (EP )(EP ′
i )

= E2PP ′
i

= PP ′
i ∈ S

because Pauli operators square to 1, and P ′
i ∈ P · S.

We also get the converse statement from this argument: if any family contains
dots in different rows, then we cannot error correct. This is because we need EP
to correct for some errors, and some different EP ′ to correct for others, and we
have no way of choosing which one to correct with when we measure the error
syndrome for E without already knowing which physical error took place.307

So is this the whole story? Almost, but one detail is worth making explicit,
concerning maybe the most innocuous looking error of all: the identity error
family. Consider a scenario like the following:

•

• • •

In the case of the three-qubit code, this corresponds to the possible physi-
cal errors being single phase-flips Z11, 1Z1, and 11Z. But here we see how
misleading it is to omit mention of the identity error 111, because the single
phase-flips all live in the same N(S) coset as 111, but different S cosets. That is,
they are in the same error family, but a different row. By our above discussion,
this means that we cannot correct for these errors — indeed, if we measure the
error syndrome corresponding to “no error”, then we don’t know whether there
truly was no error or if one of these single phase-flips happened instead. To put
it succinctly, we nearly always make the assumption that no errors at all might oc-
cur, which is exactly the same as saying that the trivial error 1 might occur. This
means that we cannot correct for any errors that are found in the normaliser of
S but not in S itself. Although this is technically a sub-rule of the previous rule,
it’s worth pointing out explicitly.

307Just to be clear, if we knew which physical errors took place, then we wouldn’t have to worry
about error correction at all, because we’d always know how to perfectly recover the desired state.
And remember that we can’t measure to find out which physical error took place, since this would
destroy the state that we’re trying so hard to preserve!
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An error-dot diagram describes a perfectly correctable set of errors if and
only if the following two rules are satisfied:

1. In any given error family, all the dots are in the same row.
2. Any dots in the bottom error family are in the bottom row.

(The second rule follows from the first as long as the scenario in ques-
tion allows the possibility for no errors to occur.)

Of course, we can state these conditions without making reference to the dot-
error diagrams, instead using the same mathematical objects that we’ve been
using all along. Proving the following version of the statement is the content of
Exercise 14.11.12.

Let E ⊆ Pn be a set of physical errors such that 1 ∈ E . Then the stabiliser
code defined by S can perfectly correct for all errors in E if and only if

E†
1E2 6∈ N(S) \ S

for all E1, E2 ∈ E .
Sometimes we might not specify that 1 ∈ E , but this is always meant

to be assumed. In other words, the error correction scenario specified
by E is the following: any one single operator in E could affect our state,
or no error at all could happen. In particular, we are not considering that
multiple errors could happen; if we want to allow for this, then we should
do something like replace E with the group that it generates.

You might notice that we’ve been sometimes been saying “perfectly correctable”
instead of just “correctable”. This is because there might be scenarios where we
are happy with being able to correct errors not perfectly, but instead merely with
some high probability.

These dot-error diagrams are also able to describe more probabilistic scenar-
ios. We have been saying “single-qubit errors”, but we could just have well have
been saying “lowest-weight errors”, and then the assumption that errors are in-
dependent of one another means that higher-weight errors happen with lower
probability. But the stabiliser formalism (and thus the error-dot diagrams) don’t
care about this “independent errors” assumption! What this means is that we
could refine our diagrams: instead of merely drawing dots to denote which er-
rors can occur, we could also label them with specific probabilities. So we could
describe a scenario where, for example, one specific high-weight error happens
annoyingly often.

One last point that is important for those who care about mathematical cor-
rectness concerns our treatment of global phases.308 We do need to care about

308We are being slightly informal with the way we draw these dot-error diagrams: cosets of S itself
inside Pn don’t make sense, as we’ve said, because S is generally not normal inside Pn. Also, when
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global phases in order to perform error-syndrome measurements, but once we
have the error syndrome we can forget about them. In other words, we need the
global phase in order to pick the error family, but not to pick a representative
within it.

