0.10 Some useful identities
Here is a summary of some particularly useful equalities concerning bras, kets, inner products, outer products, traces, and operators, that we will be using time and time again.
In all of these,
Dagger for bras and kets:
|a\rangle^\dagger = \langle a| \langle a|^\dagger = |a\rangle (|a\rangle\langle b|)^\dagger = |b\rangle\langle a| (\alpha|a\rangle+\beta|b\rangle)^\dagger = \alpha^\star\langle a|+\beta^\star\langle b|
Dagger for operators:
(AB)^\dagger = B^\dagger A^\dagger (A^\dagger)^\dagger = A (\alpha A+\beta B)^\dagger = \alpha^\star A^\dagger+\beta^\star B^\dagger
Trace:
\operatorname{tr}(\alpha A+\beta B) = \alpha \operatorname{tr}(A)+\beta\operatorname{tr}(B) \operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA) \operatorname{tr}|a\rangle\langle b| = \langle b|a\rangle \operatorname{tr}(A|a\rangle\langle b|) = \langle b|A|a\rangle = \operatorname{tr}(|a\rangle\langle b|A)