14.8 Code distance and thresholds

Given an error model in which, in principle, all Pauli errors are possible but low-
weight309 errors are more likely than the high-weight errors, it makes perfect
sense to look for an error correcting a code which can perfectly correct errors
with weight at most t for some “good” value of t. Such a code will fail will
with probability roughly equal to the total probability of any error of weight
larger than t occurring. This probability of failure is called the logical error
probability. The goal of quantum error correction is to use all the tricks we have
discussed so far (and many more) to realise logical qubits with logical error rates
below the error rate of the constituent physical qubits.

As in the case of classical codes, the distance of a quantum code is defined as
the minimum weight error that can go undetected by the code. In other words,
it is the minimum weight Pauli operator than can transform one codeword state
into another. But as we’ve seen, all such operators are in N(S) \ S, which means
that

d = min
P ∈N(S)\S

|P |.

Now our goal is less ambitious: we are not aiming to correct all possible Pauli
errors, but only those of weight at most t, where t satisfies d = 2t + 1. So how
can a code with distance d do this?

Firstly, note that, if we take a product of two errors Ei and Ej , each of weight
at most t, then the resulting Pauli operator EiEj will have weight at most 2t, and
by definition 2t < d. Therefore the product of these errors can never be a logical
operator, since the logical operators in N(S) \ S have weight at least d. Thus if
one of these errors Ei occurs and our decoding procedure picks another error Ej

that gives rise to the same syndrome (i.e. that belongs to the same error family)
and applies the latter to the encoded qubits, then we know that EiEj 6∈ N(S)\S,
which means that EiEj ∈ S acts as the identity on the codespace.

Needless to say, from the perspective of code distance alone, the larger the
value of d the better we can correct for more errors. For this, we need the logical
errors (i.e. the logical operations on the codespace L ∈ N(S) \ S) to have the
largest possible weight — by our assumptions about our error model, these occur
with low probability, and thus keep the logical error probability low.

The threshold theorem for stabiliser codes asserts that if the physical error
probability p of individual qubits is below a certain threshold value pth then in-
creasing the distance of the code will decrease the logical error probability. This

we quotient by {±1,±i} (by drawing just a single sheet, instead of four as in the diagrams in Exercise
7.8.2), we make P abelian, and this makes the normaliser no longer the actual normaliser.

309Recall that the weight |P | of a Pauli operator P = P1 ⊗ . . . ⊗ Pn is the number of non-identity
Pi. For example, 111 has weight 0, Z11 and 1X1 have weight 1, and XXX has weight 3.
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14.9 Encoding circuits

principle implies that quantum error-correction codes could theoretically suppress
the logical error rate indefinitely. However, if the physical error rate p is greater
than the threshold value pth, then quantum encoding actually becomes counter-
productive. So the threshold value serves as a critical experimental benchmark
for quantum computing experiments, since achieving it is essential for the fea-
sibility of quantum error correction. We will return to the threshold theorem in
more detail in Chapter 15.

As of 2024310, the upper bound for this threshold value is approximately pth =
0.1.

14.9 Encoding circuits

The previous sections have set up a lot of abstract theory about stabiliser codes,
so now let’s take some time to look at more concrete aspects, such as the quantum
circuits that actually let us build these codes “in practice”.

At the end of Section 14.3 we showed that the CSS construction could be
applied to the Hamming [7, 4, 3] code over itself to obtain the so-called Steane
[[7, 1, 3]] code, which has generatorsG1, . . . , G6 given by the rows in the matrix311


X X 1 X X 1 1
X 1 X X 1 X 1
1 X X X 1 1 X
Z Z 1 Z Z 1 1
Z 1 Z Z 1 Z 1
1 Z Z Z 1 1 Z


and codespace given by the corresponding stabiliser space C = VS , where S =
〈G1, . . . , G6〉.

Now, what are the logical states for this code? Well, by definition they should
be basis states for the stabiliser space V〈G1,...,G6〉, but the “real” motivation for
them is that they should just be the encodings of |0〉 and |1〉 in the code. So the
question becomes just how do we actually encode states with a code described by
the stabiliser formalism? But it turns out that we have already secretly answered
this question in Exercise 7.8.5: the projector onto the ±1-eigenspace of any Gi is
given by 1

2 (1±Gi).

310Giving precise numbers is precarious due to the rapid advancements in quantum error correction
technology.

311Note that this matrix is just like two copies of the generator matrix for the Hamming [7, 4, 3]
code stacked on top of one another: the first with X-type stabilisers, and the second with Z-type
stabilisers.
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Given stabiliser generators G1, . . . , Gs, the projector onto the stabiliser
space V〈G1,...,Gn〉 (i.e. the encoding for the corresponding stabiliser code)
is given by

s∏
i=1

1
2

(1 +Gi).

In other words, we want to define312

|0〉L := 1
26

( 6∏
i=1

(1 +Gi)

)
|0〉⊗7

since this will be in the +1-eigenspace of all of the Gi, which is exactly the sta-
biliser space V〈G1,...,G6〉. Similarly, we set

|1〉L := 1
26

( 6∏
i=1

(1 +Gi)

)
|1〉⊗7.

One thing to note is that the order of the product over the Gi doesn’t matter
here: by design, every stabiliser generator commutes with every other313, since
they “overlap” (i.e. have non-identity terms) in an even number of positions, so
any −1 signs arising from anticommutativity will cancel out with one another. So
for |0〉L, when we expand out the product

∏
i(1 + Gi), we can simply move all

the Z-type terms to the right and then forget them, since Z acts trivially on |0〉.
This means that we’re left with only the X-type terms, and there are eight of

these:314

|0〉L := 1√
23

(
1 +G1 +G2 +G3

+G1G2 +G1G3 +G2G3 +G1G2G3
)
|0000000〉

= 1√
8
(
|0000000〉+ |1101100〉+ |1011010〉+ |0111001〉

+|0110110〉+ |1010101〉+ |1100011〉+ |0001111〉
)
.

You can check by hand that this superposition is indeed invariant under each of
the Gi. Now, we could perform a similar calculation for |1〉L, but since we have a
CSS code we already know that XL = X⊗7 is an implementation for the logical

312This state is not normalised, since it’s given by a bunch of projections one after the other, but we
won’t worry about this until we first make some simplifications.

313We need all the generators to commute in order for the simultaneous +1-eigenspace to exist!
314If you look up the codewords for the Steane code elsewhere, you might find different expressions,

but this is simply an artifact of expressing the parity check matrix of the Hamming code in a different
basis. Note also that here we have normalised the state.
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X operator, so we can simply use this:

|1〉L := XL|0〉L

= 1√
8
(
|1111111〉+ |0010011〉+ |0100101〉+ |1000110〉

+ |1001001〉+ |0101010〉+ |0011100〉+ |1110000〉
)
.

We know what the logical states are, and by the previous discussions we also
know what the logical operators are: cosets of 〈G1, . . . , G6〉 within its stabiliser
in P7. For example, not only is X⊗7 an implementation of XL, but so too is315

11X11XX.

So how can we actually access these logical states in order to do computation
with them? In other words, we need to design an encoding circuit that allows us
to prepare the states |0〉L and |1〉L so that we can then perform computation on
them. As above, we will be able to neglect the Z-type stabilisers, because we’re
working in the computational basis. More specifically, since |0〉 and |1〉 live in
the ±1-eigenspace for Z, we don’t need to further project them to the stabiliser
spaces of the Z-type stabilisers; we start with a basis in the stabiliser space for
±Z, and when we encode we obtain a basis in the stabiliser space for S and ±ZL.
This sort of duality always happens for CSS codes, and note that the choice of
X versus Z isn’t “special” — if we switch to the |±〉 basis then it would suffice
to measure Z-type stabilisers, since we are already in the ±1-eigenspace for X.
If this seems confusing, then don’t worry: look at the circuits below, follow the
evolution of the input state through them, and then see what would happen if you
did the same thing after adding the gates for the three missing Z-type stabilisers
as well. You will see that (up to a possible global phase) nothing changes.

Inspired by the classical Hamming [7, 4, 3] code, we can think of the last three
qubits in our seven-qubit encoding as the parity-check qubits, and read off the
layout of the circuit from the parity-check matrix: the (3× 3) identity submatrix
corresponds to the controls. This gives us the encoding circuit in Figure 14.10.

315You can check this by hand: see that 11X11XX sends |0〉L to |1〉L.
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|0⟩⊗7

X X

|0⟩L

X X

X X

X X X

H

H

H

Figure 14.10: One possible encoding circuit for the Steane code, requiring no
ancilla bits.

14.10 Encoding arbitrary states

The encoding circuit in Figure 14.10 describes a unitary operation (it has no
measurements), and its particularly compact form makes it very useful for cer-
tain complexity-theoretic calculations, but it has one major drawback: it is not
itself protected against errors! If we are trying to design things for the real world,
where qubits can undergo decoherence, then we should compensate for this in all
our quantum computation, including the circuits we use to prepare states.316 We
have already done the hard work for this though, in Section 7.4, when we con-
structed circuits to project onto Pauli stabiliser spaces. This gives us the encoding
circuit in Figure 14.11.

316If you want people to be able to stay dry if it’s raining, then you might build a tunnel from location
A to location B so that they can use this for cover. But this isn’t going to stop people from getting wet
on their (necessary) journey from their home to location A!
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|0⟩⊗3

H H

H H

H H

|0⟩⊗7

X X Z

|0⟩L

X X Z

X X Z

X X X Z

X Z

X Z

X Z

Figure 14.11: Another possible encoding circuit for the Steane code, which uses
three ancilla bits for error correction when encoding arbitrary states, but is non-
unitary (since it involves measurement). The measurements of the ancilla bits
can be used to apply the necessary Z-type corrections.

The three measurements in the encoding circuit in Figure 14.11 allow us to
correct for any single-qubit error in the encoding process, just as we did in Section
7.4, using the lookup table from Section 14.3. If we measure (+ + +), then no
error has occurred, but if we measure, say, (−+ +), then we know that the error
Z5 has affected our encoding, and so we must correct for this. Of course, as we
now know from Section 14.7, what it means to correct for the Z5 error depends
on which errors can possibly occur. If we make the usual assumption that only
errors of weight 1 (i.e. single-qubit errors) can occur, then the Z5 error is exactly
that: a phase-flip on the fifth qubit.

So now we have seen two circuits for encoding the logical 0 state, but what
about if we want to encode an arbitrary state? That is, we already have some
qubit in an interesting state |ψ〉 and we want to use the Steane code317 to protect
it against decoherence.

Before we look at this question, it’s important to mention something about
practical use here. As is often the case, a chain is only as strong as its weakest link,

317What we say here can be applied to other stabiliser codes, but we stick with the Steane code to
make it easier to look at specific examples.
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and the process of encoding a single qubit into seven qubits is a particularly error-
prone process. In practice, it is much more desirable to start with logical 0 and
then do all of our computation, knowing that we are already in the “protected”
world of a stabiliser code.

We know that all the X-type stabilisers for the Steane code have an even
number of X terms in them, and so will commute with any implementation of
the logical X operator XL. Since the (bottom register of the) encoding circuit in
Figure 14.11 simply applies the X-type stabilisers to |0〉⊗7, we can use this com-
mutativity. Indeed, by construction of the logical operators and the logical states,
we know that encoding |0〉⊗7 to |0〉L and then applying XL gives us the state
|1〉L. But then the commutativity of XL with the X-type stabilisers tells us that
we also obtain |1〉L if we first apply XL to |0〉⊗7 and then encode. Symbolically,
writing E to mean the operation of applying the encoding circuit,

|1〉L = XL|0〉L
= XLE|0〉⊗7

= EXL|0〉⊗7

where we can pick any implementation of XL that we like, such as X⊗7 or
11X11XX. This tells us that there are two ways of obtaining |1〉L from |0〉L:

1. apply XL and then encode
2. encode and then apply XL.

Now let’s generalise this, replacing the XL with a controlled version, con-
trolled exactly by the state |ψ〉 that we wish to encode. If |ψ〉 = α|0〉+ β|1〉, then
we want to construct the logical state

|ψ〉L := α|0〉L + β|1〉L.

Let’s look at the first option from above: applying XL and then encoding. For a
simpler circuit, we can use the low-weight implementation 11X11XX of XL, so
that we prepare the state

α|0〉L + β|1〉L = α|0000000〉+ β|0010011〉

and then feed this into the encoding circuit from before. This gives us the circuit
in Figure 14.12.
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unprotected

|0⟩⊗3

H H

H H

H H

|0⟩ X X Z

|ψ⟩L

|0⟩ X X Z

|ψ⟩ X X Z

|0⟩ X X X Z

|0⟩ X Z

|0⟩ X X Z

|0⟩ X X Z

Figure 14.12: Preparing the logical version |ψ〉L of an arbitrary state |ψ〉 in a way
that allows us to correct for any single-qubit errors in the encoding process, but
not the preparation process (highlighted in red).

To repeat ourselves, the very first step of this circuit that enacts

|0〉|0〉|ψ〉|0〉|0〉|0〉|0〉 7−→ α|0000000〉+ β|0010011〉

(where |ψ〉 = α|0〉+β|1〉) is not protected by any error correction scheme. If |ψ〉 is
some easily reproducible state, like |0〉, then we don’t really mind so much, since
we could instead use a circuit where all seven qubits are initially in state |ψ〉,
avoiding this problem altogether.318 But if |ψ〉 is the outcome of some previous
computation, or just a state that we don’t have complete knowledge of, then
we will always be faced with some uncertainty — did this preparation part of
the circuit undergo an error or not? These sorts of problems are avoided if we
can design truly fault-tolerant computational systems, instead of relying on mere
error correction.

318Thanks to the no-cloning theorem (Section 5.9), we know that there is no way of getting around
this problem of only having one copy of the state |ψ〉 that will work for any possible input — only if
|ψ〉 is something already known. So the preparation part of the circuit doesn’t clone the input state,
but instead “smears it out” across three qubits instead of one, just like we mentioned in Section 13.7.
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Now let’s look at the second option from before: encoding and then applying
XL. Imagine that we were able to construct the following circuit:

|ψ⟩ |0⟩

|0⟩L XL |ψ⟩L

This would transfer the state |ψ〉 = α|0〉 + β|1〉 into a logical version |ψ〉L,
since it enacts the transformations

(α|0〉+ β|1〉)|0〉L 7−→ α|0〉|0〉L + β|1〉|1〉L
7−→ |0〉(α|0〉L + β|1〉L).

But what do we actually mean by this circuit? We haven’t defined controlled-XL,
nor what it means for a c-NOT to be controlled by a logical state.

The first is reasonably simple: if the control qubit is in state |1〉, then we want
to apply XL to the target. Since XL can be319 expressed as a tensor product of
PauliX operators, this means that the controlled-XL is just a bunch of controlled-
NOT gates, each controlled by the top qubit, and targeting each of the qubits of
the encoded state.

The second step is maybe not so obvious, but there’s a trick that we can use
here! We know that the top qubit should end in the |0〉 state, so we can do
anything we want to it. For example, let’s apply a Hadamard gate and then
measure it — why not?

|ψ⟩ H

|0⟩L XL |ψ⟩L

But now we can recall how controlled-NOT (which is simply a controlled-X)
interacts with the Hadamard: the circuit above is equivalent to the circuit below.

|ψ⟩ H

|0⟩L XL ZL |ψ⟩L

This is a circuit that we could build, since we know all about the many im-
plementations of XL and ZL thanks to the stabiliser formalism. If we really like,
however, we could go one step further and replace the controlled-ZL with a ZL

after the measurement:
319If we want to keep the circuit as simple as possible, then we should choose the smallest weight

representative of XL, which might not be just a tensor product of all X operators. For example, in
the seven-qubit code there is an implementation of XL of weight 3.
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|ψ⟩ H

|0⟩L XL ZL |ψ⟩L

14.11 Remarks and exercises

14.11.1 Error correcting conditions for the three-qubit code

When building the Shor [[9, 1, 3]] code, we used the three-qubit code twice: once
to correct for X-errors, and once for Z-errors. However, there is no reason why
we couldn’t instead have used one copy to correct for Y -errors instead of X-
errors, and we can see this using the dot-error diagrams.

Consider the stabiliser code given by S = 〈ZZ1,1ZZ〉. In Figure 14.13 we
draw all the computational errors of weight at most 1, and we see that this does
not describe a correctable scenario. That is, as we already know, the three-qubit
code cannot alone correct for all single-qubit errors.

•

• • •
•

•
•

•
•

•

Figure 14.13: All computational errors of weight at most 1 for the three-qubit
code given by 〈ZZ1,1ZZ〉. Note that this describes a non-correctable scenario.
In fact, both of the two rules are broken.

But now let’s look at X-, Y -, and Z-errors all individually and see what hap-
pens. As Figure 14.14 shows, the three-qubit code given by 〈ZZ1,1ZZ〉 can
correct for all X-errors (as we already knew), but also for all Y -errors!
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•

•

•

•

•

•

•

•

•

• • •

Figure 14.14: Different types of computational errors of weight at most 1. Left
to right: X-type errors (correctable); Y -type errors (correctable); Z-type errors
(non-correctable).

14.11.2 The smallest d = 3 code, full stop

We have already seen the Shor [[9, 1, 3]] code, which can protect against any
single-qubit error. Despite its simplicity, it is not the smallest code that can do
this: that title belongs to the [[5, 1, 3]] stabiliser code, given by

S = 〈XZZX1,1ZXXZ,X1XZZ,ZX1XZ〉

shown as a Tanner graph in Figure ??. Note that the stabiliser generators (i.e. par-
ity checks) are related to each other by cyclic shifts: we just take different length-
five chunks from the infinite string XZZX1XZZX1XZZX1 . . .. This code is
unusual compared to the ones we have seen before, since it’s actually impossible
to write its generators as operators that consist of either all X or all Z.

d1 d2 d3 d4 d5

s1 s2

s3 s4

Figure 14.15: The Tanner graph for the [[5, 1, 3]] stabiliser code. Solid lines rep-
resent X-checks, and dashed ones Z-checks.

This [[5, 1, 3]] code truly is optimal, in that it is the smallest possible320 quan-
tum error correcting code with d = 3. Indeed, suppose that we have n qubits rep-
resenting one logical qubit, and each error X, Y , or Z on any of these n qubits

320Note that this code is not a CSS code! To prove this, we could use theorems about transversal
gates. The smallest CSS code with d = 3 is described in Exercise 14.11.10.
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maps the two-dimensional codespace to a different, mutually orthogonal sub-
space.321 This means that we have to fit the codespace, plus 3n two-dimensional
subspaces, into the 2n-dimensional Hilbert space associated with the n qubits.
This implies that we need to satisfy

2(1 + 3n) ⩽ 2n

which tells us that we must have at least n ⩾ 5.

The counting argument above tells us that the smallest code must have at
least five qubits, but doesn’t tell us if we can actually make one with exactly five
qubits! How do we actually go about finding optimal codes then? The answer
is simply that we do not know — there is no universal prescription for designing
optimal quantum codes. But we do know quite a few things about designing good
quantum codes.

One last thing to mention is how this code displays that quantum codes can
be used for more than just error correction. The [[5, 1, 3]] code gives a way of
designing a ((3, 5)) quantum secret sharing protocol.

14.11.3 Hamming code encodings and decodings

1. How is the binary message 0101 encoded in the Hamming [7, 4, 3] code?
2. If we receive the string 1011011 from Alice, who encoded her message in the

Hamming [7, 4, 3] code, then what is the error syndrome? What correction
should we make? What is the decoded message?

14.11.4 Generator and parity-check matrices

Show that, if the (n× k) generator matrix for an [n, k, d] linear code is written in
the form

G =
[

1
P

]

where P is an ((n − k) × k) binary matrix, then the parity-check matrix can be
written as

H =
[
P 1

]
.

321Here we are tacitly assuming that the code is non-degenerate (see Exercise 14.11.9).
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14.11.5 A big parity check matrix

Consider the following parity-check matrix of a classical [n, k, 7] code:

1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1


1. What are the values of the parameters n and k?

2. If we receive the bit string

x = 00101001011011000110101

and assume that no more than three errors have occurred, what are the
locations of the errors?

3. Show that we could use two copies of this code to build a CSS code.

4. If we build a CSS code using this classical code, what parameters does it
have? That is, what is its specification as an [[n, k, d]] code?

5. Given a state |ψ〉 of 23 qubits, how would you measure the value of the first
stabiliser

X1X4X5X6X10X11X12X13?

6. If we were to write out |0〉L for the CSS code, how many different basis
states would be in the superposition?

14.11.6 Using Tanner graphs

Consider the Tanner graph below.

d1 d2 d3 d4 d5

s

Recall that we use solid lines to denote X-parity checks and dashed lines to
denote Z-parity checks.
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1. What stabiliser does this Tanner graph define?
2. Add to the Tanner graph the definition for a second stabiliser g2 = 1XZZX.

How can we visually confirm that the two stabilisers commute?

At the end of Section 14.1, in Figure 14.3, we claimed an equivalence between
Tanner graphs (for detecting the parity of X errors) and circuits. Consider the
simpler example below.

s|0⟩

|ψ⟩
d1

d2

s

3. Draw the circuit322 for measuring the parity of Z-errors.
4. Draw the Tanner graph for the Shor [[9, 1, 3]] code.

14.11.7 Five-qubit repetition code

Consider the five-qubit repetition code

|0〉 7→ |+〉⊗5

|1〉 7→ |−〉⊗5.

1. What are the stabilisers of this code?
2. What is the normaliser of this code?
3. Which of the following sets of errors satisfy the error correcting conditions

for this code? (Recall that the identity 1 is always implicitly assumed to be
inside the set of errors).

a. {X1, Z5}
b. {X1, X2, X3, X4}
c. {Z1, Z2, Z3, Z4}
d. {Z1Z2, Z2Z4, Z1Z4}

14.11.8 An error in the Steane [[7, 1, 3]] code

One logical qubit is encoded in seven physical qubits using the Steane [[7, 1, 3]]
code, which then experiences the error

E = X1Y 11Z1.

1. What is the resulting error syndrome?
2. What is the smallest-weight error with the same error syndrome as E?
3. If we apply the smallest-weight error from above as our correction, then

what is the net logical error on the encoded qubit?
322Hint: you know what the circuit for X-parity checks looks like, so do the standard thing and swap

every X for Z (and vice versa), transform anything in the Z-basis to the X-basis (and vice versa), and
then check if the resulting circuit can be simplified by cancelling out any gates; don’t forget that a c-NOT
is secretly a c-X!
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14.11.9 Non-degenerate codes

An [n, k, d] code is said to be non-degenerate if every Pauli operator of weight
⩽ bd/2c has a distinct error syndrome.

Prove that all the stabilisers for a non-degenerate code have weight ⩾ d.

14.11.10 The smallest d = 3 CSS code

The [[7, 1, 3]] code is the smallest possible CSS code with distance d = 3. Let’s
prove that now, making the simplification that we will only consider non-degenerate
codes.

1. If we construct a CSS code using two parity-check matrices H1 and H2,
with m1 and m2 rows (respectively), and we want our code to encode one
logical qubit into n physical qubits, then how are the numbers m1, m2, and
n related?

2. Explain why the columns of a non-degenerate d = 3 code must be distinct.
Hence conclude that 2mi ⩾ n+ 1 for i = 1, 2.

3. Conclude that the smallest possible non-degenerate CSS code with d = 3
has n = 7 qubits.

14.11.11 CSS codes from a single matrix

Let H be an (n×m) binary matrix, with m > n, whose rows are linearly indepen-
dent. When taken as a parity-check matrix, it thus defines an [m,m− n, d] code.
Even though HT cannot be the parity-check matrix of a code (simply because
m > n), it still has a well defined distance dT .

Show that

HX =
[
1m×m ⊗H HT ⊗ 1n×n

]
HZ =

[
H ⊗ 1n×n 1m×m ⊗HT

]
defines a CSS code with specification [[n2 +m2, (n−m)2,min(d, dt)]].

14.11.12 Error-correcting conditions, algebraically

Let S ⩽ Pn be a stabiliser group, and let E ⊆ Pn be a set such that 1 ∈ E . Prove
that the stabiliser code defined by S can perfectly correct for all errors in E if and
only if

E†
1E2 6∈ N(S) \ S

for all E1, E2 ∈ E .
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14.11.13 Steane error correction: towards fault tolerance

We have seen how we can measure the stabilisers of a stabiliser code by using a
Hadamard test, resulting in ±1 outcomes. From these, we can determine where
the errors are likely to have occurred and then correct them. In Chapter 15, we
will see that the scenario of fault-tolerant computation requires us to be very
careful with how we construct our error-correcting circuits in order to minimise
the propagation of faults that occur during the error-process itself. A particularly
useful strategy is to not have multiple qubits interacting, but this contradicts the
measurements of the stabilisers, since these, by definition, act on many qubits.
There are a variety of ways to deal with this. In the case of CSS codes, Steane
himself provided a particularly elegant method, which we will now explore.

Note that, while we are motivated by the possibility of there being faults dur-
ing the error correction, for now we will still assume that the error-correction
process proceeds perfectly, and we are only trying to identify and fix errors on
the incoming (logical) state |ψ〉L.

As we shall later see, CSS codes all have transversal c-NOT gates: applying
a c-NOT to each physical qubit gives exactly the effect of a c-NOT on the logical
qubit. In other words, we can implement the logical operator c-NOTL by taking
a tensor product of usual controlled-NOT gates. What this means for us right now
is that, at the logical level, we can consider circuits such as323

|ψ⟩L |ψ⟩L

|0⟩L |0⟩L

|ψ⟩L |ψ⟩L

|+⟩L |+⟩L

1. Verify that the above circuits do indeed have the claimed outputs.

This means that, if the qubits are in the logical space (i.e. have undergone
no errors), then the action of the circuit is trivial. So what happens if there’s an
error? Let’s assume that we’re working with an [[n, 1, d]] CSS code.

2. If an X or Z error has already affected the input logical state |ψ〉L on a
specific physical qubit (say, the i-th) in the circuit on the left above, what
are the possible errors on the final state?

3. If an X or Z error has already affected the input logical state |ψ〉L on a
specific physical qubit (say, the i-th) in the circuit on the right above, what
are the possible errors on the final state?

In other words, we see that single errors cannot propagate to more than one
error on each logical qubit. This will prove to be very useful when thinking about
fault tolerance, as the same is also true if errors occur during the circuit. Now
we should see how error correction works. Let’s consider the circuit on the left
above.

4. The X stabilisers are defined by the rows of a parity-check matrix H. We
measure each physical qubit of the second logical qubit, |0〉L, in the X basis

323We are assuming the availability of the logical states |0〉L and |+〉L, but state preparation is
another challenge that we will eventually have to deal with!
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at the end of the circuit. In the absence of any errors, we get a measurement
outcome y ∈ {0, 1}n. What is the value of H · y?

5. If a weight-w Z-error occurs on the state |ψ〉L before the (transversal)
controlled-NOT, where 2w < d, then what are the possible measurement
outcomes? How do we identify which corrections to make?

So this circuit allows us to correct Z-errors on the input, but it does absolutely
nothing to X-errors.

6. Show that the circuit on the right above enables the correction of X-errors
in a similar way, where the extra logical qubit is now measured by measur-
ing each individual qubit in the Z (i.e. computational) basis.
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15 Fault tolerance

TO-DO

This section is not yet finished.
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About . . .

This section is not yet finished.
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